Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
@@ -3,168 +3,130 @@ import json
|
|
3 |
import asyncio
|
4 |
import torch
|
5 |
from fastapi import FastAPI, WebSocket, WebSocketDisconnect
|
6 |
-
from
|
7 |
-
from dotenv import load_dotenv
|
8 |
from snac import SNAC
|
9 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
10 |
-
from peft import PeftModel
|
11 |
|
12 |
-
# —
|
13 |
-
load_dotenv()
|
14 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
15 |
if HF_TOKEN:
|
16 |
-
|
17 |
-
os.environ["HUGGINGFACE_HUB_TOKEN"] = HF_TOKEN
|
18 |
|
19 |
-
# —
|
20 |
-
app = FastAPI()
|
21 |
-
|
22 |
-
@app.get("/")
|
23 |
-
async def hello():
|
24 |
-
return PlainTextResponse("Hallo Welt!")
|
25 |
-
|
26 |
-
# — Device konfigurieren —
|
27 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
28 |
|
29 |
-
# —
|
30 |
-
|
31 |
-
snac = SNAC.from_pretrained("hubertsiuzdak/snac_24khz").to(device)
|
32 |
-
|
33 |
-
# — Orpheus/Kartoffel‑3B über PEFT laden —
|
34 |
-
model_name = "SebastianBodza/Kartoffel_Orpheus-3B_german_natural-v0.1"
|
35 |
-
print(f"Loading base LM + PEFT from {model_name}…")
|
36 |
-
base = AutoModelForCausalLM.from_pretrained(
|
37 |
-
model_name,
|
38 |
-
device_map="auto",
|
39 |
-
torch_dtype=torch.bfloat16,
|
40 |
-
)
|
41 |
-
model = PeftModel.from_pretrained(
|
42 |
-
base,
|
43 |
-
model_name,
|
44 |
-
device_map="auto",
|
45 |
-
)
|
46 |
-
model.eval()
|
47 |
|
48 |
-
|
49 |
-
|
50 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
|
52 |
# — Hilfsfunktionen —
|
53 |
-
def
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
#
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
# Die Audio‑Token beginnen ab Offset 128266
|
87 |
-
return [(t.item() - 128266) for t in flat]
|
88 |
-
|
89 |
-
def decode_and_stream(tokens: list[int], ws: WebSocket):
|
90 |
-
"""Wandelt 7er‑Gruppen in Wave‑Samples um und streamt in 0.1 s Chunks."""
|
91 |
-
# gruppiere nach 7 und dekodiere jeweils
|
92 |
-
pcm16 = bytearray()
|
93 |
-
offset = 0
|
94 |
-
while offset + 7 <= len(tokens):
|
95 |
-
block = tokens[offset:offset+7]
|
96 |
-
offset += 7
|
97 |
-
|
98 |
-
# SNAC‑Input vorbereiten
|
99 |
-
# Layer‑1: direkt, Layer‑2/3 mit Offsets
|
100 |
-
l1, l2, l3 = [], [], []
|
101 |
-
l1.append(block[0])
|
102 |
-
l2.append(block[1] - 4096)
|
103 |
-
l3.append(block[2] - 2*4096)
|
104 |
-
l3.append(block[3] - 3*4096)
|
105 |
-
l2.append(block[4] - 4*4096)
|
106 |
-
l3.append(block[5] - 5*4096)
|
107 |
-
l3.append(block[6] - 6*4096)
|
108 |
-
|
109 |
-
t1 = torch.tensor(l1, device=device).unsqueeze(0)
|
110 |
-
t2 = torch.tensor(l2, device=device).unsqueeze(0)
|
111 |
-
t3 = torch.tensor(l3, device=device).unsqueeze(0)
|
112 |
-
audio = snac.decode([t1, t2, t3]).squeeze().cpu().numpy()
|
113 |
-
|
114 |
-
# in PCM16 @24 kHz
|
115 |
-
pcm = (audio * 32767).astype("int16").tobytes()
|
116 |
-
pcm16.extend(pcm)
|
117 |
-
|
118 |
-
# in 0.1 s‑Chunks (2400 Samples ×2 Bytes)
|
119 |
-
chunk_size = 2400 * 2
|
120 |
-
for i in range(0, len(pcm16), chunk_size):
|
121 |
-
ws.send_bytes(pcm16[i : i+chunk_size])
|
122 |
-
# ohne Pause kann das WebSocket überlastet werden
|
123 |
-
asyncio.sleep(0.1)
|
124 |
-
|
125 |
-
# — WebSocket TTS Endpoint —
|
126 |
@app.websocket("/ws/tts")
|
127 |
async def tts_ws(ws: WebSocket):
|
128 |
await ws.accept()
|
129 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
130 |
while True:
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
# Prompt vorbereiten
|
137 |
-
ids, mask = prepare_prompt(text, voice)
|
138 |
-
|
139 |
-
# Audio‑Token generieren
|
140 |
-
gen = model.generate(
|
141 |
-
input_ids=ids,
|
142 |
-
attention_mask=mask,
|
143 |
-
max_new_tokens=4000,
|
144 |
-
do_sample=True,
|
145 |
-
temperature=0.7,
|
146 |
-
top_p=0.95,
|
147 |
-
repetition_penalty=1.1,
|
148 |
-
eos_token_id=128258,
|
149 |
-
forced_bos_token_id=128259,
|
150 |
use_cache=True,
|
151 |
)
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
160 |
|
161 |
except WebSocketDisconnect:
|
162 |
-
|
|
|
163 |
except Exception as e:
|
|
|
164 |
print("Error in /ws/tts:", e)
|
165 |
await ws.close(code=1011)
|
166 |
-
|
167 |
-
# — Lokal starten —
|
168 |
-
if __name__ == "__main__":
|
169 |
-
import uvicorn
|
170 |
-
uvicorn.run("app:app", host="0.0.0.0", port=7860)
|
|
|
3 |
import asyncio
|
4 |
import torch
|
5 |
from fastapi import FastAPI, WebSocket, WebSocketDisconnect
|
6 |
+
from huggingface_hub import login
|
|
|
7 |
from snac import SNAC
|
8 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
|
|
9 |
|
10 |
+
# — HF‑Token & Login —
|
|
|
11 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
12 |
if HF_TOKEN:
|
13 |
+
login(HF_TOKEN)
|
|
|
14 |
|
15 |
+
# — Device wählen —
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
17 |
|
18 |
+
# — FastAPI instanziieren —
|
19 |
+
app = FastAPI()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
+
# — Hello‑Route, damit kein 404 bei GET / mehr kommt —
|
22 |
+
@app.get("/")
|
23 |
+
async def read_root():
|
24 |
+
return {"message": "Hello, world!"}
|
25 |
+
|
26 |
+
# — Modelle bei Startup laden —
|
27 |
+
@app.on_event("startup")
|
28 |
+
async def load_models():
|
29 |
+
global tokenizer, model, snac
|
30 |
+
# SNAC laden
|
31 |
+
snac = SNAC.from_pretrained("hubertsiuzdak/snac_24khz").to(device)
|
32 |
+
# TTS‑Modell laden
|
33 |
+
model_name = "SebastianBodza/Kartoffel_Orpheus-3B_german_natural-v0.1"
|
34 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
35 |
+
model = AutoModelForCausalLM.from_pretrained(
|
36 |
+
model_name,
|
37 |
+
device_map={"": 0} if device == "cuda" else None,
|
38 |
+
torch_dtype=torch.bfloat16 if device == "cuda" else None,
|
39 |
+
low_cpu_mem_usage=True
|
40 |
+
)
|
41 |
+
# Pad‑ID auf EOS einstellen
|
42 |
+
model.config.pad_token_id = model.config.eos_token_id
|
43 |
|
44 |
# — Hilfsfunktionen —
|
45 |
+
def prepare_inputs(text: str, voice: str):
|
46 |
+
prompt = f"{voice}: {text}"
|
47 |
+
input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to(device)
|
48 |
+
# Start‑/End‑Marker
|
49 |
+
start = torch.tensor([[128259]], dtype=torch.int64, device=device)
|
50 |
+
end = torch.tensor([[128009, 128260]], dtype=torch.int64, device=device)
|
51 |
+
ids = torch.cat([start, input_ids, end], dim=1)
|
52 |
+
mask = torch.ones_like(ids)
|
53 |
+
return ids, mask
|
54 |
+
|
55 |
+
def decode_block(block_tokens: list[int]):
|
56 |
+
# aus 7 Tokens einen SNAC‑Decode‑Block bauen
|
57 |
+
layer1, layer2, layer3 = [], [], []
|
58 |
+
b = block_tokens
|
59 |
+
layer1.append(b[0])
|
60 |
+
layer2.append(b[1] - 4096)
|
61 |
+
layer3.append(b[2] - 2*4096)
|
62 |
+
layer3.append(b[3] - 3*4096)
|
63 |
+
layer2.append(b[4] - 4*4096)
|
64 |
+
layer3.append(b[5] - 5*4096)
|
65 |
+
layer3.append(b[6] - 6*4096)
|
66 |
+
codes = [
|
67 |
+
torch.tensor(layer1, device=device).unsqueeze(0),
|
68 |
+
torch.tensor(layer2, device=device).unsqueeze(0),
|
69 |
+
torch.tensor(layer3, device=device).unsqueeze(0),
|
70 |
+
]
|
71 |
+
# ergibt FloatTensor shape (1, N), @24 kHz
|
72 |
+
audio = snac.decode(codes).squeeze().cpu().numpy()
|
73 |
+
# in PCM16 umwandeln
|
74 |
+
return (audio * 32767).astype("int16").tobytes()
|
75 |
+
|
76 |
+
# — WebSocket Endpoint für TTS Streaming —
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
@app.websocket("/ws/tts")
|
78 |
async def tts_ws(ws: WebSocket):
|
79 |
await ws.accept()
|
80 |
try:
|
81 |
+
# erst die Anfrage als JSON empfangen
|
82 |
+
msg = await ws.receive_text()
|
83 |
+
req = json.loads(msg)
|
84 |
+
text = req.get("text", "")
|
85 |
+
voice = req.get("voice", "Jakob")
|
86 |
+
|
87 |
+
# Inputs bauen
|
88 |
+
input_ids, attention_mask = prepare_inputs(text, voice)
|
89 |
+
past_kvs = None
|
90 |
+
collected = []
|
91 |
+
|
92 |
+
# Token‑für‑Token loop
|
93 |
while True:
|
94 |
+
out = model(
|
95 |
+
input_ids=input_ids if past_kvs is None else None,
|
96 |
+
attention_mask=attention_mask if past_kvs is None else None,
|
97 |
+
past_key_values=past_kvs,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
98 |
use_cache=True,
|
99 |
)
|
100 |
+
logits = out.logits[:, -1, :]
|
101 |
+
past_kvs = out.past_key_values
|
102 |
+
|
103 |
+
# Sampling
|
104 |
+
probs = torch.softmax(logits, dim=-1)
|
105 |
+
nxt = torch.multinomial(probs, num_samples=1).item()
|
106 |
+
|
107 |
+
# Ende, wenn EOS
|
108 |
+
if nxt == model.config.eos_token_id:
|
109 |
+
break
|
110 |
+
# Reset bei neuem Start‑Marker
|
111 |
+
if nxt == 128257:
|
112 |
+
collected = []
|
113 |
+
continue
|
114 |
+
|
115 |
+
# Audio‑Code offsetten und sammeln
|
116 |
+
collected.append(nxt - 128266)
|
117 |
+
# sobald 7 Stück, direkt dekodieren und senden
|
118 |
+
if len(collected) == 7:
|
119 |
+
pcm = decode_block(collected)
|
120 |
+
collected = []
|
121 |
+
await ws.send_bytes(pcm)
|
122 |
+
|
123 |
+
# nach Ende sauber schließen
|
124 |
+
await ws.close()
|
125 |
|
126 |
except WebSocketDisconnect:
|
127 |
+
# Client hat disconnectet
|
128 |
+
pass
|
129 |
except Exception as e:
|
130 |
+
# bei Fehlern 1011 senden
|
131 |
print("Error in /ws/tts:", e)
|
132 |
await ws.close(code=1011)
|
|
|
|
|
|
|
|
|
|