Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,30 +1,52 @@
|
|
|
|
1 |
import os
|
|
|
2 |
import json
|
3 |
-
import
|
4 |
import pytesseract
|
5 |
-
from PIL import Image
|
6 |
-
import io
|
7 |
-
import nltk
|
8 |
import chromadb
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
from tqdm import tqdm
|
10 |
-
from
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
# ---------------------------
|
17 |
-
MANUALS_DIR = "./Manuals"
|
18 |
-
CHROMA_PATH = "./chroma_store"
|
19 |
-
COLLECTION_NAME = "manual_chunks"
|
20 |
-
|
21 |
-
# Ensure NLTK punkt is available
|
22 |
-
nltk.download("punkt")
|
23 |
from nltk.tokenize import sent_tokenize
|
24 |
|
25 |
-
#
|
26 |
-
|
27 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
def clean(text):
|
29 |
return "\n".join([line.strip() for line in text.splitlines() if line.strip()])
|
30 |
|
@@ -32,110 +54,150 @@ def split_sentences(text):
|
|
32 |
try:
|
33 |
return sent_tokenize(text)
|
34 |
except Exception as e:
|
35 |
-
print("[Tokenizer Error]", e
|
36 |
return text.split(". ")
|
37 |
|
38 |
-
|
39 |
-
|
40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
def extract_pdf_text(pdf_path):
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
pix = page.get_pixmap(dpi=300)
|
49 |
-
img = Image.open(
|
50 |
text = pytesseract.image_to_string(img)
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
|
|
|
|
|
|
|
|
|
|
60 |
def embed_all():
|
|
|
|
|
61 |
client = chromadb.PersistentClient(path=CHROMA_PATH)
|
62 |
-
|
|
|
63 |
client.delete_collection(COLLECTION_NAME)
|
64 |
-
|
|
|
|
|
65 |
|
66 |
-
|
|
|
|
|
67 |
|
68 |
-
chunk_id = 0
|
69 |
for fname in os.listdir(MANUALS_DIR):
|
70 |
fpath = os.path.join(MANUALS_DIR, fname)
|
71 |
if fname.lower().endswith(".pdf"):
|
72 |
pages = extract_pdf_text(fpath)
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
86 |
return collection, embedder
|
87 |
|
88 |
-
#
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
token = os.environ.get("HF_TOKEN")
|
94 |
-
tokenizer = AutoTokenizer.from_pretrained(model_id, token=token)
|
95 |
-
model = AutoModelForCausalLM.from_pretrained(
|
96 |
-
model_id, token=token, torch_dtype=None, device_map="auto"
|
97 |
-
)
|
98 |
-
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer, max_new_tokens=512)
|
99 |
return pipe, tokenizer
|
100 |
|
101 |
-
#
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
context = "\n\n".join(results["documents"][0])
|
107 |
-
|
108 |
-
prompt = f"""
|
109 |
-
<|begin_of_text|><|start_header_id|>system<|end_header_id|>
|
110 |
-
You are a helpful assistant that answers questions from technical manuals using only the provided context.
|
111 |
-
<context>
|
112 |
{context}
|
113 |
-
</context>
|
114 |
<|start_header_id|>user<|end_header_id|>
|
115 |
-
{question}
|
|
|
116 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
117 |
|
118 |
-
|
119 |
-
|
120 |
-
|
|
|
|
|
121 |
|
122 |
-
#
|
123 |
-
# π Build interface
|
124 |
-
# ---------------------------
|
125 |
with gr.Blocks() as demo:
|
126 |
-
gr.Markdown("
|
127 |
|
128 |
-
|
129 |
-
|
130 |
-
|
|
|
131 |
|
132 |
-
|
133 |
|
|
|
|
|
134 |
db, embedder = embed_all()
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
|
139 |
-
#
|
140 |
if __name__ == "__main__":
|
141 |
demo.launch()
|
|
|
1 |
+
|
2 |
import os
|
3 |
+
import fitz
|
4 |
import json
|
5 |
+
import gradio as gr
|
6 |
import pytesseract
|
|
|
|
|
|
|
7 |
import chromadb
|
8 |
+
import torch
|
9 |
+
import asyncio
|
10 |
+
import docx2txt
|
11 |
+
import nltk
|
12 |
+
import traceback
|
13 |
+
from PIL import Image
|
14 |
+
from io import BytesIO
|
15 |
from tqdm import tqdm
|
16 |
+
from transformers import (
|
17 |
+
pipeline,
|
18 |
+
AutoModelForCausalLM,
|
19 |
+
AutoTokenizer
|
20 |
+
)
|
21 |
+
from sentence_transformers import SentenceTransformer, util
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
from nltk.tokenize import sent_tokenize
|
23 |
|
24 |
+
# Ensure punkt is available
|
25 |
+
try:
|
26 |
+
nltk.data.find("tokenizers/punkt")
|
27 |
+
except LookupError:
|
28 |
+
nltk.download("punkt")
|
29 |
+
|
30 |
+
# ---------------- Config ----------------
|
31 |
+
MANUALS_DIR = "Manuals"
|
32 |
+
CHROMA_PATH = "chroma_store"
|
33 |
+
COLLECTION_NAME = "manual_chunks"
|
34 |
+
CHUNK_SIZE = 750
|
35 |
+
CHUNK_OVERLAP = 100
|
36 |
+
MAX_CONTEXT_CHUNKS = 3
|
37 |
+
|
38 |
+
MODELS = {
|
39 |
+
"LLaMA 3 (8B)": "meta-llama/Llama-3.1-8B-Instruct",
|
40 |
+
"Mistral 7B": "mistralai/Mistral-7B-Instruct-v0.3",
|
41 |
+
"Gemma 2B": "google/gemma-1.1-2b-it",
|
42 |
+
"LLaMA 4 (Scout 17B)": "meta-llama/Llama-4-Scout-17B-16E",
|
43 |
+
"Qwen 30B": "Qwen/Qwen3-30B-A3B"
|
44 |
+
}
|
45 |
+
|
46 |
+
HF_TOKEN = os.environ.get("HF_TOKEN")
|
47 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
48 |
+
|
49 |
+
# ---------------- Utils ----------------
|
50 |
def clean(text):
|
51 |
return "\n".join([line.strip() for line in text.splitlines() if line.strip()])
|
52 |
|
|
|
54 |
try:
|
55 |
return sent_tokenize(text)
|
56 |
except Exception as e:
|
57 |
+
print("[Tokenizer Error]", e)
|
58 |
return text.split(". ")
|
59 |
|
60 |
+
def split_into_chunks(sentences, max_tokens=CHUNK_SIZE, overlap=CHUNK_OVERLAP):
|
61 |
+
chunks = []
|
62 |
+
current_chunk, current_len = [], 0
|
63 |
+
|
64 |
+
for sentence in sentences:
|
65 |
+
words = sentence.split()
|
66 |
+
if current_len + len(words) > max_tokens and current_chunk:
|
67 |
+
chunks.append(" ".join(current_chunk))
|
68 |
+
current_chunk = current_chunk[-overlap:]
|
69 |
+
current_len = sum(len(s.split()) for s in current_chunk)
|
70 |
+
|
71 |
+
current_chunk.append(sentence)
|
72 |
+
current_len += len(words)
|
73 |
+
|
74 |
+
if current_chunk:
|
75 |
+
chunks.append(" ".join(current_chunk))
|
76 |
+
|
77 |
+
return chunks
|
78 |
+
|
79 |
def extract_pdf_text(pdf_path):
|
80 |
+
text_chunks = []
|
81 |
+
try:
|
82 |
+
doc = fitz.open(pdf_path)
|
83 |
+
for i, page in enumerate(doc):
|
84 |
+
text = page.get_text().strip()
|
85 |
+
if not text:
|
86 |
pix = page.get_pixmap(dpi=300)
|
87 |
+
img = Image.open(BytesIO(pix.tobytes("png")))
|
88 |
text = pytesseract.image_to_string(img)
|
89 |
+
text_chunks.append((pdf_path, i + 1, clean(text)))
|
90 |
+
except Exception as e:
|
91 |
+
print("β Error reading PDF:", pdf_path, e)
|
92 |
+
return text_chunks
|
93 |
+
|
94 |
+
def extract_docx_text(docx_path):
|
95 |
+
try:
|
96 |
+
text = clean(docx2txt.process(docx_path))
|
97 |
+
return [(docx_path, 1, text)]
|
98 |
+
except Exception as e:
|
99 |
+
print("β Error reading DOCX:", docx_path, e)
|
100 |
+
return []
|
101 |
+
|
102 |
+
# ---------------- Background Embed ----------------
|
103 |
def embed_all():
|
104 |
+
embedder = SentenceTransformer("all-MiniLM-L6-v2")
|
105 |
+
embedder.eval()
|
106 |
client = chromadb.PersistentClient(path=CHROMA_PATH)
|
107 |
+
|
108 |
+
try:
|
109 |
client.delete_collection(COLLECTION_NAME)
|
110 |
+
except:
|
111 |
+
pass
|
112 |
+
collection = client.get_or_create_collection(COLLECTION_NAME)
|
113 |
|
114 |
+
chunks, ids, metas = [], [], []
|
115 |
+
idx = 0
|
116 |
+
print("π Scanning Manuals folder...")
|
117 |
|
|
|
118 |
for fname in os.listdir(MANUALS_DIR):
|
119 |
fpath = os.path.join(MANUALS_DIR, fname)
|
120 |
if fname.lower().endswith(".pdf"):
|
121 |
pages = extract_pdf_text(fpath)
|
122 |
+
elif fname.lower().endswith(".docx"):
|
123 |
+
pages = extract_docx_text(fpath)
|
124 |
+
else:
|
125 |
+
continue
|
126 |
+
|
127 |
+
for filepath, page, text in pages:
|
128 |
+
sentences = split_sentences(text)
|
129 |
+
subchunks = split_into_chunks(sentences)
|
130 |
+
for i, subchunk in enumerate(subchunks):
|
131 |
+
chunks.append(subchunk)
|
132 |
+
ids.append(f"{fname}::{page}::{i}")
|
133 |
+
metas.append({"source": fname, "page": page})
|
134 |
+
|
135 |
+
if len(chunks) >= 16:
|
136 |
+
embs = embedder.encode(chunks).tolist()
|
137 |
+
collection.add(documents=chunks, ids=ids, metadatas=metas, embeddings=embs)
|
138 |
+
chunks, ids, metas = [], [], []
|
139 |
+
|
140 |
+
if chunks:
|
141 |
+
embs = embedder.encode(chunks).tolist()
|
142 |
+
collection.add(documents=chunks, ids=ids, metadatas=metas, embeddings=embs)
|
143 |
+
|
144 |
+
print(f"β
Embedded {len(ids)} chunks.")
|
145 |
return collection, embedder
|
146 |
|
147 |
+
# ---------------- Model Loader ----------------
|
148 |
+
def load_model(model_id):
|
149 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id, token=HF_TOKEN)
|
150 |
+
model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto", torch_dtype=torch.bfloat16 if torch.cuda.is_available() else torch.float32, token=HF_TOKEN)
|
151 |
+
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer, device=0 if torch.cuda.is_available() else -1)
|
|
|
|
|
|
|
|
|
|
|
|
|
152 |
return pipe, tokenizer
|
153 |
|
154 |
+
# ---------------- Query ----------------
|
155 |
+
def query_llm(context, question, pipe, tokenizer):
|
156 |
+
prompt = f"""<|begin_of_text|><|start_header_id|>system<|end_header_id|>
|
157 |
+
You are a helpful assistant. Use only the following context to answer. If uncertain, say: 'I don't know.'
|
158 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
159 |
{context}
|
|
|
160 |
<|start_header_id|>user<|end_header_id|>
|
161 |
+
{question}
|
162 |
+
<|start_header_id|>assistant<|end_header_id|>
|
163 |
"""
|
164 |
+
out = pipe(prompt, max_new_tokens=512)[0]["generated_text"]
|
165 |
+
return out.split("<|start_header_id|>assistant<|end_header_id|>")[-1].strip()
|
166 |
+
|
167 |
+
def answer_question(question, model_choice):
|
168 |
+
try:
|
169 |
+
model_id = MODELS[model_choice]
|
170 |
+
pipe, tokenizer = load_model(model_id)
|
171 |
+
query_emb = embedder.encode(question, convert_to_tensor=True)
|
172 |
+
|
173 |
+
results = db.query(query_texts=[question], n_results=MAX_CONTEXT_CHUNKS)
|
174 |
+
context_chunks = results["documents"][0]
|
175 |
+
context = "\n\n".join(context_chunks)
|
176 |
|
177 |
+
answer = query_llm(context, question, pipe, tokenizer)
|
178 |
+
return answer
|
179 |
+
except Exception as e:
|
180 |
+
traceback.print_exc()
|
181 |
+
return f"β Error: {str(e)}"
|
182 |
|
183 |
+
# ---------------- Run App ----------------
|
|
|
|
|
184 |
with gr.Blocks() as demo:
|
185 |
+
gr.Markdown("### π Ask Questions About Your Manuals")
|
186 |
|
187 |
+
model_choice = gr.Dropdown(label="Select Model", choices=list(MODELS.keys()), value="LLaMA 3 (8B)")
|
188 |
+
question = gr.Textbox(label="Your Question", placeholder="e.g. How do I reset the treadmill?")
|
189 |
+
submit = gr.Button("π Get Answer")
|
190 |
+
answer = gr.Textbox(label="Answer", lines=10)
|
191 |
|
192 |
+
submit.click(fn=answer_question, inputs=[question, model_choice], outputs=answer)
|
193 |
|
194 |
+
# Run background embed on startup
|
195 |
+
try:
|
196 |
db, embedder = embed_all()
|
197 |
+
except Exception as e:
|
198 |
+
print("β Failed to embed docs:", e)
|
199 |
+
db, embedder = None, None
|
200 |
|
201 |
+
# Only launch if in HF Space
|
202 |
if __name__ == "__main__":
|
203 |
demo.launch()
|