Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
@@ -1,113 +1,246 @@
|
|
1 |
-
|
2 |
-
from
|
3 |
-
import
|
4 |
-
import
|
5 |
-
import
|
6 |
-
import
|
7 |
-
import
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
)
|
20 |
|
21 |
-
|
22 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
-
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
-
|
27 |
-
|
28 |
-
|
|
|
|
|
29 |
|
30 |
-
|
31 |
-
|
32 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
try:
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
|
|
48 |
)
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
with open(temp_path, "rb") as f:
|
58 |
-
wav_data = f.read()
|
59 |
-
# WAV header is typically 44 bytes, but let's detect it robustly
|
60 |
-
# Find the end of the header (data chunk)
|
61 |
-
if wav_data[:4] != b'RIFF' or wav_data[8:12] != b'WAVE':
|
62 |
-
raise ValueError("Not a valid WAV file")
|
63 |
-
# Find 'data' subchunk
|
64 |
-
data_offset = wav_data.find(b'data')
|
65 |
-
if data_offset == -1:
|
66 |
-
raise ValueError("No 'data' chunk found in WAV file")
|
67 |
-
header_end = data_offset + 8 # 'data' + size (4 bytes)
|
68 |
-
wav_header = bytearray(wav_data[:header_end])
|
69 |
-
pcm_data = wav_data[header_end:]
|
70 |
-
# Patch header: set data length to 0xFFFFFFFF (unknown/streaming)
|
71 |
-
wav_header[data_offset+4:data_offset+8] = (0xFFFFFFFF).to_bytes(4, 'little')
|
72 |
-
# Send header + first PCM chunk
|
73 |
-
first_chunk = pcm_data[:chunk_size]
|
74 |
-
audio_b64 = base64.b64encode(wav_header + first_chunk).decode("ascii")
|
75 |
-
await websocket.send_text(json.dumps({
|
76 |
-
"data": {
|
77 |
-
"audio_bytes": audio_b64,
|
78 |
-
"duration": None,
|
79 |
-
"request_finished": False
|
80 |
-
}
|
81 |
-
}))
|
82 |
-
# Send rest of PCM data in chunks (without header)
|
83 |
-
idx = chunk_size
|
84 |
-
while idx < len(pcm_data):
|
85 |
-
chunk = pcm_data[idx:idx+chunk_size]
|
86 |
-
if not chunk:
|
87 |
-
break
|
88 |
-
audio_b64 = base64.b64encode(chunk).decode("ascii")
|
89 |
-
await websocket.send_text(json.dumps({
|
90 |
-
"data": {
|
91 |
-
"audio_bytes": audio_b64,
|
92 |
-
"duration": None,
|
93 |
-
"request_finished": False
|
94 |
-
}
|
95 |
-
}))
|
96 |
-
idx += chunk_size
|
97 |
-
finally:
|
98 |
-
try:
|
99 |
-
os.remove(temp_path)
|
100 |
-
except FileNotFoundError:
|
101 |
-
pass
|
102 |
-
# Final event
|
103 |
-
await websocket.send_text(json.dumps({
|
104 |
-
"data": {
|
105 |
-
"audio_bytes": "",
|
106 |
-
"duration": None,
|
107 |
-
"request_finished": True
|
108 |
-
}
|
109 |
-
}))
|
110 |
-
except WebSocketDisconnect:
|
111 |
-
pass
|
112 |
except Exception as e:
|
113 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import spaces
|
2 |
+
from snac import SNAC
|
3 |
+
import torch
|
4 |
+
import gradio as gr
|
5 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
6 |
+
from huggingface_hub import snapshot_download
|
7 |
+
from dotenv import load_dotenv
|
8 |
+
load_dotenv()
|
9 |
+
|
10 |
+
# Check if CUDA is available
|
11 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
12 |
+
|
13 |
+
print("Loading SNAC model...")
|
14 |
+
snac_model = SNAC.from_pretrained("hubertsiuzdak/snac_24khz")
|
15 |
+
snac_model = snac_model.to(device)
|
16 |
+
|
17 |
+
model_name = "canopylabs/3b-de-ft-research_release"
|
18 |
+
#"canopylabs/orpheus-3b-0.1-ft"
|
19 |
+
|
20 |
+
# Download only model config and safetensors
|
21 |
+
snapshot_download(
|
22 |
+
repo_id=model_name,
|
23 |
+
allow_patterns=[
|
24 |
+
"config.json",
|
25 |
+
"*.safetensors",
|
26 |
+
"model.safetensors.index.json",
|
27 |
+
],
|
28 |
+
ignore_patterns=[
|
29 |
+
"optimizer.pt",
|
30 |
+
"pytorch_model.bin",
|
31 |
+
"training_args.bin",
|
32 |
+
"scheduler.pt",
|
33 |
+
"tokenizer.json",
|
34 |
+
"tokenizer_config.json",
|
35 |
+
"special_tokens_map.json",
|
36 |
+
"vocab.json",
|
37 |
+
"merges.txt",
|
38 |
+
"tokenizer.*"
|
39 |
+
]
|
40 |
)
|
41 |
|
42 |
+
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16)
|
43 |
+
model.to(device)
|
44 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
45 |
+
print(f"Orpheus model loaded to {device}")
|
46 |
+
|
47 |
+
# Process text prompt
|
48 |
+
def process_prompt(prompt, voice, tokenizer, device):
|
49 |
+
prompt = f"{voice}: {prompt}"
|
50 |
+
input_ids = tokenizer(prompt, return_tensors="pt").input_ids
|
51 |
+
|
52 |
+
start_token = torch.tensor([[128259]], dtype=torch.int64) # Start of human
|
53 |
+
end_tokens = torch.tensor([[128009, 128260]], dtype=torch.int64) # End of text, End of human
|
54 |
+
|
55 |
+
modified_input_ids = torch.cat([start_token, input_ids, end_tokens], dim=1) # SOH SOT Text EOT EOH
|
56 |
+
|
57 |
+
# No padding needed for single input
|
58 |
+
attention_mask = torch.ones_like(modified_input_ids)
|
59 |
+
|
60 |
+
return modified_input_ids.to(device), attention_mask.to(device)
|
61 |
|
62 |
+
# Parse output tokens to audio
|
63 |
+
def parse_output(generated_ids):
|
64 |
+
token_to_find = 128257
|
65 |
+
token_to_remove = 128258
|
66 |
+
|
67 |
+
token_indices = (generated_ids == token_to_find).nonzero(as_tuple=True)
|
68 |
|
69 |
+
if len(token_indices[1]) > 0:
|
70 |
+
last_occurrence_idx = token_indices[1][-1].item()
|
71 |
+
cropped_tensor = generated_ids[:, last_occurrence_idx+1:]
|
72 |
+
else:
|
73 |
+
cropped_tensor = generated_ids
|
74 |
|
75 |
+
processed_rows = []
|
76 |
+
for row in cropped_tensor:
|
77 |
+
masked_row = row[row != token_to_remove]
|
78 |
+
processed_rows.append(masked_row)
|
79 |
+
|
80 |
+
code_lists = []
|
81 |
+
for row in processed_rows:
|
82 |
+
row_length = row.size(0)
|
83 |
+
new_length = (row_length // 7) * 7
|
84 |
+
trimmed_row = row[:new_length]
|
85 |
+
trimmed_row = [t - 128266 for t in trimmed_row]
|
86 |
+
code_lists.append(trimmed_row)
|
87 |
+
|
88 |
+
return code_lists[0] # Return just the first one for single sample
|
89 |
+
|
90 |
+
# Redistribute codes for audio generation
|
91 |
+
def redistribute_codes(code_list, snac_model):
|
92 |
+
device = next(snac_model.parameters()).device # Get the device of SNAC model
|
93 |
+
|
94 |
+
layer_1 = []
|
95 |
+
layer_2 = []
|
96 |
+
layer_3 = []
|
97 |
+
for i in range((len(code_list)+1)//7):
|
98 |
+
layer_1.append(code_list[7*i])
|
99 |
+
layer_2.append(code_list[7*i+1]-4096)
|
100 |
+
layer_3.append(code_list[7*i+2]-(2*4096))
|
101 |
+
layer_3.append(code_list[7*i+3]-(3*4096))
|
102 |
+
layer_2.append(code_list[7*i+4]-(4*4096))
|
103 |
+
layer_3.append(code_list[7*i+5]-(5*4096))
|
104 |
+
layer_3.append(code_list[7*i+6]-(6*4096))
|
105 |
+
|
106 |
+
# Move tensors to the same device as the SNAC model
|
107 |
+
codes = [
|
108 |
+
torch.tensor(layer_1, device=device).unsqueeze(0),
|
109 |
+
torch.tensor(layer_2, device=device).unsqueeze(0),
|
110 |
+
torch.tensor(layer_3, device=device).unsqueeze(0)
|
111 |
+
]
|
112 |
+
|
113 |
+
audio_hat = snac_model.decode(codes)
|
114 |
+
return audio_hat.detach().squeeze().cpu().numpy() # Always return CPU numpy array
|
115 |
+
|
116 |
+
# Main generation function
|
117 |
+
@spaces.GPU()
|
118 |
+
def generate_speech(text, voice, temperature, top_p, repetition_penalty, max_new_tokens, progress=gr.Progress()):
|
119 |
+
if not text.strip():
|
120 |
+
return None
|
121 |
+
|
122 |
try:
|
123 |
+
progress(0.1, "Processing text...")
|
124 |
+
input_ids, attention_mask = process_prompt(text, voice, tokenizer, device)
|
125 |
+
|
126 |
+
progress(0.3, "Generating speech tokens...")
|
127 |
+
with torch.no_grad():
|
128 |
+
generated_ids = model.generate(
|
129 |
+
input_ids=input_ids,
|
130 |
+
attention_mask=attention_mask,
|
131 |
+
max_new_tokens=max_new_tokens,
|
132 |
+
do_sample=True,
|
133 |
+
temperature=temperature,
|
134 |
+
top_p=top_p,
|
135 |
+
repetition_penalty=repetition_penalty,
|
136 |
+
num_return_sequences=1,
|
137 |
+
eos_token_id=128258,
|
138 |
)
|
139 |
+
|
140 |
+
progress(0.6, "Processing speech tokens...")
|
141 |
+
code_list = parse_output(generated_ids)
|
142 |
+
|
143 |
+
progress(0.8, "Converting to audio...")
|
144 |
+
audio_samples = redistribute_codes(code_list, snac_model)
|
145 |
+
|
146 |
+
return (24000, audio_samples) # Return sample rate and audio
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
147 |
except Exception as e:
|
148 |
+
print(f"Error generating speech: {e}")
|
149 |
+
return None
|
150 |
+
|
151 |
+
# Examples for the UI
|
152 |
+
examples = [
|
153 |
+
["Hey there my name is Tara, <chuckle> and I'm a speech generation model that can sound like a person.", "tara", 0.6, 0.95, 1.1, 1200],
|
154 |
+
["I've also been taught to understand and produce paralinguistic things <sigh> like sighing, or <laugh> laughing, or <yawn> yawning!", "dan", 0.7, 0.95, 1.1, 1200],
|
155 |
+
["I live in San Francisco, and have, uhm let's see, 3 billion 7 hundred ... <gasp> well, lets just say a lot of parameters.", "leah", 0.6, 0.9, 1.2, 1200],
|
156 |
+
["Sometimes when I talk too much, I need to <cough> excuse myself. <sniffle> The weather has been quite cold lately.", "leo", 0.65, 0.9, 1.1, 1200],
|
157 |
+
["Public speaking can be challenging. <groan> But with enough practice, anyone can become better at it.", "jess", 0.7, 0.95, 1.1, 1200],
|
158 |
+
["The hike was exhausting but the view from the top was absolutely breathtaking! <sigh> It was totally worth it.", "mia", 0.65, 0.9, 1.15, 1200],
|
159 |
+
["Did you hear that joke? <laugh> I couldn't stop laughing when I first heard it. <chuckle> It's still funny.", "zac", 0.7, 0.95, 1.1, 1200],
|
160 |
+
["After running the marathon, I was so tired <yawn> and needed a long rest. <sigh> But I felt accomplished.", "zoe", 0.6, 0.95, 1.1, 1200]
|
161 |
+
]
|
162 |
+
|
163 |
+
# Available voices
|
164 |
+
VOICES = ["tara", "leah", "jess", "leo", "dan", "mia", "zac", "zoe"]
|
165 |
+
|
166 |
+
# Available Emotive Tags
|
167 |
+
EMOTIVE_TAGS = ["`<laugh>`", "`<chuckle>`", "`<sigh>`", "`<cough>`", "`<sniffle>`", "`<groan>`", "`<yawn>`", "`<gasp>`"]
|
168 |
+
|
169 |
+
# Create Gradio interface
|
170 |
+
with gr.Blocks(title="Orpheus Text-to-Speech") as demo:
|
171 |
+
gr.Markdown(f"""
|
172 |
+
# 🎵 [Orpheus Text-to-Speech](https://github.com/canopyai/Orpheus-TTS)
|
173 |
+
Enter your text below and hear it converted to natural-sounding speech with the Orpheus TTS model.
|
174 |
+
|
175 |
+
## Tips for better prompts:
|
176 |
+
- Add paralinguistic elements like {", ".join(EMOTIVE_TAGS)} or `uhm` for more human-like speech.
|
177 |
+
- Longer text prompts generally work better than very short phrases
|
178 |
+
- Increasing `repetition_penalty` and `temperature` makes the model speak faster.
|
179 |
+
""")
|
180 |
+
with gr.Row():
|
181 |
+
with gr.Column(scale=3):
|
182 |
+
text_input = gr.Textbox(
|
183 |
+
label="Text to speak",
|
184 |
+
placeholder="Enter your text here...",
|
185 |
+
lines=5
|
186 |
+
)
|
187 |
+
voice = gr.Dropdown(
|
188 |
+
choices=VOICES,
|
189 |
+
value="tara",
|
190 |
+
label="Voice"
|
191 |
+
)
|
192 |
+
|
193 |
+
with gr.Accordion("Advanced Settings", open=False):
|
194 |
+
temperature = gr.Slider(
|
195 |
+
minimum=0.1, maximum=1.5, value=0.6, step=0.05,
|
196 |
+
label="Temperature",
|
197 |
+
info="Higher values (0.7-1.0) create more expressive but less stable speech"
|
198 |
+
)
|
199 |
+
top_p = gr.Slider(
|
200 |
+
minimum=0.1, maximum=1.0, value=0.95, step=0.05,
|
201 |
+
label="Top P",
|
202 |
+
info="Nucleus sampling threshold"
|
203 |
+
)
|
204 |
+
repetition_penalty = gr.Slider(
|
205 |
+
minimum=1.0, maximum=2.0, value=1.1, step=0.05,
|
206 |
+
label="Repetition Penalty",
|
207 |
+
info="Higher values discourage repetitive patterns"
|
208 |
+
)
|
209 |
+
max_new_tokens = gr.Slider(
|
210 |
+
minimum=100, maximum=2000, value=1200, step=100,
|
211 |
+
label="Max Length",
|
212 |
+
info="Maximum length of generated audio (in tokens)"
|
213 |
+
)
|
214 |
+
|
215 |
+
with gr.Row():
|
216 |
+
submit_btn = gr.Button("Generate Speech", variant="primary")
|
217 |
+
clear_btn = gr.Button("Clear")
|
218 |
+
|
219 |
+
with gr.Column(scale=2):
|
220 |
+
audio_output = gr.Audio(label="Generated Speech", type="numpy")
|
221 |
+
|
222 |
+
# Set up examples
|
223 |
+
gr.Examples(
|
224 |
+
examples=examples,
|
225 |
+
inputs=[text_input, voice, temperature, top_p, repetition_penalty, max_new_tokens],
|
226 |
+
outputs=audio_output,
|
227 |
+
fn=generate_speech,
|
228 |
+
cache_examples=True,
|
229 |
+
)
|
230 |
+
|
231 |
+
# Set up event handlers
|
232 |
+
submit_btn.click(
|
233 |
+
fn=generate_speech,
|
234 |
+
inputs=[text_input, voice, temperature, top_p, repetition_penalty, max_new_tokens],
|
235 |
+
outputs=audio_output
|
236 |
+
)
|
237 |
+
|
238 |
+
clear_btn.click(
|
239 |
+
fn=lambda: (None, None),
|
240 |
+
inputs=[],
|
241 |
+
outputs=[text_input, audio_output]
|
242 |
+
)
|
243 |
+
|
244 |
+
# Launch the app
|
245 |
+
if __name__ == "__main__":
|
246 |
+
demo.queue().launch(share=False, ssr_mode=False)
|