Spaces:
Running
Running
File size: 5,840 Bytes
2975595 d06b252 df15a5f d06b252 d6e6c98 8ab0a40 d06b252 57fff59 d06b252 8ab0a40 57fff59 d06b252 df15a5f 57fff59 d06b252 57fff59 d06b252 57fff59 d06b252 57fff59 8ab0a40 d6e6c98 df15a5f 57fff59 df15a5f 57fff59 d06b252 57fff59 d06b252 57fff59 d06b252 57fff59 d06b252 57fff59 d06b252 57fff59 d06b252 57fff59 8ab0a40 57fff59 d06b252 57fff59 d06b252 57fff59 d06b252 57fff59 d06b252 57fff59 d06b252 57fff59 bc25066 d06b252 8ab0a40 d06b252 8ab0a40 d06b252 8ab0a40 57fff59 df15a5f 8ab0a40 df15a5f d06b252 57fff59 d06b252 57fff59 d06b252 57fff59 d06b252 df15a5f 57fff59 d06b252 8ab0a40 57fff59 d06b252 57fff59 d6e6c98 57fff59 d06b252 57fff59 d06b252 57fff59 8ab0a40 57fff59 df15a5f 57fff59 d06b252 8ab0a40 57fff59 d06b252 57fff59 d06b252 57fff59 df365ca 8ab0a40 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 |
import os
import fitz
import json
import gradio as gr
import pytesseract
import chromadb
import torch
import nltk
import traceback
import docx2txt
from PIL import Image
from io import BytesIO
from tqdm import tqdm
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
from sentence_transformers import SentenceTransformer, util
from nltk.tokenize import sent_tokenize
# Ensure punkt is downloaded
try:
nltk.data.find("tokenizers/punkt")
except LookupError:
nltk.download("punkt")
# Configuration
HF_TOKEN = os.getenv("HF_TOKEN")
MANUALS_DIR = "Manuals"
CHROMA_PATH = "chroma_store"
COLLECTION_NAME = "manual_chunks"
CHUNK_SIZE = 750
CHUNK_OVERLAP = 100
MAX_CONTEXT_CHUNKS = 3
MODEL_ID = "ibm-granite/granite-vision-3.2-2b"
device = "cuda" if torch.cuda.is_available() else "cpu"
# ---------------- Text Helpers ----------------
def clean(text):
return "\n".join([line.strip() for line in text.splitlines() if line.strip()])
def split_sentences(text):
try:
return sent_tokenize(text)
except:
print("β οΈ Tokenizer fallback: simple split.")
return text.split(". ")
def split_chunks(sentences, max_tokens=CHUNK_SIZE, overlap=CHUNK_OVERLAP):
chunks = []
current_chunk, length = [], 0
for sent in sentences:
words = sent.split()
if length + len(words) > max_tokens and current_chunk:
chunks.append(" ".join(current_chunk))
current_chunk = current_chunk[-overlap:]
length = sum(len(s.split()) for s in current_chunk)
current_chunk.append(sent)
length += len(words)
if current_chunk:
chunks.append(" ".join(current_chunk))
return chunks
# ---------------- File Readers ----------------
def extract_pdf_text(path):
chunks = []
try:
doc = fitz.open(path)
for i, page in enumerate(doc):
text = page.get_text().strip()
if not text:
img = Image.open(BytesIO(page.get_pixmap(dpi=300).tobytes("png")))
text = pytesseract.image_to_string(img)
chunks.append((path, i + 1, clean(text)))
except Exception as e:
print("β PDF read error:", path, e)
return chunks
def extract_docx_text(path):
try:
return [(path, 1, clean(docx2txt.process(path)))]
except Exception as e:
print("β DOCX read error:", path, e)
return []
# ---------------- Embedding ----------------
def embed_all():
embedder = SentenceTransformer("all-MiniLM-L6-v2")
embedder.eval()
client = chromadb.PersistentClient(path=CHROMA_PATH)
try:
client.delete_collection(COLLECTION_NAME)
except:
pass
collection = client.get_or_create_collection(COLLECTION_NAME)
docs, ids, metas = [], [], []
print("π Processing manuals...")
for fname in os.listdir(MANUALS_DIR):
fpath = os.path.join(MANUALS_DIR, fname)
if fname.lower().endswith(".pdf"):
pages = extract_pdf_text(fpath)
elif fname.lower().endswith(".docx"):
pages = extract_docx_text(fpath)
else:
continue
for path, page, text in pages:
for i, chunk in enumerate(split_chunks(split_sentences(text))):
chunk_id = f"{fname}::{page}::{i}"
docs.append(chunk)
ids.append(chunk_id)
metas.append({"source": fname, "page": page})
if len(docs) >= 16:
embs = embedder.encode(docs).tolist()
collection.add(documents=docs, ids=ids, metadatas=metas, embeddings=embs)
docs, ids, metas = [], [], []
if docs:
embs = embedder.encode(docs).tolist()
collection.add(documents=docs, ids=ids, metadatas=metas, embeddings=embs)
print(f"β
Embedded {len(ids)} chunks.")
return collection, embedder
# ---------------- Model Setup ----------------
def load_model():
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID, token=HF_TOKEN)
model = AutoModelForCausalLM.from_pretrained(
MODEL_ID,
token=HF_TOKEN,
device_map="auto" if torch.cuda.is_available() else None,
torch_dtype=torch.bfloat16 if torch.cuda.is_available() else torch.float32
).to(device)
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer, device=0 if torch.cuda.is_available() else -1)
return pipe, tokenizer
def ask_model(question, context, pipe, tokenizer):
prompt = f"""Use only the following context to answer. If uncertain, say "I don't know."
<context>
{context}
</context>
Q: {question}
A:"""
output = pipe(prompt, max_new_tokens=512)[0]["generated_text"]
return output.split("A:")[-1].strip()
# ---------------- Query ----------------
def get_answer(question):
try:
query_emb = embedder.encode(question, convert_to_tensor=True)
results = db.query(query_texts=[question], n_results=MAX_CONTEXT_CHUNKS)
context = "\n\n".join(results["documents"][0])
return ask_model(question, context, model_pipe, model_tokenizer)
except Exception as e:
print("β Query error:", e)
return f"Error: {e}"
# ---------------- UI ----------------
with gr.Blocks() as demo:
gr.Markdown("## π€ SmartManuals-AI (Granite 3.2-2B)")
with gr.Row():
question = gr.Textbox(label="Ask your question")
ask = gr.Button("Ask")
answer = gr.Textbox(label="Answer", lines=8)
ask.click(fn=get_answer, inputs=question, outputs=answer)
# Embed + Load Model at Startup
try:
db, embedder = embed_all()
model_pipe, model_tokenizer = load_model()
except Exception as e:
print("β Startup failure:", e)
db, embedder = None, None
model_pipe, model_tokenizer = None, None
if __name__ == "__main__":
demo.launch()
|