Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,156 +1,141 @@
|
|
1 |
import os
|
2 |
-
import fitz # PyMuPDF
|
3 |
-
import docx
|
4 |
-
import io
|
5 |
import json
|
6 |
-
import
|
7 |
import pytesseract
|
8 |
from PIL import Image
|
9 |
-
|
10 |
-
import chromadb
|
11 |
-
import torch
|
12 |
import nltk
|
13 |
-
|
14 |
-
from
|
|
|
|
|
|
|
15 |
|
16 |
-
#
|
17 |
-
#
|
18 |
-
#
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
nltk.download("punkt")
|
23 |
|
|
|
|
|
24 |
from nltk.tokenize import sent_tokenize
|
25 |
|
26 |
-
#
|
27 |
-
#
|
28 |
-
#
|
29 |
-
|
30 |
-
|
31 |
-
CHUNK_SIZE = 750
|
32 |
-
CHUNK_OVERLAP = 100
|
33 |
-
MAX_CONTEXT = 3
|
34 |
-
|
35 |
-
DEFAULT_MODEL = "meta-llama/Llama-3-8b-Instruct"
|
36 |
-
MODEL_OPTIONS = [
|
37 |
-
"meta-llama/Llama-3-8b-Instruct",
|
38 |
-
"mistralai/Mistral-7B-Instruct-v0.3",
|
39 |
-
"google/gemma-1.1-7b-it"
|
40 |
-
]
|
41 |
-
|
42 |
-
HF_TOKEN = os.environ.get("HF_TOKEN")
|
43 |
-
|
44 |
-
# ----------------------------
|
45 |
-
# π Utility functions
|
46 |
-
# ----------------------------
|
47 |
-
def extract_pdf_text(path):
|
48 |
-
text_blocks = []
|
49 |
-
doc = fitz.open(path)
|
50 |
-
for i, page in enumerate(doc):
|
51 |
-
text = page.get_text()
|
52 |
-
if not text.strip():
|
53 |
-
img = Image.open(io.BytesIO(page.get_pixmap().tobytes("png")))
|
54 |
-
text = pytesseract.image_to_string(img)
|
55 |
-
text_blocks.append({"page": i + 1, "text": text})
|
56 |
-
return text_blocks
|
57 |
-
|
58 |
-
def extract_docx_text(path):
|
59 |
-
doc = docx.Document(path)
|
60 |
-
full_text = "\n".join([para.text for para in doc.paragraphs])
|
61 |
-
return [{"page": 1, "text": full_text}]
|
62 |
|
63 |
def split_sentences(text):
|
64 |
try:
|
65 |
return sent_tokenize(text)
|
66 |
-
except Exception:
|
|
|
67 |
return text.split(". ")
|
68 |
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
85 |
def embed_all():
|
86 |
-
client = chromadb.PersistentClient(path=
|
87 |
-
if
|
88 |
-
client.delete_collection(
|
89 |
-
collection = client.create_collection(
|
|
|
90 |
embedder = SentenceTransformer("all-MiniLM-L6-v2")
|
91 |
|
92 |
-
|
93 |
-
|
|
|
94 |
if fname.lower().endswith(".pdf"):
|
95 |
pages = extract_pdf_text(fpath)
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
|
|
108 |
return collection, embedder
|
109 |
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
120 |
context = "\n\n".join(results["documents"][0])
|
121 |
-
prompt = f"""
|
122 |
-
You are a helpful assistant. Use the following context to answer the question.
|
123 |
|
124 |
-
|
|
|
|
|
|
|
125 |
{context}
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
"""
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
#
|
136 |
-
#
|
137 |
-
|
138 |
-
|
139 |
-
# ----------------------------
|
140 |
-
# ποΈ Gradio UI
|
141 |
-
# ----------------------------
|
142 |
with gr.Blocks() as demo:
|
143 |
-
gr.Markdown(""
|
144 |
-
# π SmartManuals-AI (Docker)
|
145 |
-
Ask any question from the preloaded manuals (PDF + Word).
|
146 |
-
""")
|
147 |
|
148 |
with gr.Row():
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
|
|
|
|
|
|
153 |
|
154 |
-
|
155 |
|
156 |
-
|
|
|
|
|
|
1 |
import os
|
|
|
|
|
|
|
2 |
import json
|
3 |
+
import fitz # PyMuPDF
|
4 |
import pytesseract
|
5 |
from PIL import Image
|
6 |
+
import io
|
|
|
|
|
7 |
import nltk
|
8 |
+
import chromadb
|
9 |
+
from tqdm import tqdm
|
10 |
+
from sentence_transformers import SentenceTransformer
|
11 |
+
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
|
12 |
+
import gradio as gr
|
13 |
|
14 |
+
# ---------------------------
|
15 |
+
# π¦ Paths and Constants
|
16 |
+
# ---------------------------
|
17 |
+
MANUALS_DIR = "./Manuals"
|
18 |
+
CHROMA_PATH = "./chroma_store"
|
19 |
+
COLLECTION_NAME = "manual_chunks"
|
|
|
20 |
|
21 |
+
# Ensure NLTK punkt is available
|
22 |
+
nltk.download("punkt")
|
23 |
from nltk.tokenize import sent_tokenize
|
24 |
|
25 |
+
# ---------------------------
|
26 |
+
# π§Ό Text cleaning utilities
|
27 |
+
# ---------------------------
|
28 |
+
def clean(text):
|
29 |
+
return "\n".join([line.strip() for line in text.splitlines() if line.strip()])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
|
31 |
def split_sentences(text):
|
32 |
try:
|
33 |
return sent_tokenize(text)
|
34 |
+
except Exception as e:
|
35 |
+
print("[Tokenizer Error]", e, "\nFalling back to simple split.")
|
36 |
return text.split(". ")
|
37 |
|
38 |
+
# ---------------------------
|
39 |
+
# π PDF and DOCX extraction
|
40 |
+
# ---------------------------
|
41 |
+
def extract_pdf_text(pdf_path):
|
42 |
+
doc = fitz.open(pdf_path)
|
43 |
+
pages = []
|
44 |
+
for i, page in enumerate(doc):
|
45 |
+
text = page.get_text().strip()
|
46 |
+
if not text:
|
47 |
+
try:
|
48 |
+
pix = page.get_pixmap(dpi=300)
|
49 |
+
img = Image.open(io.BytesIO(pix.tobytes("png")))
|
50 |
+
text = pytesseract.image_to_string(img)
|
51 |
+
except pytesseract.TesseractNotFoundError:
|
52 |
+
print("β Tesseract not found. Skipping OCR for page.")
|
53 |
+
text = ""
|
54 |
+
pages.append((i + 1, text))
|
55 |
+
return pages
|
56 |
+
|
57 |
+
# ---------------------------
|
58 |
+
# π§ Embed text using MiniLM
|
59 |
+
# ---------------------------
|
60 |
def embed_all():
|
61 |
+
client = chromadb.PersistentClient(path=CHROMA_PATH)
|
62 |
+
if COLLECTION_NAME in [c.name for c in client.list_collections()]:
|
63 |
+
client.delete_collection(COLLECTION_NAME)
|
64 |
+
collection = client.create_collection(COLLECTION_NAME)
|
65 |
+
|
66 |
embedder = SentenceTransformer("all-MiniLM-L6-v2")
|
67 |
|
68 |
+
chunk_id = 0
|
69 |
+
for fname in os.listdir(MANUALS_DIR):
|
70 |
+
fpath = os.path.join(MANUALS_DIR, fname)
|
71 |
if fname.lower().endswith(".pdf"):
|
72 |
pages = extract_pdf_text(fpath)
|
73 |
+
for page_num, text in pages:
|
74 |
+
sents = split_sentences(clean(text))
|
75 |
+
for i in range(0, len(sents), 5):
|
76 |
+
chunk = " ".join(sents[i:i + 5])
|
77 |
+
if chunk.strip():
|
78 |
+
collection.add(
|
79 |
+
documents=[chunk],
|
80 |
+
metadatas=[{"source": fname, "page": page_num}],
|
81 |
+
ids=[f"{fname}-{page_num}-{i}-{chunk_id}"]
|
82 |
+
)
|
83 |
+
chunk_id += 1
|
84 |
+
|
85 |
+
print(f"β
Embedded {chunk_id} chunks.")
|
86 |
return collection, embedder
|
87 |
|
88 |
+
# ---------------------------
|
89 |
+
# π€ Load model
|
90 |
+
# ---------------------------
|
91 |
+
def load_llm():
|
92 |
+
model_id = "meta-llama/Llama-3.1-8B-Instruct"
|
93 |
+
token = os.environ.get("HF_TOKEN")
|
94 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id, token=token)
|
95 |
+
model = AutoModelForCausalLM.from_pretrained(
|
96 |
+
model_id, token=token, torch_dtype=None, device_map="auto"
|
97 |
+
)
|
98 |
+
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer, max_new_tokens=512)
|
99 |
+
return pipe, tokenizer
|
100 |
+
|
101 |
+
# ---------------------------
|
102 |
+
# β Ask a question
|
103 |
+
# ---------------------------
|
104 |
+
def ask_question(question, db, embedder, pipe, tokenizer):
|
105 |
+
results = db.query(query_texts=[question], n_results=5)
|
106 |
context = "\n\n".join(results["documents"][0])
|
|
|
|
|
107 |
|
108 |
+
prompt = f"""
|
109 |
+
<|begin_of_text|><|start_header_id|>system<|end_header_id|>
|
110 |
+
You are a helpful assistant that answers questions from technical manuals using only the provided context.
|
111 |
+
<context>
|
112 |
{context}
|
113 |
+
</context>
|
114 |
+
<|start_header_id|>user<|end_header_id|>
|
115 |
+
{question}<|start_header_id|>assistant<|end_header_id|>
|
116 |
"""
|
117 |
+
|
118 |
+
out = pipe(prompt)[0]["generated_text"]
|
119 |
+
final = out.split("<|start_header_id|>assistant<|end_header_id|>")[-1].strip()
|
120 |
+
return final
|
121 |
+
|
122 |
+
# ---------------------------
|
123 |
+
# π Build interface
|
124 |
+
# ---------------------------
|
|
|
|
|
|
|
|
|
125 |
with gr.Blocks() as demo:
|
126 |
+
gr.Markdown("# π€ SmartManuals-AI (Hugging Face Space Edition)")
|
|
|
|
|
|
|
127 |
|
128 |
with gr.Row():
|
129 |
+
qbox = gr.Textbox(label="Ask a Question", placeholder="e.g. How do I access diagnostics on the SE3 console?")
|
130 |
+
submit = gr.Button("π Ask")
|
131 |
+
|
132 |
+
abox = gr.Textbox(label="Answer", lines=8)
|
133 |
+
|
134 |
+
db, embedder = embed_all()
|
135 |
+
pipe, tokenizer = load_llm()
|
136 |
|
137 |
+
submit.click(fn=lambda q: ask_question(q, db, embedder, pipe, tokenizer), inputs=qbox, outputs=abox)
|
138 |
|
139 |
+
# For Hugging Face Spaces
|
140 |
+
if __name__ == "__main__":
|
141 |
+
demo.launch()
|