Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
@@ -18,7 +18,7 @@ model = None
|
|
18 |
snac = None
|
19 |
masker = None
|
20 |
stopping_criteria = None
|
21 |
-
actual_eos_token_id = None #
|
22 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
23 |
|
24 |
# 0) Login + Device ---------------------------------------------------
|
@@ -31,10 +31,11 @@ if HF_TOKEN:
|
|
31 |
|
32 |
# 1) Konstanten -------------------------------------------------------
|
33 |
REPO = "SebastianBodza/Kartoffel_Orpheus-3B_german_natural-v0.1"
|
34 |
-
# CHUNK_TOKENS = 50 # Not directly used by us with the streamer approach
|
35 |
START_TOKEN = 128259
|
36 |
NEW_BLOCK = 128257
|
37 |
-
#
|
|
|
|
|
38 |
AUDIO_BASE = 128266
|
39 |
AUDIO_SPAN = 4096 * 7 # 28672 Codes
|
40 |
CODEBOOK_SIZE = 4096 # Explicitly define the codebook size
|
@@ -42,61 +43,51 @@ CODEBOOK_SIZE = 4096 # Explicitly define the codebook size
|
|
42 |
AUDIO_IDS_CPU = torch.arange(AUDIO_BASE, AUDIO_BASE + AUDIO_SPAN)
|
43 |
|
44 |
# 2) Logit‑Mask -------------------------------------------------------
|
45 |
-
# Uses the
|
46 |
class AudioMask(LogitsProcessor):
|
47 |
def __init__(self, audio_ids: torch.Tensor, new_block_token_id: int, eos_token_id: int):
|
48 |
super().__init__()
|
49 |
-
# Ensure input tensors are Long type for concatenation if needed, although indices are usually int
|
50 |
new_block_tensor = torch.tensor([new_block_token_id], device=audio_ids.device, dtype=torch.long)
|
51 |
eos_tensor = torch.tensor([eos_token_id], device=audio_ids.device, dtype=torch.long)
|
52 |
-
|
53 |
-
# Allow NEW_BLOCK and all valid audio tokens initially
|
54 |
self.allow = torch.cat([new_block_tensor, audio_ids], dim=0)
|
55 |
-
self.eos = eos_tensor
|
56 |
-
self.allow_with_eos = torch.cat([self.allow, self.eos], dim=0)
|
57 |
-
self.sent_blocks = 0
|
58 |
|
59 |
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
|
60 |
-
# Determine which tokens are allowed based on whether blocks have been sent
|
61 |
current_allow = self.allow_with_eos if self.sent_blocks > 0 else self.allow
|
62 |
-
|
63 |
-
# Create a mask initialized to negative infinity
|
64 |
mask = torch.full_like(scores, float("-inf"))
|
65 |
-
# Set allowed token scores to 0 (effectively allowing them)
|
66 |
mask[:, current_allow] = 0
|
67 |
-
# Apply the mask to the scores
|
68 |
return scores + mask
|
69 |
|
70 |
def reset(self):
|
71 |
-
"""Resets the state for a new generation request."""
|
72 |
self.sent_blocks = 0
|
73 |
|
74 |
# 3) StoppingCriteria für EOS ---------------------------------------
|
75 |
-
# Uses the
|
76 |
class EosStoppingCriteria(StoppingCriteria):
|
77 |
def __init__(self, eos_token_id: int):
|
78 |
self.eos_token_id = eos_token_id
|
79 |
-
|
80 |
-
print("⚠️ EosStoppingCriteria initialized with eos_token_id=None!")
|
81 |
|
82 |
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
|
83 |
if self.eos_token_id is None:
|
84 |
-
return False
|
85 |
-
# Check if the *last* generated token is the EOS token
|
86 |
if input_ids.shape[1] > 0 and input_ids[:, -1] == self.eos_token_id:
|
87 |
-
|
88 |
return True
|
89 |
return False
|
90 |
|
91 |
# 4) Benutzerdefinierter AudioStreamer -------------------------------
|
92 |
class AudioStreamer(BaseStreamer):
|
|
|
93 |
def __init__(self, ws: WebSocket, snac_decoder: SNAC, audio_mask: AudioMask, loop: asyncio.AbstractEventLoop, target_device: str, eos_token_id: int):
|
94 |
self.ws = ws
|
95 |
self.snac = snac_decoder
|
96 |
self.masker = audio_mask
|
97 |
self.loop = loop
|
98 |
self.device = target_device
|
99 |
-
self.eos_token_id = eos_token_id # Store EOS ID
|
100 |
self.buf: list[int] = []
|
101 |
self.tasks = set()
|
102 |
|
@@ -108,8 +99,8 @@ class AudioStreamer(BaseStreamer):
|
|
108 |
Maps extracted values using the structure potentially correct for Kartoffel_Orpheus.
|
109 |
"""
|
110 |
if len(block7) != 7:
|
111 |
-
print(f"Streamer Warning: _decode_block received {len(block7)} tokens, expected 7. Skipping.")
|
112 |
-
return b""
|
113 |
|
114 |
try:
|
115 |
# --- Extract base code value (0 to CODEBOOK_SIZE-1) for each slot using modulo ---
|
@@ -129,7 +120,7 @@ class AudioStreamer(BaseStreamer):
|
|
129 |
except IndexError:
|
130 |
print(f"Streamer Error: Index out of bounds during token mapping. Block: {block7}")
|
131 |
return b""
|
132 |
-
except Exception as e_map:
|
133 |
print(f"Streamer Error: Exception during code value extraction/mapping: {e_map}. Block: {block7}")
|
134 |
return b""
|
135 |
|
@@ -149,10 +140,7 @@ class AudioStreamer(BaseStreamer):
|
|
149 |
audio = self.snac.decode(codes)[0]
|
150 |
except Exception as e_decode:
|
151 |
print(f"Streamer Error: Exception during snac.decode: {e_decode}")
|
152 |
-
|
153 |
-
print(f"Input codes dtypes: {[c.dtype for c in codes]}")
|
154 |
-
print(f"Input codes devices: {[c.device for c in codes]}")
|
155 |
-
print(f"Input code values (min/max): L1({min(l1)}/{max(l1)}) L2({min(l2)}/{max(l2)}) L3({min(l3)}/{max(l3)})")
|
156 |
return b""
|
157 |
|
158 |
# --- Post-processing ---
|
@@ -171,10 +159,12 @@ class AudioStreamer(BaseStreamer):
|
|
171 |
try:
|
172 |
await self.ws.send_bytes(data)
|
173 |
except WebSocketDisconnect:
|
174 |
-
|
|
|
|
|
175 |
except Exception as e:
|
176 |
-
|
177 |
-
|
178 |
# This is expected if client disconnects during generation, suppress repetitive logs
|
179 |
pass
|
180 |
else:
|
@@ -187,7 +177,6 @@ class AudioStreamer(BaseStreamer):
|
|
187 |
"""
|
188 |
if value.numel() == 0:
|
189 |
return
|
190 |
-
# Ensure value is on CPU and flatten to a list of ints
|
191 |
new_token_ids = value.squeeze().cpu().tolist()
|
192 |
if isinstance(new_token_ids, int):
|
193 |
new_token_ids = [new_token_ids]
|
@@ -198,23 +187,22 @@ class AudioStreamer(BaseStreamer):
|
|
198 |
self.buf.clear()
|
199 |
continue
|
200 |
|
|
|
201 |
if AUDIO_BASE <= t < AUDIO_BASE + AUDIO_SPAN:
|
202 |
self.buf.append(t - AUDIO_BASE) # Store value relative to base
|
203 |
-
# else: # Optionally log ignored tokens
|
204 |
-
|
205 |
-
|
206 |
|
207 |
if len(self.buf) == 7:
|
208 |
audio_bytes = self._decode_block(self.buf)
|
209 |
self.buf.clear()
|
210 |
|
211 |
if audio_bytes:
|
212 |
-
# Schedule the async send function to run on the main event loop
|
213 |
future = asyncio.run_coroutine_threadsafe(self._send_audio_bytes(audio_bytes), self.loop)
|
214 |
self.tasks.add(future)
|
215 |
future.add_done_callback(self.tasks.discard)
|
216 |
|
217 |
-
# Allow EOS only after the first full block has been processed
|
218 |
if self.masker.sent_blocks == 0:
|
219 |
self.masker.sent_blocks = 1
|
220 |
|
@@ -230,7 +218,8 @@ app = FastAPI()
|
|
230 |
|
231 |
@app.on_event("startup")
|
232 |
async def load_models_startup():
|
233 |
-
global
|
|
|
234 |
|
235 |
print(f"🚀 Starting up on device: {device}")
|
236 |
print("⏳ Lade Modelle …", flush=True)
|
@@ -259,34 +248,28 @@ async def load_models_startup():
|
|
259 |
print(f"Model loaded to {model.device} with dtype {model.dtype}.")
|
260 |
model.eval()
|
261 |
|
262 |
-
# ---
|
263 |
conf_eos = model.config.eos_token_id
|
264 |
tok_eos = tok.eos_token_id
|
265 |
print(f"Model Config EOS ID: {conf_eos}")
|
266 |
print(f"Tokenizer EOS ID: {tok_eos}")
|
|
|
|
|
|
|
|
|
267 |
|
268 |
-
if
|
269 |
-
actual_eos_token_id = conf_eos
|
270 |
-
elif tok_eos is not None:
|
271 |
-
actual_eos_token_id = tok_eos
|
272 |
-
print(f"⚠️ Model config EOS ID is None, using Tokenizer EOS ID: {actual_eos_token_id}")
|
273 |
-
else:
|
274 |
-
raise ValueError("Could not determine EOS token ID from model config or tokenizer.")
|
275 |
-
|
276 |
-
print(f"Using EOS Token ID: {actual_eos_token_id}")
|
277 |
-
# Set pad_token_id to eos_token_id if not already set (common practice for generation)
|
278 |
if model.config.pad_token_id is None:
|
279 |
-
print(f"Setting model.config.pad_token_id to EOS token ID ({
|
280 |
-
model.config.pad_token_id =
|
281 |
-
# --- End EOS Token ID determination ---
|
282 |
|
283 |
audio_ids_device = AUDIO_IDS_CPU.to(device)
|
284 |
-
# Pass the
|
285 |
-
masker = AudioMask(audio_ids_device, NEW_BLOCK,
|
286 |
print("AudioMask initialized.")
|
287 |
|
288 |
-
# Pass the
|
289 |
-
stopping_criteria = StoppingCriteriaList([EosStoppingCriteria(
|
290 |
print("StoppingCriteria initialized.")
|
291 |
|
292 |
print("✅ Modelle geladen und bereit!", flush=True)
|
@@ -313,7 +296,7 @@ def build_prompt(text: str, voice: str) -> tuple[torch.Tensor, torch.Tensor]:
|
|
313 |
# 7) WebSocket‑Endpoint (vereinfacht mit Streamer) ---------------------
|
314 |
@app.websocket("/ws/tts")
|
315 |
async def tts(ws: WebSocket):
|
316 |
-
|
317 |
await ws.accept()
|
318 |
print("🔌 Client connected")
|
319 |
streamer = None
|
@@ -334,27 +317,28 @@ async def tts(ws: WebSocket):
|
|
334 |
print(f"Generating audio for: '{text}' with voice '{voice}'")
|
335 |
ids, attn = build_prompt(text, voice)
|
336 |
masker.reset()
|
337 |
-
# Pass the
|
338 |
-
streamer = AudioStreamer(ws, snac, masker, main_loop, device,
|
339 |
|
340 |
print("Starting generation in background thread...")
|
341 |
-
# Use sampling parameters
|
342 |
await asyncio.to_thread(
|
343 |
model.generate,
|
344 |
input_ids=ids,
|
345 |
attention_mask=attn,
|
346 |
-
max_new_tokens=2500, #
|
347 |
logits_processor=[masker],
|
348 |
stopping_criteria=stopping_criteria,
|
349 |
-
# --- Sampling Parameters ---
|
350 |
do_sample=True,
|
351 |
-
temperature=0.6,
|
352 |
-
top_p=0.9,
|
353 |
-
repetition_penalty=1.
|
|
|
354 |
# --- End Sampling Parameters ---
|
355 |
use_cache=True,
|
356 |
streamer=streamer,
|
357 |
-
eos_token_id=
|
358 |
)
|
359 |
print("Generation thread finished.")
|
360 |
|
@@ -387,8 +371,7 @@ async def tts(ws: WebSocket):
|
|
387 |
try:
|
388 |
await ws.close(code=1000)
|
389 |
except RuntimeError as e_close:
|
390 |
-
|
391 |
-
if "Cannot call \"send\"" not in str(e_close):
|
392 |
print(f"Runtime error closing websocket: {e_close}")
|
393 |
except Exception as e_close_final:
|
394 |
print(f"Error closing websocket: {e_close_final}")
|
|
|
18 |
snac = None
|
19 |
masker = None
|
20 |
stopping_criteria = None
|
21 |
+
# actual_eos_token_id = None # Reverted to constant below
|
22 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
23 |
|
24 |
# 0) Login + Device ---------------------------------------------------
|
|
|
31 |
|
32 |
# 1) Konstanten -------------------------------------------------------
|
33 |
REPO = "SebastianBodza/Kartoffel_Orpheus-3B_german_natural-v0.1"
|
|
|
34 |
START_TOKEN = 128259
|
35 |
NEW_BLOCK = 128257
|
36 |
+
# --- Reverted to using the hardcoded EOS token based on user belief ---
|
37 |
+
EOS_TOKEN = 128258
|
38 |
+
# --- End Reverted EOS Token ---
|
39 |
AUDIO_BASE = 128266
|
40 |
AUDIO_SPAN = 4096 * 7 # 28672 Codes
|
41 |
CODEBOOK_SIZE = 4096 # Explicitly define the codebook size
|
|
|
43 |
AUDIO_IDS_CPU = torch.arange(AUDIO_BASE, AUDIO_BASE + AUDIO_SPAN)
|
44 |
|
45 |
# 2) Logit‑Mask -------------------------------------------------------
|
46 |
+
# Uses the constant EOS_TOKEN
|
47 |
class AudioMask(LogitsProcessor):
|
48 |
def __init__(self, audio_ids: torch.Tensor, new_block_token_id: int, eos_token_id: int):
|
49 |
super().__init__()
|
|
|
50 |
new_block_tensor = torch.tensor([new_block_token_id], device=audio_ids.device, dtype=torch.long)
|
51 |
eos_tensor = torch.tensor([eos_token_id], device=audio_ids.device, dtype=torch.long)
|
|
|
|
|
52 |
self.allow = torch.cat([new_block_tensor, audio_ids], dim=0)
|
53 |
+
self.eos = eos_tensor
|
54 |
+
self.allow_with_eos = torch.cat([self.allow, self.eos], dim=0)
|
55 |
+
self.sent_blocks = 0
|
56 |
|
57 |
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
|
|
|
58 |
current_allow = self.allow_with_eos if self.sent_blocks > 0 else self.allow
|
|
|
|
|
59 |
mask = torch.full_like(scores, float("-inf"))
|
|
|
60 |
mask[:, current_allow] = 0
|
|
|
61 |
return scores + mask
|
62 |
|
63 |
def reset(self):
|
|
|
64 |
self.sent_blocks = 0
|
65 |
|
66 |
# 3) StoppingCriteria für EOS ---------------------------------------
|
67 |
+
# Uses the constant EOS_TOKEN
|
68 |
class EosStoppingCriteria(StoppingCriteria):
|
69 |
def __init__(self, eos_token_id: int):
|
70 |
self.eos_token_id = eos_token_id
|
71 |
+
# No warning needed here as we are intentionally using the constant
|
|
|
72 |
|
73 |
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
|
74 |
if self.eos_token_id is None:
|
75 |
+
return False
|
|
|
76 |
if input_ids.shape[1] > 0 and input_ids[:, -1] == self.eos_token_id:
|
77 |
+
print(f"StoppingCriteria: EOS detected (ID: {self.eos_token_id}).") # Add log
|
78 |
return True
|
79 |
return False
|
80 |
|
81 |
# 4) Benutzerdefinierter AudioStreamer -------------------------------
|
82 |
class AudioStreamer(BaseStreamer):
|
83 |
+
# Pass the constant EOS_TOKEN here too
|
84 |
def __init__(self, ws: WebSocket, snac_decoder: SNAC, audio_mask: AudioMask, loop: asyncio.AbstractEventLoop, target_device: str, eos_token_id: int):
|
85 |
self.ws = ws
|
86 |
self.snac = snac_decoder
|
87 |
self.masker = audio_mask
|
88 |
self.loop = loop
|
89 |
self.device = target_device
|
90 |
+
self.eos_token_id = eos_token_id # Store constant EOS ID
|
91 |
self.buf: list[int] = []
|
92 |
self.tasks = set()
|
93 |
|
|
|
99 |
Maps extracted values using the structure potentially correct for Kartoffel_Orpheus.
|
100 |
"""
|
101 |
if len(block7) != 7:
|
102 |
+
# print(f"Streamer Warning: _decode_block received {len(block7)} tokens, expected 7. Skipping.")
|
103 |
+
return b"" # Less verbose logging
|
104 |
|
105 |
try:
|
106 |
# --- Extract base code value (0 to CODEBOOK_SIZE-1) for each slot using modulo ---
|
|
|
120 |
except IndexError:
|
121 |
print(f"Streamer Error: Index out of bounds during token mapping. Block: {block7}")
|
122 |
return b""
|
123 |
+
except Exception as e_map:
|
124 |
print(f"Streamer Error: Exception during code value extraction/mapping: {e_map}. Block: {block7}")
|
125 |
return b""
|
126 |
|
|
|
140 |
audio = self.snac.decode(codes)[0]
|
141 |
except Exception as e_decode:
|
142 |
print(f"Streamer Error: Exception during snac.decode: {e_decode}")
|
143 |
+
# Add more details if needed, e.g., shapes: {[c.shape for c in codes]}
|
|
|
|
|
|
|
144 |
return b""
|
145 |
|
146 |
# --- Post-processing ---
|
|
|
159 |
try:
|
160 |
await self.ws.send_bytes(data)
|
161 |
except WebSocketDisconnect:
|
162 |
+
# This is expected if client disconnects first, don't log error
|
163 |
+
# print("Streamer: WebSocket disconnected during send.")
|
164 |
+
pass
|
165 |
except Exception as e:
|
166 |
+
if "Cannot call \"send\" once a close message has been sent" in str(e) or \
|
167 |
+
"Connection is closed" in str(e):
|
168 |
# This is expected if client disconnects during generation, suppress repetitive logs
|
169 |
pass
|
170 |
else:
|
|
|
177 |
"""
|
178 |
if value.numel() == 0:
|
179 |
return
|
|
|
180 |
new_token_ids = value.squeeze().cpu().tolist()
|
181 |
if isinstance(new_token_ids, int):
|
182 |
new_token_ids = [new_token_ids]
|
|
|
187 |
self.buf.clear()
|
188 |
continue
|
189 |
|
190 |
+
# Use the constant EOS_TOKEN for comparison if needed (e.g. for logging)
|
191 |
if AUDIO_BASE <= t < AUDIO_BASE + AUDIO_SPAN:
|
192 |
self.buf.append(t - AUDIO_BASE) # Store value relative to base
|
193 |
+
# else: # Optionally log ignored tokens
|
194 |
+
# if t != self.eos_token_id: # Don't warn about the EOS token itself
|
195 |
+
# print(f"Streamer Warning: Ignoring unexpected token {t}")
|
196 |
|
197 |
if len(self.buf) == 7:
|
198 |
audio_bytes = self._decode_block(self.buf)
|
199 |
self.buf.clear()
|
200 |
|
201 |
if audio_bytes:
|
|
|
202 |
future = asyncio.run_coroutine_threadsafe(self._send_audio_bytes(audio_bytes), self.loop)
|
203 |
self.tasks.add(future)
|
204 |
future.add_done_callback(self.tasks.discard)
|
205 |
|
|
|
206 |
if self.masker.sent_blocks == 0:
|
207 |
self.masker.sent_blocks = 1
|
208 |
|
|
|
218 |
|
219 |
@app.on_event("startup")
|
220 |
async def load_models_startup():
|
221 |
+
# Keep global references, but EOS_TOKEN is now a constant again
|
222 |
+
global tok, model, snac, masker, stopping_criteria, device, AUDIO_IDS_CPU
|
223 |
|
224 |
print(f"🚀 Starting up on device: {device}")
|
225 |
print("⏳ Lade Modelle …", flush=True)
|
|
|
248 |
print(f"Model loaded to {model.device} with dtype {model.dtype}.")
|
249 |
model.eval()
|
250 |
|
251 |
+
# --- Print comparison for EOS token IDs but use the constant ---
|
252 |
conf_eos = model.config.eos_token_id
|
253 |
tok_eos = tok.eos_token_id
|
254 |
print(f"Model Config EOS ID: {conf_eos}")
|
255 |
print(f"Tokenizer EOS ID: {tok_eos}")
|
256 |
+
print(f"Using Constant EOS_TOKEN: {EOS_TOKEN}") # State the used constant
|
257 |
+
if conf_eos != EOS_TOKEN or tok_eos != EOS_TOKEN:
|
258 |
+
print(f"⚠️ WARNING: Constant EOS_TOKEN {EOS_TOKEN} differs from model/tokenizer IDs ({conf_eos}/{tok_eos}).")
|
259 |
+
# --- End EOS comparison ---
|
260 |
|
261 |
+
# Set pad_token_id if None (use the constant EOS)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
262 |
if model.config.pad_token_id is None:
|
263 |
+
print(f"Setting model.config.pad_token_id to Constant EOS token ID ({EOS_TOKEN})")
|
264 |
+
model.config.pad_token_id = EOS_TOKEN
|
|
|
265 |
|
266 |
audio_ids_device = AUDIO_IDS_CPU.to(device)
|
267 |
+
# Pass the constant EOS_TOKEN to the mask
|
268 |
+
masker = AudioMask(audio_ids_device, NEW_BLOCK, EOS_TOKEN)
|
269 |
print("AudioMask initialized.")
|
270 |
|
271 |
+
# Pass the constant EOS_TOKEN to the stopping criteria
|
272 |
+
stopping_criteria = StoppingCriteriaList([EosStoppingCriteria(EOS_TOKEN)])
|
273 |
print("StoppingCriteria initialized.")
|
274 |
|
275 |
print("✅ Modelle geladen und bereit!", flush=True)
|
|
|
296 |
# 7) WebSocket‑Endpoint (vereinfacht mit Streamer) ---------------------
|
297 |
@app.websocket("/ws/tts")
|
298 |
async def tts(ws: WebSocket):
|
299 |
+
# No need for global actual_eos_token_id
|
300 |
await ws.accept()
|
301 |
print("🔌 Client connected")
|
302 |
streamer = None
|
|
|
317 |
print(f"Generating audio for: '{text}' with voice '{voice}'")
|
318 |
ids, attn = build_prompt(text, voice)
|
319 |
masker.reset()
|
320 |
+
# Pass the constant EOS_TOKEN to streamer
|
321 |
+
streamer = AudioStreamer(ws, snac, masker, main_loop, device, EOS_TOKEN)
|
322 |
|
323 |
print("Starting generation in background thread...")
|
324 |
+
# Use sampling parameters with anti-repetition measures
|
325 |
await asyncio.to_thread(
|
326 |
model.generate,
|
327 |
input_ids=ids,
|
328 |
attention_mask=attn,
|
329 |
+
max_new_tokens=2500, # Or adjust as needed
|
330 |
logits_processor=[masker],
|
331 |
stopping_criteria=stopping_criteria,
|
332 |
+
# --- Sampling Parameters with Anti-Repetition ---
|
333 |
do_sample=True,
|
334 |
+
temperature=0.6, # Adjust if needed
|
335 |
+
top_p=0.9, # Adjust if needed
|
336 |
+
repetition_penalty=1.2, # Increased (experiment!)
|
337 |
+
no_repeat_ngram_size=4, # Added (experiment!)
|
338 |
# --- End Sampling Parameters ---
|
339 |
use_cache=True,
|
340 |
streamer=streamer,
|
341 |
+
eos_token_id=EOS_TOKEN # Explicitly pass constant EOS ID
|
342 |
)
|
343 |
print("Generation thread finished.")
|
344 |
|
|
|
371 |
try:
|
372 |
await ws.close(code=1000)
|
373 |
except RuntimeError as e_close:
|
374 |
+
if "Cannot call \"send\"" not in str(e_close) and "Connection is closed" not in str(e_close):
|
|
|
375 |
print(f"Runtime error closing websocket: {e_close}")
|
376 |
except Exception as e_close_final:
|
377 |
print(f"Error closing websocket: {e_close_final}")
|