Spaces:
Paused
Paused
File size: 16,229 Bytes
0b5b901 dbb4a9f 4189fe1 9bf14d0 dbb4a9f d11cc63 dbb4a9f 0316ec3 e3958ab 479f253 dbb4a9f 479f253 2008a3f dbb4a9f e3958ab dbb4a9f 55145d2 d11cc63 55145d2 53012c3 dbb4a9f d11cc63 e3958ab dbb4a9f 479f253 96dc59a d11cc63 e3958ab dbb4a9f 55145d2 a0cc672 dbb4a9f a0cc672 e3958ab dbb4a9f 0dfc310 dbb4a9f d11cc63 dbb4a9f d11cc63 dbb4a9f 96dc59a d11cc63 dbb4a9f d11cc63 dbb4a9f d11cc63 96dc59a dbb4a9f 53012c3 641d199 d11cc63 53012c3 dbb4a9f 53012c3 dbb4a9f d11cc63 dbb4a9f 53012c3 55145d2 dbb4a9f d11cc63 53012c3 dbb4a9f 53012c3 dbb4a9f 53012c3 96dc59a 53012c3 d11cc63 53012c3 dbb4a9f 53012c3 dbb4a9f 53012c3 dbb4a9f d11cc63 dbb4a9f d11cc63 96dc59a dbb4a9f 53012c3 dbb4a9f 96dc59a 53012c3 55145d2 dbb4a9f 96dc59a 55145d2 53012c3 96dc59a d11cc63 55145d2 53012c3 d11cc63 55145d2 53012c3 55145d2 53012c3 55145d2 53012c3 55145d2 53012c3 d11cc63 55145d2 96dc59a 55145d2 53012c3 55145d2 53012c3 55145d2 53012c3 55145d2 53012c3 55145d2 d11cc63 96dc59a d11cc63 96dc59a d11cc63 96dc59a d11cc63 96dc59a 55145d2 d11cc63 55145d2 d11cc63 55145d2 53012c3 55145d2 d11cc63 55145d2 53012c3 55145d2 53012c3 55145d2 53012c3 55145d2 53012c3 d11cc63 55145d2 d11cc63 55145d2 96dc59a d11cc63 96dc59a d11cc63 96dc59a d11cc63 96dc59a d11cc63 55145d2 53012c3 55145d2 53012c3 55145d2 53012c3 55145d2 53012c3 55145d2 d11cc63 96dc59a 55145d2 53012c3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 |
# app.py ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
import os
import json
import torch
import asyncio
import traceback # Import traceback for better error logging
from fastapi import FastAPI, WebSocket, WebSocketDisconnect
from huggingface_hub import login
from transformers import AutoTokenizer, AutoModelForCausalLM, LogitsProcessor, StoppingCriteria, StoppingCriteriaList
# Import BaseStreamer for the interface
from transformers.generation.streamers import BaseStreamer
from snac import SNAC # Ensure you have 'pip install snac'
# --- Globals (populated in load_models) ---
tok = None
model = None
snac = None
masker = None
stopping_criteria = None
# actual_eos_token_id = None # Reverted to constant below
device = "cuda" if torch.cuda.is_available() else "cpu"
# 0) Login + Device ---------------------------------------------------
HF_TOKEN = os.getenv("HF_TOKEN")
if HF_TOKEN:
print("π Logging in to Hugging Face Hub...")
login(HF_TOKEN)
# torch.backends.cuda.enable_flash_sdp(False) # Uncomment if needed for PyTorchβ2.2βBug
# 1) Konstanten -------------------------------------------------------
REPO = "SebastianBodza/Kartoffel_Orpheus-3B_german_natural-v0.1"
START_TOKEN = 128259
NEW_BLOCK = 128257
# --- Reverted to using the hardcoded EOS token based on user belief ---
EOS_TOKEN = 128258
# --- End Reverted EOS Token ---
AUDIO_BASE = 128266
AUDIO_SPAN = 4096 * 7 # 28672 Codes
CODEBOOK_SIZE = 4096 # Explicitly define the codebook size
# Create AUDIO_IDS on the correct device later in load_models
AUDIO_IDS_CPU = torch.arange(AUDIO_BASE, AUDIO_BASE + AUDIO_SPAN)
# 2) LogitβMask -------------------------------------------------------
# Uses the constant EOS_TOKEN
class AudioMask(LogitsProcessor):
def __init__(self, audio_ids: torch.Tensor, new_block_token_id: int, eos_token_id: int):
super().__init__()
new_block_tensor = torch.tensor([new_block_token_id], device=audio_ids.device, dtype=torch.long)
eos_tensor = torch.tensor([eos_token_id], device=audio_ids.device, dtype=torch.long)
self.allow = torch.cat([new_block_tensor, audio_ids], dim=0)
self.eos = eos_tensor
self.allow_with_eos = torch.cat([self.allow, self.eos], dim=0)
self.sent_blocks = 0
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
current_allow = self.allow_with_eos if self.sent_blocks > 0 else self.allow
mask = torch.full_like(scores, float("-inf"))
mask[:, current_allow] = 0
return scores + mask
def reset(self):
self.sent_blocks = 0
# 3) StoppingCriteria fΓΌr EOS ---------------------------------------
# Uses the constant EOS_TOKEN
class EosStoppingCriteria(StoppingCriteria):
def __init__(self, eos_token_id: int):
self.eos_token_id = eos_token_id
# No warning needed here as we are intentionally using the constant
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
if self.eos_token_id is None:
return False
if input_ids.shape[1] > 0 and input_ids[:, -1] == self.eos_token_id:
print(f"StoppingCriteria: EOS detected (ID: {self.eos_token_id}).") # Add log
return True
return False
# 4) Benutzerdefinierter AudioStreamer -------------------------------
class AudioStreamer(BaseStreamer):
# Pass the constant EOS_TOKEN here too
def __init__(self, ws: WebSocket, snac_decoder: SNAC, audio_mask: AudioMask, loop: asyncio.AbstractEventLoop, target_device: str, eos_token_id: int):
self.ws = ws
self.snac = snac_decoder
self.masker = audio_mask
self.loop = loop
self.device = target_device
self.eos_token_id = eos_token_id # Store constant EOS ID
self.buf: list[int] = []
self.tasks = set()
def _decode_block(self, block7: list[int]) -> bytes:
"""
Decodes a block of 7 audio token values (AUDIO_BASE subtracted) into audio bytes.
NOTE: Extracts base code value (0-4095) using modulo, assuming
input values represent (slot_offset + code_value).
Maps extracted values using the structure potentially correct for Kartoffel_Orpheus.
"""
if len(block7) != 7:
# print(f"Streamer Warning: _decode_block received {len(block7)} tokens, expected 7. Skipping.")
return b"" # Less verbose logging
try:
# --- Extract base code value (0 to CODEBOOK_SIZE-1) for each slot using modulo ---
code_val_0 = block7[0] % CODEBOOK_SIZE
code_val_1 = block7[1] % CODEBOOK_SIZE
code_val_2 = block7[2] % CODEBOOK_SIZE
code_val_3 = block7[3] % CODEBOOK_SIZE
code_val_4 = block7[4] % CODEBOOK_SIZE
code_val_5 = block7[5] % CODEBOOK_SIZE
code_val_6 = block7[6] % CODEBOOK_SIZE
# --- Map the extracted code values to the SNAC codebooks (l1, l2, l3) ---
l1 = [code_val_0]
l2 = [code_val_1, code_val_4]
l3 = [code_val_2, code_val_3, code_val_5, code_val_6]
except IndexError:
print(f"Streamer Error: Index out of bounds during token mapping. Block: {block7}")
return b""
except Exception as e_map:
print(f"Streamer Error: Exception during code value extraction/mapping: {e_map}. Block: {block7}")
return b""
# --- Convert lists to tensors on the correct device ---
try:
codes_l1 = torch.tensor(l1, dtype=torch.long, device=self.device).unsqueeze(0)
codes_l2 = torch.tensor(l2, dtype=torch.long, device=self.device).unsqueeze(0)
codes_l3 = torch.tensor(l3, dtype=torch.long, device=self.device).unsqueeze(0)
codes = [codes_l1, codes_l2, codes_l3]
except Exception as e_tensor:
print(f"Streamer Error: Exception during tensor conversion: {e_tensor}. l1={l1}, l2={l2}, l3={l3}")
return b""
# --- Decode using SNAC ---
try:
with torch.no_grad():
audio = self.snac.decode(codes)[0]
except Exception as e_decode:
print(f"Streamer Error: Exception during snac.decode: {e_decode}")
# Add more details if needed, e.g., shapes: {[c.shape for c in codes]}
return b""
# --- Post-processing ---
try:
audio_np = audio.squeeze().detach().cpu().numpy()
audio_bytes = (audio_np * 32767).astype("int16").tobytes()
return audio_bytes
except Exception as e_post:
print(f"Streamer Error: Exception during post-processing: {e_post}. Audio tensor shape: {audio.shape}")
return b""
async def _send_audio_bytes(self, data: bytes):
"""Coroutine to send bytes over WebSocket."""
if not data:
return
try:
await self.ws.send_bytes(data)
except WebSocketDisconnect:
# This is expected if client disconnects first, don't log error
# print("Streamer: WebSocket disconnected during send.")
pass
except Exception as e:
if "Cannot call \"send\" once a close message has been sent" in str(e) or \
"Connection is closed" in str(e):
# This is expected if client disconnects during generation, suppress repetitive logs
pass
else:
print(f"Streamer: Error sending bytes: {e}")
def put(self, value: torch.LongTensor):
"""
Receives new token IDs (Tensor) from generate().
Processes tokens, decodes full blocks, and schedules sending.
"""
if value.numel() == 0:
return
new_token_ids = value.squeeze().cpu().tolist()
if isinstance(new_token_ids, int):
new_token_ids = [new_token_ids]
for t in new_token_ids:
# No need to check for EOS here, StoppingCriteria handles it
if t == NEW_BLOCK:
self.buf.clear()
continue
# Use the constant EOS_TOKEN for comparison if needed (e.g. for logging)
if AUDIO_BASE <= t < AUDIO_BASE + AUDIO_SPAN:
self.buf.append(t - AUDIO_BASE) # Store value relative to base
# else: # Optionally log ignored tokens
# if t != self.eos_token_id: # Don't warn about the EOS token itself
# print(f"Streamer Warning: Ignoring unexpected token {t}")
if len(self.buf) == 7:
audio_bytes = self._decode_block(self.buf)
self.buf.clear()
if audio_bytes:
future = asyncio.run_coroutine_threadsafe(self._send_audio_bytes(audio_bytes), self.loop)
self.tasks.add(future)
future.add_done_callback(self.tasks.discard)
if self.masker.sent_blocks == 0:
self.masker.sent_blocks = 1
def end(self):
"""Called by generate() when generation finishes."""
if len(self.buf) > 0:
print(f"Streamer: End of generation with incomplete block ({len(self.buf)} tokens). Discarding.")
self.buf.clear()
pass
# 5) FastAPI App ------------------------------------------------------
app = FastAPI()
@app.on_event("startup")
async def load_models_startup():
# Keep global references, but EOS_TOKEN is now a constant again
global tok, model, snac, masker, stopping_criteria, device, AUDIO_IDS_CPU
print(f"π Starting up on device: {device}")
print("β³ Lade Modelle β¦", flush=True)
tok = AutoTokenizer.from_pretrained(REPO)
print("Tokenizer loaded.")
snac = SNAC.from_pretrained("hubertsiuzdak/snac_24khz").to(device)
print(f"SNAC loaded to {device}.")
model_dtype = torch.float32
if device == "cuda":
if torch.cuda.is_bf16_supported():
model_dtype = torch.bfloat16
print("Using bfloat16 for model.")
else:
model_dtype = torch.float16
print("Using float16 for model.")
model = AutoModelForCausalLM.from_pretrained(
REPO,
device_map={"": 0} if device == "cuda" else None,
torch_dtype=model_dtype,
low_cpu_mem_usage=True,
)
print(f"Model loaded to {model.device} with dtype {model.dtype}.")
model.eval()
# --- Print comparison for EOS token IDs but use the constant ---
conf_eos = model.config.eos_token_id
tok_eos = tok.eos_token_id
print(f"Model Config EOS ID: {conf_eos}")
print(f"Tokenizer EOS ID: {tok_eos}")
print(f"Using Constant EOS_TOKEN: {EOS_TOKEN}") # State the used constant
if conf_eos != EOS_TOKEN or tok_eos != EOS_TOKEN:
print(f"β οΈ WARNING: Constant EOS_TOKEN {EOS_TOKEN} differs from model/tokenizer IDs ({conf_eos}/{tok_eos}).")
# --- End EOS comparison ---
# Set pad_token_id if None (use the constant EOS)
if model.config.pad_token_id is None:
print(f"Setting model.config.pad_token_id to Constant EOS token ID ({EOS_TOKEN})")
model.config.pad_token_id = EOS_TOKEN
audio_ids_device = AUDIO_IDS_CPU.to(device)
# Pass the constant EOS_TOKEN to the mask
masker = AudioMask(audio_ids_device, NEW_BLOCK, EOS_TOKEN)
print("AudioMask initialized.")
# Pass the constant EOS_TOKEN to the stopping criteria
stopping_criteria = StoppingCriteriaList([EosStoppingCriteria(EOS_TOKEN)])
print("StoppingCriteria initialized.")
print("β
Modelle geladen und bereit!", flush=True)
@app.get("/")
def hello():
return {"status": "ok", "message": "TTS Service is running"}
# 6) Helper zum Prompt Bauen -------------------------------------------
def build_prompt(text: str, voice: str) -> tuple[torch.Tensor, torch.Tensor]:
"""Builds the input_ids and attention_mask for the model."""
prompt_text = f"{voice}: {text}"
prompt_ids = tok(prompt_text, return_tensors="pt").input_ids.to(device)
input_ids = torch.cat([
torch.tensor([[START_TOKEN]], device=device, dtype=torch.long),
prompt_ids,
torch.tensor([[NEW_BLOCK]], device=device, dtype=torch.long)
], dim=1)
attention_mask = torch.ones_like(input_ids)
return input_ids, attention_mask
# 7) WebSocketβEndpoint (vereinfacht mit Streamer) ---------------------
@app.websocket("/ws/tts")
async def tts(ws: WebSocket):
# No need for global actual_eos_token_id
await ws.accept()
print("π Client connected")
streamer = None
main_loop = asyncio.get_running_loop()
try:
req_text = await ws.receive_text()
print(f"Received request: {req_text}")
req = json.loads(req_text)
text = req.get("text", "Hallo Welt, wie geht es dir heute?")
voice = req.get("voice", "Jakob")
if not text:
print("β οΈ Request text is empty.")
await ws.close(code=1003, reason="Text cannot be empty")
return
print(f"Generating audio for: '{text}' with voice '{voice}'")
ids, attn = build_prompt(text, voice)
masker.reset()
# Pass the constant EOS_TOKEN to streamer
streamer = AudioStreamer(ws, snac, masker, main_loop, device, EOS_TOKEN)
print("Starting generation in background thread...")
# Use sampling parameters with anti-repetition measures
await asyncio.to_thread(
model.generate,
input_ids=ids,
attention_mask=attn,
max_new_tokens=2500, # Or adjust as needed
logits_processor=[masker],
stopping_criteria=stopping_criteria,
# --- Sampling Parameters with Anti-Repetition ---
do_sample=True,
temperature=0.6, # Adjust if needed
top_p=0.9, # Adjust if needed
repetition_penalty=1.2, # Increased (experiment!)
no_repeat_ngram_size=4, # Added (experiment!)
# --- End Sampling Parameters ---
use_cache=True,
streamer=streamer,
eos_token_id=EOS_TOKEN # Explicitly pass constant EOS ID
)
print("Generation thread finished.")
except WebSocketDisconnect:
print("π Client disconnected.")
except json.JSONDecodeError:
print("β Invalid JSON received.")
if ws.client_state.name == "CONNECTED":
await ws.close(code=1003, reason="Invalid JSON format")
except Exception as e:
error_details = traceback.format_exc()
print(f"β WSβError: {e}\n{error_details}", flush=True)
error_payload = json.dumps({"error": str(e)})
try:
if ws.client_state.name == "CONNECTED":
await ws.send_text(error_payload)
except Exception:
pass
if ws.client_state.name == "CONNECTED":
await ws.close(code=1011)
finally:
if streamer:
try:
streamer.end()
except Exception as e_end:
print(f"Error during streamer.end(): {e_end}")
print("Closing connection.")
if ws.client_state.name == "CONNECTED":
try:
await ws.close(code=1000)
except RuntimeError as e_close:
if "Cannot call \"send\"" not in str(e_close) and "Connection is closed" not in str(e_close):
print(f"Runtime error closing websocket: {e_close}")
except Exception as e_close_final:
print(f"Error closing websocket: {e_close_final}")
elif ws.client_state.name != "DISCONNECTED":
print(f"WebSocket final state: {ws.client_state.name}")
print("Connection closed.")
# 8) DevβStart --------------------------------------------------------
if __name__ == "__main__":
import uvicorn
print("Starting Uvicorn server...")
uvicorn.run("app:app", host="0.0.0.0", port=7860, log_level="info") |