Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
@@ -3,146 +3,159 @@ import os, json, torch, asyncio
|
|
3 |
from fastapi import FastAPI, WebSocket, WebSocketDisconnect
|
4 |
from huggingface_hub import login
|
5 |
from transformers import AutoTokenizer, AutoModelForCausalLM, LogitsProcessor
|
6 |
-
from transformers.generation.utils import Cache
|
7 |
from snac import SNAC
|
8 |
|
9 |
-
# 0
|
10 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
11 |
if HF_TOKEN:
|
12 |
login(HF_TOKEN)
|
13 |
|
14 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
15 |
-
torch.backends.cuda.enable_flash_sdp(False)
|
16 |
-
|
17 |
-
# 1
|
18 |
-
REPO
|
19 |
-
CHUNK_TOKENS
|
20 |
-
START_TOKEN
|
21 |
-
NEW_BLOCK
|
22 |
-
EOS_TOKEN
|
23 |
-
AUDIO_BASE
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
def __init__(self, audio_ids: torch.Tensor, min_blocks:int=1):
|
30 |
super().__init__()
|
31 |
-
self.
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
|
|
|
|
45 |
app = FastAPI()
|
46 |
|
47 |
@app.get("/")
|
48 |
-
|
49 |
-
return {"
|
50 |
|
51 |
@app.on_event("startup")
|
52 |
-
|
53 |
global tok, model, snac, masker
|
54 |
-
print("⏳
|
|
|
55 |
tok = AutoTokenizer.from_pretrained(REPO)
|
56 |
snac = SNAC.from_pretrained("hubertsiuzdak/snac_24khz").to(device)
|
57 |
model = AutoModelForCausalLM.from_pretrained(
|
58 |
REPO,
|
|
|
|
|
59 |
low_cpu_mem_usage=True,
|
60 |
-
device_map={"":0} if device=="cuda" else None,
|
61 |
-
torch_dtype=torch.bfloat16 if device=="cuda" else None,
|
62 |
)
|
63 |
model.config.pad_token_id = model.config.eos_token_id
|
64 |
-
|
65 |
-
|
66 |
-
print("✅
|
67 |
-
|
68 |
-
# 4
|
69 |
-
def
|
70 |
-
|
71 |
-
ids
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
return ids,
|
76 |
-
|
77 |
-
def decode_block(
|
78 |
l1,l2,l3=[],[],[]
|
79 |
-
l1.append(
|
80 |
-
l2.append(
|
81 |
-
l3 += [
|
82 |
-
l2.append(
|
83 |
-
l3 += [
|
84 |
-
|
85 |
with torch.no_grad():
|
|
|
|
|
86 |
audio = snac.decode(codes).squeeze().detach().cpu().numpy()
|
|
|
87 |
return (audio*32767).astype("int16").tobytes()
|
88 |
|
89 |
-
# 5
|
90 |
@app.websocket("/ws/tts")
|
91 |
async def tts(ws: WebSocket):
|
92 |
await ws.accept()
|
93 |
try:
|
94 |
req = json.loads(await ws.receive_text())
|
95 |
-
|
96 |
-
|
97 |
-
|
|
|
|
|
|
|
|
|
|
|
98 |
|
99 |
while True:
|
100 |
-
|
101 |
-
|
102 |
-
input_ids
|
103 |
-
attention_mask
|
104 |
-
past_key_values= past,
|
105 |
-
max_new_tokens
|
106 |
-
logits_processor=[masker],
|
107 |
do_sample=True, temperature=0.7, top_p=0.95,
|
108 |
-
use_cache=True
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
if
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
|
|
|
|
122 |
for t in new:
|
123 |
-
|
124 |
-
|
125 |
-
if t == NEW_BLOCK:
|
|
|
|
|
126 |
buf.append(t - AUDIO_BASE)
|
127 |
if len(buf) == 7:
|
128 |
await ws.send_bytes(decode_block(buf))
|
129 |
buf.clear()
|
130 |
-
masker.
|
131 |
-
|
132 |
-
ids, attn = None, None # ab jetzt 1‑Token‑Step
|
133 |
|
134 |
except (StopIteration, WebSocketDisconnect):
|
135 |
pass
|
136 |
except Exception as e:
|
137 |
-
print("❌
|
138 |
if ws.client_state.name != "DISCONNECTED":
|
139 |
await ws.close(code=1011)
|
140 |
finally:
|
141 |
if ws.client_state.name != "DISCONNECTED":
|
142 |
-
try:
|
143 |
-
|
|
|
|
|
144 |
|
145 |
-
# 6
|
146 |
if __name__ == "__main__":
|
147 |
-
import uvicorn
|
148 |
-
uvicorn.run("app:app", host="0.0.0.0", port=7860)
|
|
|
3 |
from fastapi import FastAPI, WebSocket, WebSocketDisconnect
|
4 |
from huggingface_hub import login
|
5 |
from transformers import AutoTokenizer, AutoModelForCausalLM, LogitsProcessor
|
|
|
6 |
from snac import SNAC
|
7 |
|
8 |
+
# 0) Login + Device ---------------------------------------------------
|
9 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
10 |
if HF_TOKEN:
|
11 |
login(HF_TOKEN)
|
12 |
|
13 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
14 |
+
torch.backends.cuda.enable_flash_sdp(False) # PyTorch‑2.2‑Bug
|
15 |
+
|
16 |
+
# 1) Konstanten -------------------------------------------------------
|
17 |
+
REPO = "SebastianBodza/Kartoffel_Orpheus-3B_german_natural-v0.1"
|
18 |
+
CHUNK_TOKENS = 50
|
19 |
+
START_TOKEN = 128259
|
20 |
+
NEW_BLOCK = 128257
|
21 |
+
EOS_TOKEN = 128258
|
22 |
+
AUDIO_BASE = 128266
|
23 |
+
AUDIO_IDS = torch.arange(AUDIO_BASE, AUDIO_BASE + 4096)
|
24 |
+
|
25 |
+
# 2) Logit‑Mask (NEW_BLOCK + Audio; EOS erst nach 1. Block) ----------
|
26 |
+
class AudioMask(LogitsProcessor):
|
27 |
+
def __init__(self, audio_ids: torch.Tensor):
|
|
|
28 |
super().__init__()
|
29 |
+
self.allow = torch.cat([
|
30 |
+
torch.tensor([NEW_BLOCK], device=audio_ids.device),
|
31 |
+
audio_ids
|
32 |
+
])
|
33 |
+
self.eos = torch.tensor([EOS_TOKEN], device=audio_ids.device)
|
34 |
+
self.sent_blocks = 0
|
35 |
+
|
36 |
+
def __call__(self, input_ids, logits):
|
37 |
+
allowed = self.allow
|
38 |
+
if self.sent_blocks: # ab 1. Block EOS zulassen
|
39 |
+
allowed = torch.cat([allowed, self.eos])
|
40 |
+
mask = logits.new_full(logits.shape, float("-inf"))
|
41 |
+
mask[:, allowed] = 0
|
42 |
+
return logits + mask
|
43 |
+
|
44 |
+
# 3) FastAPI Grundgerüst ---------------------------------------------
|
45 |
app = FastAPI()
|
46 |
|
47 |
@app.get("/")
|
48 |
+
def hello():
|
49 |
+
return {"status": "ok"}
|
50 |
|
51 |
@app.on_event("startup")
|
52 |
+
def load_models():
|
53 |
global tok, model, snac, masker
|
54 |
+
print("⏳ Lade Modelle …", flush=True)
|
55 |
+
|
56 |
tok = AutoTokenizer.from_pretrained(REPO)
|
57 |
snac = SNAC.from_pretrained("hubertsiuzdak/snac_24khz").to(device)
|
58 |
model = AutoModelForCausalLM.from_pretrained(
|
59 |
REPO,
|
60 |
+
device_map={"": 0} if device == "cuda" else None,
|
61 |
+
torch_dtype=torch.bfloat16 if device == "cuda" else None,
|
62 |
low_cpu_mem_usage=True,
|
|
|
|
|
63 |
)
|
64 |
model.config.pad_token_id = model.config.eos_token_id
|
65 |
+
masker = AudioMask(AUDIO_IDS.to(device))
|
66 |
+
|
67 |
+
print("✅ Modelle geladen", flush=True)
|
68 |
+
|
69 |
+
# 4) Helper -----------------------------------------------------------
|
70 |
+
def build_prompt(text: str, voice: str):
|
71 |
+
prompt_ids = tok(f"{voice}: {text}", return_tensors="pt").input_ids.to(device)
|
72 |
+
ids = torch.cat([torch.tensor([[START_TOKEN]], device=device),
|
73 |
+
prompt_ids,
|
74 |
+
torch.tensor([[128009, 128260]], device=device)], 1)
|
75 |
+
attn = torch.ones_like(ids)
|
76 |
+
return ids, attn
|
77 |
+
|
78 |
+
def decode_block(block7: list[int]) -> bytes:
|
79 |
l1,l2,l3=[],[],[]
|
80 |
+
l1.append(block7[0])
|
81 |
+
l2.append(block7[1]-4096)
|
82 |
+
l3 += [block7[2]-8192, block7[3]-12288]
|
83 |
+
l2.append(block7[4]-16384)
|
84 |
+
l3 += [block7[5]-20480, block7[6]-24576]
|
85 |
+
|
86 |
with torch.no_grad():
|
87 |
+
codes = [torch.tensor(x, device=device).unsqueeze(0)
|
88 |
+
for x in (l1,l2,l3)]
|
89 |
audio = snac.decode(codes).squeeze().detach().cpu().numpy()
|
90 |
+
|
91 |
return (audio*32767).astype("int16").tobytes()
|
92 |
|
93 |
+
# 5) WebSocket‑Endpoint ----------------------------------------------
|
94 |
@app.websocket("/ws/tts")
|
95 |
async def tts(ws: WebSocket):
|
96 |
await ws.accept()
|
97 |
try:
|
98 |
req = json.loads(await ws.receive_text())
|
99 |
+
text = req.get("text", "")
|
100 |
+
voice = req.get("voice", "Jakob")
|
101 |
+
|
102 |
+
ids, attn = build_prompt(text, voice)
|
103 |
+
past = None
|
104 |
+
offset_len = ids.size(1) # wie viele Tokens existieren schon
|
105 |
+
last_tok = None
|
106 |
+
buf = []
|
107 |
|
108 |
while True:
|
109 |
+
# --- Mini‑Generate -------------------------------------------
|
110 |
+
gen = model.generate(
|
111 |
+
input_ids = ids if past is None else torch.tensor([[last_tok]], device=device),
|
112 |
+
attention_mask = attn if past is None else None,
|
113 |
+
past_key_values = past,
|
114 |
+
max_new_tokens = CHUNK_TOKENS,
|
115 |
+
logits_processor= [masker],
|
116 |
do_sample=True, temperature=0.7, top_p=0.95,
|
117 |
+
use_cache=True
|
118 |
+
)
|
119 |
+
|
120 |
+
# ----- neue Tokens heraus schneiden --------------------------
|
121 |
+
new = gen[0, offset_len:].tolist()
|
122 |
+
if not new: # nichts -> fertig
|
123 |
+
break
|
124 |
+
offset_len += len(new)
|
125 |
+
|
126 |
+
# ----- weiter mit Cache (letzte PKV steht im Modell) ---------
|
127 |
+
past = model._past_key_values
|
128 |
+
last_tok = new[-1]
|
129 |
+
|
130 |
+
print("new tokens:", new[:25], flush=True)
|
131 |
+
|
132 |
+
# ----- Token‑Handling ----------------------------------------
|
133 |
for t in new:
|
134 |
+
if t == EOS_TOKEN:
|
135 |
+
raise StopIteration
|
136 |
+
if t == NEW_BLOCK:
|
137 |
+
buf.clear()
|
138 |
+
continue
|
139 |
buf.append(t - AUDIO_BASE)
|
140 |
if len(buf) == 7:
|
141 |
await ws.send_bytes(decode_block(buf))
|
142 |
buf.clear()
|
143 |
+
masker.sent_blocks = 1 # ab jetzt EOS zulässig
|
|
|
|
|
144 |
|
145 |
except (StopIteration, WebSocketDisconnect):
|
146 |
pass
|
147 |
except Exception as e:
|
148 |
+
print("❌ WS‑Error:", e, flush=True)
|
149 |
if ws.client_state.name != "DISCONNECTED":
|
150 |
await ws.close(code=1011)
|
151 |
finally:
|
152 |
if ws.client_state.name != "DISCONNECTED":
|
153 |
+
try:
|
154 |
+
await ws.close()
|
155 |
+
except RuntimeError:
|
156 |
+
pass
|
157 |
|
158 |
+
# 6) Dev‑Start --------------------------------------------------------
|
159 |
if __name__ == "__main__":
|
160 |
+
import uvicorn, sys
|
161 |
+
uvicorn.run("app:app", host="0.0.0.0", port=7860, log_level="info")
|