Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
@@ -24,37 +24,43 @@ device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
24 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
25 |
if HF_TOKEN:
|
26 |
print("🔑 Logging in to Hugging Face Hub...")
|
|
|
27 |
login(HF_TOKEN)
|
28 |
|
29 |
# torch.backends.cuda.enable_flash_sdp(False) # Uncomment if needed for PyTorch‑2.2‑Bug
|
30 |
|
31 |
# 1) Konstanten -------------------------------------------------------
|
32 |
REPO = "SebastianBodza/Kartoffel_Orpheus-3B_german_natural-v0.1"
|
33 |
-
# CHUNK_TOKENS = 50 # Not directly used by us with the streamer approach
|
34 |
START_TOKEN = 128259
|
35 |
-
NEW_BLOCK = 128257
|
36 |
-
EOS_TOKEN = 128258
|
37 |
-
AUDIO_BASE = 128266
|
38 |
-
AUDIO_SPAN = 4096 * 7 # 28672
|
39 |
# Create AUDIO_IDS on the correct device later in load_models
|
40 |
AUDIO_IDS_CPU = torch.arange(AUDIO_BASE, AUDIO_BASE + AUDIO_SPAN)
|
41 |
|
42 |
# 2) Logit‑Mask -------------------------------------------------------
|
43 |
class AudioMask(LogitsProcessor):
|
|
|
|
|
|
|
|
|
|
|
44 |
def __init__(self, audio_ids: torch.Tensor, new_block_token_id: int, eos_token_id: int):
|
45 |
super().__init__()
|
46 |
# Allow NEW_BLOCK and all valid audio tokens initially
|
47 |
-
self.
|
48 |
-
torch.tensor([new_block_token_id], device=audio_ids.device),
|
49 |
audio_ids
|
50 |
], dim=0)
|
51 |
-
self.eos = torch.tensor([eos_token_id], device=audio_ids.device)
|
52 |
-
|
|
|
53 |
self.sent_blocks = 0 # State: Number of audio blocks sent
|
54 |
|
55 |
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
|
56 |
# Determine which tokens are allowed based on whether blocks have been sent
|
57 |
-
current_allow = self.allow_with_eos if self.sent_blocks > 0 else self.
|
58 |
|
59 |
# Create a mask initialized to negative infinity
|
60 |
mask = torch.full_like(scores, float("-inf"))
|
@@ -75,19 +81,26 @@ class EosStoppingCriteria(StoppingCriteria):
|
|
75 |
|
76 |
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
|
77 |
# Check if the *last* generated token is the EOS token
|
|
|
78 |
if input_ids.shape[1] > 0 and input_ids[:, -1] == self.eos_token_id:
|
79 |
-
|
80 |
return True
|
81 |
return False
|
82 |
|
83 |
# 4) Benutzerdefinierter AudioStreamer -------------------------------
|
84 |
class AudioStreamer(BaseStreamer):
|
85 |
-
|
|
|
|
|
|
|
|
|
|
|
86 |
self.ws = ws
|
87 |
self.snac = snac_decoder
|
88 |
self.masker = audio_mask # Reference to the mask to update sent_blocks
|
89 |
self.loop = loop # Event loop of the main thread for run_coroutine_threadsafe
|
90 |
-
|
|
|
91 |
self.buf: list[int] = [] # Buffer for audio token values (AUDIO_BASE subtracted)
|
92 |
self.tasks = set() # Keep track of pending send tasks
|
93 |
|
@@ -95,34 +108,46 @@ class AudioStreamer(BaseStreamer):
|
|
95 |
"""
|
96 |
Decodes a block of 7 audio token values (AUDIO_BASE subtracted) into audio bytes.
|
97 |
NOTE: The mapping from the 7 tokens to the 3 SNAC codebooks (l1, l2, l3)
|
98 |
-
is based on
|
|
|
|
|
99 |
"""
|
100 |
if len(block7) != 7:
|
101 |
print(f"Streamer Warning: _decode_block received {len(block7)} tokens, expected 7. Skipping.")
|
102 |
return b"" # Return empty bytes if block is incomplete
|
103 |
|
104 |
-
# ---
|
105 |
-
# Assumes 7 tokens map to 3 codebooks like this:
|
106 |
-
# Codebook 1 (l1) uses tokens at indices 0, 3, 6
|
107 |
-
# Codebook 2 (l2) uses tokens at indices 1, 4
|
108 |
-
# Codebook 3 (l3) uses tokens at indices 2, 5
|
109 |
try:
|
110 |
-
l1 = [block7[0]
|
111 |
-
l2 = [block7[1], block7[4]]
|
112 |
-
l3 = [block7[2], block7[5]]
|
113 |
-
|
114 |
-
|
|
|
|
|
|
|
|
|
115 |
return b""
|
116 |
|
117 |
# Convert lists to tensors on the correct device
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
|
|
|
|
|
|
|
|
122 |
|
123 |
# Decode using SNAC
|
124 |
-
|
125 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
126 |
|
127 |
# Squeeze, move to CPU, convert to numpy
|
128 |
audio_np = audio.squeeze().detach().cpu().numpy()
|
@@ -137,7 +162,7 @@ class AudioStreamer(BaseStreamer):
|
|
137 |
return
|
138 |
try:
|
139 |
await self.ws.send_bytes(data)
|
140 |
-
# print(f"Streamer: Sent {len(data)} audio bytes.")
|
141 |
except WebSocketDisconnect:
|
142 |
print("Streamer: WebSocket disconnected during send.")
|
143 |
except Exception as e:
|
@@ -151,9 +176,12 @@ class AudioStreamer(BaseStreamer):
|
|
151 |
# Ensure value is on CPU and flatten to a list of ints
|
152 |
if value.numel() == 0:
|
153 |
return
|
154 |
-
|
155 |
-
|
156 |
-
new_token_ids =
|
|
|
|
|
|
|
157 |
|
158 |
for t in new_token_ids:
|
159 |
if t == EOS_TOKEN:
|
@@ -161,208 +189,4 @@ class AudioStreamer(BaseStreamer):
|
|
161 |
# EOS is handled by StoppingCriteria, no action needed here except maybe logging.
|
162 |
break # Stop processing this batch if EOS is found
|
163 |
|
164 |
-
if t == NEW_BLOCK:
|
165 |
-
# print("Streamer: NEW_BLOCK token encountered.")
|
166 |
-
# NEW_BLOCK indicates the start of audio, might reset buffer if needed
|
167 |
-
self.buf.clear()
|
168 |
-
continue # Move to the next token
|
169 |
-
|
170 |
-
# Check if token is within the expected audio range
|
171 |
-
if AUDIO_BASE <= t < AUDIO_BASE + AUDIO_SPAN:
|
172 |
-
self.buf.append(t - AUDIO_BASE) # Store value relative to base
|
173 |
-
else:
|
174 |
-
# Log unexpected tokens (like START_TOKEN or others if generation goes wrong)
|
175 |
-
# print(f"Streamer Warning: Ignoring unexpected token {t}")
|
176 |
-
pass # Ignore tokens outside the audio range
|
177 |
-
|
178 |
-
# If buffer has 7 tokens, decode and send
|
179 |
-
if len(self.buf) == 7:
|
180 |
-
audio_bytes = self._decode_block(self.buf)
|
181 |
-
self.buf.clear() # Clear buffer after processing
|
182 |
-
|
183 |
-
if audio_bytes: # Only send if decoding was successful
|
184 |
-
# Schedule the async send function to run on the main event loop
|
185 |
-
future = asyncio.run_coroutine_threadsafe(self._send_audio_bytes(audio_bytes), self.loop)
|
186 |
-
self.tasks.add(future)
|
187 |
-
# Optional: Remove completed tasks to prevent memory leak if generation is very long
|
188 |
-
future.add_done_callback(self.tasks.discard)
|
189 |
-
|
190 |
-
|
191 |
-
# Allow EOS only after the first full block has been processed and scheduled for sending
|
192 |
-
if self.masker.sent_blocks == 0:
|
193 |
-
# print("Streamer: First audio block processed, allowing EOS.")
|
194 |
-
self.masker.sent_blocks = 1 # Update state in the mask
|
195 |
-
|
196 |
-
# Note: No need to explicitly wait for tasks here. put() should return quickly.
|
197 |
-
|
198 |
-
def end(self):
|
199 |
-
"""Called by generate() when generation finishes."""
|
200 |
-
# Handle any remaining tokens in the buffer (optional, here we discard them)
|
201 |
-
if len(self.buf) > 0:
|
202 |
-
print(f"Streamer: End of generation with incomplete block ({len(self.buf)} tokens). Discarding.")
|
203 |
-
self.buf.clear()
|
204 |
-
|
205 |
-
# Optional: Wait briefly for any outstanding send tasks to complete?
|
206 |
-
# This is tricky because end() is sync. A robust solution might involve
|
207 |
-
# signaling the WebSocket handler to wait before closing.
|
208 |
-
# For simplicity, we rely on FastAPI/Uvicorn's graceful shutdown handling.
|
209 |
-
# print(f"Streamer: Generation finished. Pending send tasks: {len(self.tasks)}")
|
210 |
-
pass
|
211 |
-
|
212 |
-
# 5) FastAPI App ------------------------------------------------------
|
213 |
-
app = FastAPI()
|
214 |
-
|
215 |
-
@app.on_event("startup")
|
216 |
-
async def load_models_startup(): # Make startup async if needed for future async loads
|
217 |
-
global tok, model, snac, masker, stopping_criteria, device, AUDIO_IDS_CPU
|
218 |
-
|
219 |
-
print(f"🚀 Starting up on device: {device}")
|
220 |
-
print("⏳ Lade Modelle …", flush=True)
|
221 |
-
|
222 |
-
tok = AutoTokenizer.from_pretrained(REPO)
|
223 |
-
print("Tokenizer loaded.")
|
224 |
-
|
225 |
-
# Load SNAC first (usually smaller)
|
226 |
-
snac = SNAC.from_pretrained("hubertsiuzdak/snac_24khz").to(device)
|
227 |
-
print(f"SNAC loaded to {snac.device}.")
|
228 |
-
|
229 |
-
# Load the main model
|
230 |
-
model = AutoModelForCausalLM.from_pretrained(
|
231 |
-
REPO,
|
232 |
-
device_map={"": 0} if device == "cuda" else None, # Assign to GPU 0 if cuda
|
233 |
-
torch_dtype=torch.bfloat16 if device == "cuda" and torch.cuda.is_bf16_supported() else torch.float32, # Use bfloat16 if supported
|
234 |
-
low_cpu_mem_usage=True, # Good practice for large models
|
235 |
-
)
|
236 |
-
model.config.pad_token_id = model.config.eos_token_id # Set pad token
|
237 |
-
print(f"Model loaded to {model.device}.")
|
238 |
-
|
239 |
-
# Ensure model is in evaluation mode
|
240 |
-
model.eval()
|
241 |
-
|
242 |
-
# Initialize AudioMask (needs AUDIO_IDS on the correct device)
|
243 |
-
audio_ids_device = AUDIO_IDS_CPU.to(device)
|
244 |
-
masker = AudioMask(audio_ids_device, NEW_BLOCK, EOS_TOKEN)
|
245 |
-
print("AudioMask initialized.")
|
246 |
-
|
247 |
-
# Initialize StoppingCriteria
|
248 |
-
# IMPORTANT: Create the list and add the criteria instance
|
249 |
-
stopping_criteria = StoppingCriteriaList([EosStoppingCriteria(EOS_TOKEN)])
|
250 |
-
print("StoppingCriteria initialized.")
|
251 |
-
|
252 |
-
print("✅ Modelle geladen und bereit!", flush=True)
|
253 |
-
|
254 |
-
@app.get("/")
|
255 |
-
def hello():
|
256 |
-
return {"status": "ok", "message": "TTS Service is running"}
|
257 |
-
|
258 |
-
# 6) Helper zum Prompt Bauen -------------------------------------------
|
259 |
-
def build_prompt(text: str, voice: str) -> tuple[torch.Tensor, torch.Tensor]:
|
260 |
-
"""Builds the input_ids and attention_mask for the model."""
|
261 |
-
# Format: <START> <VOICE>: <TEXT> <NEW_BLOCK>
|
262 |
-
prompt_text = f"{voice}: {text}"
|
263 |
-
prompt_ids = tok(prompt_text, return_tensors="pt").input_ids.to(device)
|
264 |
-
|
265 |
-
# Construct input_ids tensor
|
266 |
-
input_ids = torch.cat([
|
267 |
-
torch.tensor([[START_TOKEN]], device=device), # Start token
|
268 |
-
prompt_ids, # Encoded prompt
|
269 |
-
torch.tensor([[NEW_BLOCK]], device=device) # New block token to trigger audio
|
270 |
-
], dim=1)
|
271 |
-
|
272 |
-
# Create attention mask (all ones)
|
273 |
-
attention_mask = torch.ones_like(input_ids)
|
274 |
-
return input_ids, attention_mask
|
275 |
-
|
276 |
-
# 7) WebSocket‑Endpoint (vereinfacht mit Streamer) ---------------------
|
277 |
-
@app.websocket("/ws/tts")
|
278 |
-
async def tts(ws: WebSocket):
|
279 |
-
await ws.accept()
|
280 |
-
print(" клиент подключился") # Client connected
|
281 |
-
streamer = None # Initialize for finally block
|
282 |
-
main_loop = asyncio.get_running_loop() # Get the current event loop
|
283 |
-
|
284 |
-
try:
|
285 |
-
# Receive configuration
|
286 |
-
req_text = await ws.receive_text()
|
287 |
-
print(f"Received request: {req_text}")
|
288 |
-
req = json.loads(req_text)
|
289 |
-
text = req.get("text", "Hallo Welt, wie geht es dir heute?") # Default text
|
290 |
-
voice = req.get("voice", "Jakob") # Default voice
|
291 |
-
|
292 |
-
if not text:
|
293 |
-
await ws.close(code=1003, reason="Text cannot be empty")
|
294 |
-
return
|
295 |
-
|
296 |
-
print(f"Generating audio for: '{text}' with voice '{voice}'")
|
297 |
-
|
298 |
-
# Prepare prompt
|
299 |
-
ids, attn = build_prompt(text, voice)
|
300 |
-
|
301 |
-
# --- Reset stateful components ---
|
302 |
-
masker.reset() # CRITICAL: Reset the mask state for the new request
|
303 |
-
|
304 |
-
# --- Create Streamer Instance ---
|
305 |
-
streamer = AudioStreamer(ws, snac, masker, main_loop)
|
306 |
-
|
307 |
-
# --- Run model.generate in a separate thread ---
|
308 |
-
# This prevents blocking the main FastAPI event loop
|
309 |
-
print("Starting generation...")
|
310 |
-
await asyncio.to_thread(
|
311 |
-
model.generate,
|
312 |
-
input_ids=ids,
|
313 |
-
attention_mask=attn,
|
314 |
-
max_new_tokens=1500, # Limit generation length (adjust as needed)
|
315 |
-
logits_processor=[masker],
|
316 |
-
stopping_criteria=stopping_criteria,
|
317 |
-
do_sample=False, # Use greedy decoding for potentially more stable audio
|
318 |
-
# do_sample=True, temperature=0.7, top_p=0.95, # Or use sampling
|
319 |
-
use_cache=True,
|
320 |
-
streamer=streamer # Pass the custom streamer
|
321 |
-
# No need to manage past_key_values manually
|
322 |
-
)
|
323 |
-
print("Generation finished.")
|
324 |
-
|
325 |
-
except WebSocketDisconnect:
|
326 |
-
print("Client disconnected.")
|
327 |
-
except json.JSONDecodeError:
|
328 |
-
print("❌ Invalid JSON received.")
|
329 |
-
await ws.close(code=1003, reason="Invalid JSON format") # 1003 = Cannot accept data type
|
330 |
-
except Exception as e:
|
331 |
-
error_details = traceback.format_exc()
|
332 |
-
print(f"❌ WS‑Error: {e}\n{error_details}", flush=True)
|
333 |
-
# Try to send an error message before closing, if possible
|
334 |
-
error_payload = json.dumps({"error": str(e)})
|
335 |
-
try:
|
336 |
-
if ws.client_state.name == "CONNECTED":
|
337 |
-
await ws.send_text(error_payload) # Send error as text/json
|
338 |
-
except Exception:
|
339 |
-
pass # Ignore error during error reporting
|
340 |
-
# Close with internal server error code
|
341 |
-
if ws.client_state.name == "CONNECTED":
|
342 |
-
await ws.close(code=1011) # 1011 = Internal Server Error
|
343 |
-
finally:
|
344 |
-
# Ensure streamer's end method is called if it exists
|
345 |
-
if streamer:
|
346 |
-
try:
|
347 |
-
streamer.end()
|
348 |
-
except Exception as e_end:
|
349 |
-
print(f"Error during streamer.end(): {e_end}")
|
350 |
-
|
351 |
-
# Ensure WebSocket is closed
|
352 |
-
print("Closing connection.")
|
353 |
-
if ws.client_state.name != "DISCONNECTED":
|
354 |
-
try:
|
355 |
-
await ws.close(code=1000) # 1000 = Normal Closure
|
356 |
-
except RuntimeError as e_close:
|
357 |
-
# Can happen if connection is already closing/closed
|
358 |
-
print(f"Runtime error closing websocket: {e_close}")
|
359 |
-
except Exception as e_close_final:
|
360 |
-
print(f"Error closing websocket: {e_close_final}")
|
361 |
-
print("Connection closed.")
|
362 |
-
|
363 |
-
# 8) Dev‑Start --------------------------------------------------------
|
364 |
-
if __name__ == "__main__":
|
365 |
-
import uvicorn
|
366 |
-
print("Starting Uvicorn server...")
|
367 |
-
# Use reload=True only for development, remove for production
|
368 |
-
uvicorn.run("app:app", host="0.0.0.0", port=7860, log_level="info") #, reload=True)
|
|
|
24 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
25 |
if HF_TOKEN:
|
26 |
print("🔑 Logging in to Hugging Face Hub...")
|
27 |
+
# Consider adding error handling for login failure if necessary
|
28 |
login(HF_TOKEN)
|
29 |
|
30 |
# torch.backends.cuda.enable_flash_sdp(False) # Uncomment if needed for PyTorch‑2.2‑Bug
|
31 |
|
32 |
# 1) Konstanten -------------------------------------------------------
|
33 |
REPO = "SebastianBodza/Kartoffel_Orpheus-3B_german_natural-v0.1"
|
|
|
34 |
START_TOKEN = 128259
|
35 |
+
NEW_BLOCK = 128257 # Token indicating start of audio generation
|
36 |
+
EOS_TOKEN = 128258 # End Of Speech token
|
37 |
+
AUDIO_BASE = 128266 # Base ID for audio tokens
|
38 |
+
AUDIO_SPAN = 4096 * 7 # 7 codebooks * 4096 codes per book = 28672 possible audio tokens
|
39 |
# Create AUDIO_IDS on the correct device later in load_models
|
40 |
AUDIO_IDS_CPU = torch.arange(AUDIO_BASE, AUDIO_BASE + AUDIO_SPAN)
|
41 |
|
42 |
# 2) Logit‑Mask -------------------------------------------------------
|
43 |
class AudioMask(LogitsProcessor):
|
44 |
+
"""
|
45 |
+
Manages allowed tokens during generation.
|
46 |
+
- Initially allows NEW_BLOCK and AUDIO tokens.
|
47 |
+
- Allows EOS_TOKEN only after at least one audio block has been sent.
|
48 |
+
"""
|
49 |
def __init__(self, audio_ids: torch.Tensor, new_block_token_id: int, eos_token_id: int):
|
50 |
super().__init__()
|
51 |
# Allow NEW_BLOCK and all valid audio tokens initially
|
52 |
+
self.allow_initial = torch.cat([
|
53 |
+
torch.tensor([new_block_token_id], device=audio_ids.device),
|
54 |
audio_ids
|
55 |
], dim=0)
|
56 |
+
self.eos = torch.tensor([eos_token_id], device=audio_ids.device)
|
57 |
+
# Precompute combined tensor for allowing audio, NEW_BLOCK, and EOS
|
58 |
+
self.allow_with_eos = torch.cat([self.allow_initial, self.eos], dim=0)
|
59 |
self.sent_blocks = 0 # State: Number of audio blocks sent
|
60 |
|
61 |
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
|
62 |
# Determine which tokens are allowed based on whether blocks have been sent
|
63 |
+
current_allow = self.allow_with_eos if self.sent_blocks > 0 else self.allow_initial
|
64 |
|
65 |
# Create a mask initialized to negative infinity
|
66 |
mask = torch.full_like(scores, float("-inf"))
|
|
|
81 |
|
82 |
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
|
83 |
# Check if the *last* generated token is the EOS token
|
84 |
+
# Check input_ids shape to prevent index error on first token
|
85 |
if input_ids.shape[1] > 0 and input_ids[:, -1] == self.eos_token_id:
|
86 |
+
print("StoppingCriteria: EOS detected.")
|
87 |
return True
|
88 |
return False
|
89 |
|
90 |
# 4) Benutzerdefinierter AudioStreamer -------------------------------
|
91 |
class AudioStreamer(BaseStreamer):
|
92 |
+
"""
|
93 |
+
Custom streamer to process audio tokens, decode them using SNAC,
|
94 |
+
and send audio bytes over a WebSocket.
|
95 |
+
"""
|
96 |
+
# Added target_device parameter
|
97 |
+
def __init__(self, ws: WebSocket, snac_decoder: SNAC, audio_mask: AudioMask, loop: asyncio.AbstractEventLoop, target_device: str):
|
98 |
self.ws = ws
|
99 |
self.snac = snac_decoder
|
100 |
self.masker = audio_mask # Reference to the mask to update sent_blocks
|
101 |
self.loop = loop # Event loop of the main thread for run_coroutine_threadsafe
|
102 |
+
# Use the passed target_device
|
103 |
+
self.device = target_device
|
104 |
self.buf: list[int] = [] # Buffer for audio token values (AUDIO_BASE subtracted)
|
105 |
self.tasks = set() # Keep track of pending send tasks
|
106 |
|
|
|
108 |
"""
|
109 |
Decodes a block of 7 audio token values (AUDIO_BASE subtracted) into audio bytes.
|
110 |
NOTE: The mapping from the 7 tokens to the 3 SNAC codebooks (l1, l2, l3)
|
111 |
+
is CRITICAL and based on the structure used by the specific model.
|
112 |
+
This implementation uses the mapping derived from the user's previous code.
|
113 |
+
If audio is distorted, try the alternative mapping commented out below.
|
114 |
"""
|
115 |
if len(block7) != 7:
|
116 |
print(f"Streamer Warning: _decode_block received {len(block7)} tokens, expected 7. Skipping.")
|
117 |
return b"" # Return empty bytes if block is incomplete
|
118 |
|
119 |
+
# --- Mapping based on user's previous version ---
|
|
|
|
|
|
|
|
|
120 |
try:
|
121 |
+
l1 = [block7[0]] # Index 0
|
122 |
+
l2 = [block7[1], block7[4]] # Indices 1, 4
|
123 |
+
l3 = [block7[2], block7[3], block7[5], block7[6]] # Indices 2, 3, 5, 6
|
124 |
+
# --- Alternative Hypothesis Mapping (Try if above fails) ---
|
125 |
+
# l1 = [block7[0], block7[3], block7[6]] # Indices 0, 3, 6
|
126 |
+
# l2 = [block7[1], block7[4]] # Indices 1, 4
|
127 |
+
# l3 = [block7[2], block7[5]] # Indices 2, 5
|
128 |
+
except IndexError as e:
|
129 |
+
print(f"Streamer Error: Index out of bounds during token mapping. Block: {block7}, Error: {e}")
|
130 |
return b""
|
131 |
|
132 |
# Convert lists to tensors on the correct device
|
133 |
+
try:
|
134 |
+
codes_l1 = torch.tensor(l1, dtype=torch.long, device=self.device).unsqueeze(0)
|
135 |
+
codes_l2 = torch.tensor(l2, dtype=torch.long, device=self.device).unsqueeze(0)
|
136 |
+
codes_l3 = torch.tensor(l3, dtype=torch.long, device=self.device).unsqueeze(0)
|
137 |
+
codes = [codes_l1, codes_l2, codes_l3] # List of tensors for SNAC
|
138 |
+
except Exception as e:
|
139 |
+
print(f"Streamer Error: Failed converting lists to tensors. Error: {e}")
|
140 |
+
return b""
|
141 |
|
142 |
# Decode using SNAC
|
143 |
+
try:
|
144 |
+
with torch.no_grad():
|
145 |
+
# Ensure snac_decoder is on the correct device already (done via .to(device))
|
146 |
+
audio = self.snac.decode(codes)[0] # Decode expects list of tensors, result might have batch dim
|
147 |
+
except Exception as e:
|
148 |
+
print(f"Streamer Error: snac.decode failed. Input shapes: {[c.shape for c in codes]}. Error: {e}")
|
149 |
+
return b""
|
150 |
+
|
151 |
|
152 |
# Squeeze, move to CPU, convert to numpy
|
153 |
audio_np = audio.squeeze().detach().cpu().numpy()
|
|
|
162 |
return
|
163 |
try:
|
164 |
await self.ws.send_bytes(data)
|
165 |
+
# print(f"Streamer: Sent {len(data)} audio bytes.") # Optional: Debug log
|
166 |
except WebSocketDisconnect:
|
167 |
print("Streamer: WebSocket disconnected during send.")
|
168 |
except Exception as e:
|
|
|
176 |
# Ensure value is on CPU and flatten to a list of ints
|
177 |
if value.numel() == 0:
|
178 |
return
|
179 |
+
# Handle potential shape issues, ensure it's iterable
|
180 |
+
try:
|
181 |
+
new_token_ids = value.view(-1).tolist()
|
182 |
+
except Exception as e:
|
183 |
+
print(f"Streamer Error: Could not process incoming tensor: {value}, Error: {e}")
|
184 |
+
return
|
185 |
|
186 |
for t in new_token_ids:
|
187 |
if t == EOS_TOKEN:
|
|
|
189 |
# EOS is handled by StoppingCriteria, no action needed here except maybe logging.
|
190 |
break # Stop processing this batch if EOS is found
|
191 |
|
192 |
+
if t == NEW_BLOCK:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|