Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
@@ -1,97 +1,94 @@
|
|
1 |
-
# app.py
|
2 |
-
import os, json, torch
|
3 |
from fastapi import FastAPI, WebSocket, WebSocketDisconnect
|
4 |
from huggingface_hub import login
|
5 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM,
|
6 |
-
|
7 |
from snac import SNAC
|
8 |
|
9 |
# ββ 0. Auth & Device ββββββββββββββββββββββββββββββββββββββββββββββββ
|
10 |
-
|
11 |
-
|
|
|
12 |
|
13 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
14 |
-
torch.backends.cuda.enable_flash_sdp(False)
|
|
|
15 |
|
16 |
# ββ 1. Konstanten βββββββββββββββββββββββββββββββββββββββββββββββββββ
|
17 |
-
|
18 |
-
CHUNK_TOKENS
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
|
|
|
|
|
|
26 |
class AudioMask(LogitsProcessor):
|
27 |
-
def __init__(self, allowed: torch.Tensor):
|
|
|
28 |
self.allowed = allowed
|
29 |
|
30 |
-
def __call__(self,
|
31 |
mask = torch.full_like(scores, float("-inf"))
|
32 |
-
mask[:, self.allowed] = 0
|
33 |
return scores + mask
|
34 |
|
35 |
-
ALLOWED_IDS = torch.cat(
|
36 |
-
|
37 |
-
|
38 |
-
).to(device)
|
39 |
MASKER = AudioMask(ALLOWED_IDS)
|
40 |
|
41 |
# ββ 3. FastAPI GrundgerΓΌst ββββββββββββββββββββββββββββββββββββββββββ
|
42 |
app = FastAPI()
|
43 |
|
44 |
@app.get("/")
|
45 |
-
async def
|
46 |
-
return {"
|
47 |
-
|
48 |
-
# global handles
|
49 |
-
tok = model = snac = None
|
50 |
|
51 |
@app.on_event("startup")
|
52 |
async def load_models():
|
53 |
global tok, model, snac
|
54 |
-
tok = AutoTokenizer.from_pretrained(
|
55 |
-
snac = SNAC.from_pretrained("hubertsiuzdak/snac_24khz").to(device)
|
56 |
model = AutoModelForCausalLM.from_pretrained(
|
57 |
-
|
58 |
low_cpu_mem_usage=True,
|
59 |
device_map={"": 0} if device == "cuda" else None,
|
60 |
torch_dtype=torch.bfloat16 if device == "cuda" else None,
|
61 |
)
|
62 |
model.config.pad_token_id = model.config.eos_token_id
|
63 |
-
|
64 |
|
65 |
-
# ββ 4.
|
66 |
def build_inputs(text: str, voice: str):
|
67 |
-
prompt = f"{voice}: {text}"
|
68 |
ids = tok(prompt, return_tensors="pt").input_ids.to(device)
|
69 |
-
ids = torch.cat(
|
70 |
-
[
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
def decode_block(b7: list[int]) -> bytes:
|
80 |
l1, l2, l3 = [], [], []
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
|
|
86 |
|
87 |
codes = [torch.tensor(x, device=device).unsqueeze(0) for x in (l1, l2, l3)]
|
88 |
audio = snac.decode(codes).squeeze().cpu().numpy()
|
89 |
return (audio * 32767).astype("int16").tobytes()
|
90 |
|
91 |
-
def new_tokens_only(full_seq, prev_len):
|
92 |
-
"""liefert Liste der Tokens, die *neu* hinzukamen"""
|
93 |
-
return full_seq[prev_len:].tolist()
|
94 |
-
|
95 |
# ββ 5. WebSocketβEndpoint βββββββββββββββββββββββββββββββββββββββββββ
|
96 |
@app.websocket("/ws/tts")
|
97 |
async def tts(ws: WebSocket):
|
@@ -103,47 +100,49 @@ async def tts(ws: WebSocket):
|
|
103 |
past, buf = None, []
|
104 |
|
105 |
while True:
|
106 |
-
|
107 |
input_ids=ids if past is None else None,
|
108 |
attention_mask=attn if past is None else None,
|
109 |
past_key_values=past,
|
110 |
max_new_tokens=CHUNK_TOKENS,
|
111 |
logits_processor=[MASKER],
|
112 |
-
do_sample=True,
|
113 |
return_dict_in_generate=True,
|
114 |
-
use_cache=True,
|
|
|
115 |
)
|
116 |
|
117 |
-
past
|
118 |
-
seq
|
119 |
-
|
120 |
-
prompt_len = len(seq)
|
121 |
|
122 |
-
if not
|
123 |
-
continue
|
124 |
|
125 |
-
for t in
|
126 |
if t == EOS_TOKEN:
|
127 |
-
|
128 |
-
await ws.close() # <ββ einziges explizites close
|
129 |
return
|
130 |
if t == NEW_BLOCK_TOKEN:
|
131 |
buf.clear(); continue
|
|
|
|
|
132 |
buf.append(t - AUDIO_BASE)
|
133 |
if len(buf) == 7:
|
134 |
await ws.send_bytes(decode_block(buf))
|
135 |
buf.clear()
|
136 |
|
137 |
-
|
|
|
138 |
|
139 |
except WebSocketDisconnect:
|
140 |
-
pass
|
141 |
except Exception as e:
|
142 |
print("WSβError:", e)
|
143 |
if ws.client_state.name == "CONNECTED":
|
144 |
-
await ws.close(code=1011)
|
145 |
|
146 |
-
# ββ 6.
|
147 |
if __name__ == "__main__":
|
148 |
import uvicorn, sys
|
149 |
port = int(sys.argv[1]) if len(sys.argv) > 1 else 7860
|
|
|
1 |
+
# app.py ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
2 |
+
import os, json, asyncio, torch, logging
|
3 |
from fastapi import FastAPI, WebSocket, WebSocketDisconnect
|
4 |
from huggingface_hub import login
|
5 |
+
from transformers import (AutoTokenizer, AutoModelForCausalLM,
|
6 |
+
LogitsProcessor, generation_utils)
|
7 |
from snac import SNAC
|
8 |
|
9 |
# ββ 0. Auth & Device ββββββββββββββββββββββββββββββββββββββββββββββββ
|
10 |
+
HF_TOKEN = os.getenv("HF_TOKEN")
|
11 |
+
if HF_TOKEN:
|
12 |
+
login(HF_TOKEN)
|
13 |
|
14 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
15 |
+
torch.backends.cuda.enable_flash_sdp(False) # FlashβBug umgehen
|
16 |
+
logging.getLogger("transformers.generation.utils").setLevel("ERROR")
|
17 |
|
18 |
# ββ 1. Konstanten βββββββββββββββββββββββββββββββββββββββββββββββββββ
|
19 |
+
MODEL_REPO = "SebastianBodza/Kartoffel_Orpheus-3B_german_natural-v0.1"
|
20 |
+
CHUNK_TOKENS = 50
|
21 |
+
|
22 |
+
START_TOKEN = 128259 # <π >
|
23 |
+
NEW_BLOCK_TOKEN = 128257 # πβStart
|
24 |
+
EOS_TOKEN = 128258 # <eos>
|
25 |
+
PROMPT_END = [128009, 128260]
|
26 |
+
AUDIO_BASE = 128266
|
27 |
+
|
28 |
+
VALID_AUDIO_IDS = torch.arange(AUDIO_BASE, AUDIO_BASE + 4096)
|
29 |
+
|
30 |
+
# ββ 2. LogitβMasker βββββββββββββββββββββββββββββββββββββββββββββββββ
|
31 |
class AudioMask(LogitsProcessor):
|
32 |
+
def __init__(self, allowed: torch.Tensor):
|
33 |
+
super().__init__()
|
34 |
self.allowed = allowed
|
35 |
|
36 |
+
def __call__(self, input_ids, scores):
|
37 |
mask = torch.full_like(scores, float("-inf"))
|
38 |
+
mask[:, self.allowed] = 0
|
39 |
return scores + mask
|
40 |
|
41 |
+
ALLOWED_IDS = torch.cat([
|
42 |
+
VALID_AUDIO_IDS,
|
43 |
+
torch.tensor([START_TOKEN, NEW_BLOCK_TOKEN, EOS_TOKEN])
|
44 |
+
]).to(device)
|
45 |
MASKER = AudioMask(ALLOWED_IDS)
|
46 |
|
47 |
# ββ 3. FastAPI GrundgerΓΌst ββββββββββββββββββββββββββββββββββββββββββ
|
48 |
app = FastAPI()
|
49 |
|
50 |
@app.get("/")
|
51 |
+
async def ping():
|
52 |
+
return {"message": "OrpheusβTTSΒ ready"}
|
|
|
|
|
|
|
53 |
|
54 |
@app.on_event("startup")
|
55 |
async def load_models():
|
56 |
global tok, model, snac
|
57 |
+
tok = AutoTokenizer.from_pretrained(MODEL_REPO)
|
|
|
58 |
model = AutoModelForCausalLM.from_pretrained(
|
59 |
+
MODEL_REPO,
|
60 |
low_cpu_mem_usage=True,
|
61 |
device_map={"": 0} if device == "cuda" else None,
|
62 |
torch_dtype=torch.bfloat16 if device == "cuda" else None,
|
63 |
)
|
64 |
model.config.pad_token_id = model.config.eos_token_id
|
65 |
+
snac = SNAC.from_pretrained("hubertsiuzdak/snac_24khz").to(device)
|
66 |
|
67 |
+
# ββ 4. Hilfsfunktionen ββββββββββββββββββββββββββββββββββββββββββββββ
|
68 |
def build_inputs(text: str, voice: str):
|
69 |
+
prompt = f"{voice}: {text}" if voice and voice != "in_prompt" else text
|
70 |
ids = tok(prompt, return_tensors="pt").input_ids.to(device)
|
71 |
+
ids = torch.cat([
|
72 |
+
torch.tensor([[START_TOKEN]], device=device),
|
73 |
+
ids,
|
74 |
+
torch.tensor([PROMPT_END], device=device)
|
75 |
+
], 1)
|
76 |
+
mask = torch.ones_like(ids)
|
77 |
+
return ids, mask # shape (1,Β L)
|
78 |
+
|
79 |
+
def decode_block(block7: list[int]) -> bytes:
|
|
|
|
|
80 |
l1, l2, l3 = [], [], []
|
81 |
+
b = block7
|
82 |
+
l1.append(b[0])
|
83 |
+
l2.append(b[1] - 4096)
|
84 |
+
l3 += [b[2]-8192, b[3]-12288]
|
85 |
+
l2.append(b[4] - 16384)
|
86 |
+
l3 += [b[5]-20480, b[6]-24576]
|
87 |
|
88 |
codes = [torch.tensor(x, device=device).unsqueeze(0) for x in (l1, l2, l3)]
|
89 |
audio = snac.decode(codes).squeeze().cpu().numpy()
|
90 |
return (audio * 32767).astype("int16").tobytes()
|
91 |
|
|
|
|
|
|
|
|
|
92 |
# ββ 5. WebSocketβEndpoint βββββββββββββββββββββββββββββββββββββββββββ
|
93 |
@app.websocket("/ws/tts")
|
94 |
async def tts(ws: WebSocket):
|
|
|
100 |
past, buf = None, []
|
101 |
|
102 |
while True:
|
103 |
+
out = model.generate(
|
104 |
input_ids=ids if past is None else None,
|
105 |
attention_mask=attn if past is None else None,
|
106 |
past_key_values=past,
|
107 |
max_new_tokens=CHUNK_TOKENS,
|
108 |
logits_processor=[MASKER],
|
109 |
+
do_sample=True, top_p=0.95, temperature=0.7,
|
110 |
return_dict_in_generate=True,
|
111 |
+
use_cache=True,
|
112 |
+
return_legacy_cache=True, # β Warnung verschwindet
|
113 |
)
|
114 |
|
115 |
+
past = out.past_key_values # unverΓ€ndert weiterreichen
|
116 |
+
seq = out.sequences[0].tolist()
|
117 |
+
new = seq[prompt_len:]; prompt_len = len(seq)
|
|
|
118 |
|
119 |
+
if not new: # selten, aber mΓΆglich
|
120 |
+
continue
|
121 |
|
122 |
+
for t in new:
|
123 |
if t == EOS_TOKEN:
|
124 |
+
await ws.close()
|
|
|
125 |
return
|
126 |
if t == NEW_BLOCK_TOKEN:
|
127 |
buf.clear(); continue
|
128 |
+
if t < AUDIO_BASE: # sollte durch Maske nie passieren
|
129 |
+
continue
|
130 |
buf.append(t - AUDIO_BASE)
|
131 |
if len(buf) == 7:
|
132 |
await ws.send_bytes(decode_block(buf))
|
133 |
buf.clear()
|
134 |
|
135 |
+
# Ab jetzt nur noch Cache β IDs & Mask nicht mehr nΓΆtig
|
136 |
+
ids = attn = None
|
137 |
|
138 |
except WebSocketDisconnect:
|
139 |
+
pass
|
140 |
except Exception as e:
|
141 |
print("WSβError:", e)
|
142 |
if ws.client_state.name == "CONNECTED":
|
143 |
+
await ws.close(code=1011)
|
144 |
|
145 |
+
# ββ 6. Lokaler Start ββββββββββββββββββββββββββββββββββββββββββββββββ
|
146 |
if __name__ == "__main__":
|
147 |
import uvicorn, sys
|
148 |
port = int(sys.argv[1]) if len(sys.argv) > 1 else 7860
|