Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,156 +1,177 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
import
|
5 |
-
import torch
|
6 |
from tqdm import tqdm
|
7 |
-
from PIL import Image
|
8 |
from docx import Document
|
9 |
-
from
|
10 |
-
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
|
11 |
-
from nltk.tokenize import sent_tokenize
|
12 |
import pytesseract
|
|
|
|
|
|
|
|
|
|
|
13 |
import gradio as gr
|
14 |
|
15 |
-
#
|
16 |
-
# Configuration
|
17 |
-
#
|
18 |
MANUALS_FOLDER = "./Manuals"
|
19 |
-
CHUNKS_JSONL = "chunks.jsonl"
|
20 |
CHROMA_PATH = "./chroma_store"
|
21 |
COLLECTION_NAME = "manual_chunks"
|
22 |
CHUNK_SIZE = 750
|
23 |
CHUNK_OVERLAP = 100
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
# ----------------------
|
28 |
-
# Ensure punkt is downloaded
|
29 |
-
# ----------------------
|
30 |
-
nltk.download("punkt")
|
31 |
-
|
32 |
-
# ----------------------
|
33 |
-
# Utilities
|
34 |
-
# ----------------------
|
35 |
-
def extract_text_from_pdf(path):
|
36 |
-
doc = fitz.open(path)
|
37 |
-
text = ""
|
38 |
-
for page in doc:
|
39 |
-
t = page.get_text()
|
40 |
-
if not t.strip():
|
41 |
-
pix = page.get_pixmap(dpi=300)
|
42 |
-
img = Image.open(io.BytesIO(pix.tobytes("png")))
|
43 |
-
t = pytesseract.image_to_string(img)
|
44 |
-
text += t + "\n"
|
45 |
-
return text
|
46 |
-
|
47 |
-
def extract_text_from_docx(path):
|
48 |
-
doc = Document(path)
|
49 |
-
return "\n".join(p.text for p in doc.paragraphs if p.text.strip())
|
50 |
|
|
|
|
|
|
|
51 |
def clean(text):
|
52 |
-
|
|
|
53 |
|
54 |
def split_sentences(text):
|
55 |
-
return
|
56 |
|
57 |
-
def chunk_sentences(sentences,
|
58 |
-
chunks, chunk,
|
59 |
-
for
|
60 |
-
|
61 |
-
if
|
62 |
chunks.append(" ".join(chunk))
|
63 |
-
chunk = chunk[-overlap:] if overlap
|
64 |
-
|
65 |
-
chunk.append(
|
66 |
-
|
67 |
if chunk:
|
68 |
chunks.append(" ".join(chunk))
|
69 |
return chunks
|
70 |
|
71 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
name = filename.lower()
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
def embed_all():
|
83 |
-
embedder = SentenceTransformer("all-MiniLM-L6-v2")
|
84 |
client = chromadb.PersistentClient(path=CHROMA_PATH)
|
85 |
-
|
86 |
client.delete_collection(COLLECTION_NAME)
|
87 |
-
except:
|
88 |
-
pass
|
89 |
collection = client.create_collection(COLLECTION_NAME)
|
90 |
-
chunks, metadatas, ids = [], [], []
|
91 |
-
files = os.listdir(MANUALS_FOLDER)
|
92 |
-
idx = 0
|
93 |
-
for file in tqdm(files):
|
94 |
-
path = os.path.join(MANUALS_FOLDER, file)
|
95 |
-
text = extract_text_from_pdf(path) if file.endswith(".pdf") else extract_text_from_docx(path)
|
96 |
-
meta = get_metadata(file)
|
97 |
-
sents = split_sentences(clean(text))
|
98 |
-
for i, chunk in enumerate(chunk_sentences(sents)):
|
99 |
-
chunks.append(chunk)
|
100 |
-
ids.append(f"{file}::chunk_{i}")
|
101 |
-
metadatas.append(meta)
|
102 |
-
if len(chunks) >= 16:
|
103 |
-
emb = embedder.encode(chunks).tolist()
|
104 |
-
collection.add(documents=chunks, ids=ids, metadatas=metadatas, embeddings=emb)
|
105 |
-
chunks, ids, metadatas = [], [], []
|
106 |
-
if chunks:
|
107 |
-
emb = embedder.encode(chunks).tolist()
|
108 |
-
collection.add(documents=chunks, ids=ids, metadatas=metadatas, embeddings=emb)
|
109 |
-
return collection, embedder
|
110 |
|
111 |
-
|
112 |
-
|
113 |
-
# ----------------------
|
114 |
-
def load_model():
|
115 |
-
device = 0 if torch.cuda.is_available() else -1
|
116 |
-
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, token=HF_TOKEN)
|
117 |
-
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME, token=HF_TOKEN)
|
118 |
-
return pipeline("text-generation", model=model, tokenizer=tokenizer, device=device, max_new_tokens=512)
|
119 |
-
|
120 |
-
# ----------------------
|
121 |
-
# RAG Pipeline
|
122 |
-
# ----------------------
|
123 |
-
def answer_query(question):
|
124 |
-
results = db.query(query_texts=[question], n_results=5)
|
125 |
-
context = "\n\n".join(results["documents"][0])
|
126 |
-
prompt = f"""<|begin_of_text|><|start_header_id|>system<|end_header_id|>
|
127 |
-
You are a helpful assistant. Use the provided context to answer questions. If you don't know, say 'I don't know.'
|
128 |
-
<context>
|
129 |
-
{context}
|
130 |
-
</context>
|
131 |
-
<|start_header_id|>user<|end_header_id|>
|
132 |
-
{question}<|start_header_id|>assistant<|end_header_id|>"""
|
133 |
-
return llm(prompt)[0]["generated_text"].split("<|start_header_id|>assistant<|end_header_id|>")[-1].strip()
|
134 |
-
|
135 |
-
# ----------------------
|
136 |
-
# UI
|
137 |
-
# ----------------------
|
138 |
-
with gr.Blocks() as demo:
|
139 |
-
status = gr.Textbox(label="Status", value="Embedding manuals... Please wait.", interactive=False)
|
140 |
-
question = gr.Textbox(label="Ask a Question")
|
141 |
-
submit = gr.Button("🔍 Ask")
|
142 |
-
answer = gr.Textbox(label="Answer", lines=8)
|
143 |
|
144 |
-
|
145 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
146 |
|
147 |
-
|
148 |
|
149 |
-
#
|
150 |
-
#
|
151 |
-
#
|
152 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
153 |
db, embedder = embed_all()
|
154 |
-
|
155 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
156 |
demo.launch()
|
|
|
1 |
+
import os
|
2 |
+
import json
|
3 |
+
import fitz # PyMuPDF
|
4 |
+
import re
|
|
|
5 |
from tqdm import tqdm
|
|
|
6 |
from docx import Document
|
7 |
+
from PIL import Image
|
|
|
|
|
8 |
import pytesseract
|
9 |
+
import io
|
10 |
+
import torch
|
11 |
+
import chromadb
|
12 |
+
from sentence_transformers import SentenceTransformer, util
|
13 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
14 |
import gradio as gr
|
15 |
|
16 |
+
# ---------------------------
|
17 |
+
# 📁 Configuration
|
18 |
+
# ---------------------------
|
19 |
MANUALS_FOLDER = "./Manuals"
|
|
|
20 |
CHROMA_PATH = "./chroma_store"
|
21 |
COLLECTION_NAME = "manual_chunks"
|
22 |
CHUNK_SIZE = 750
|
23 |
CHUNK_OVERLAP = 100
|
24 |
+
MAX_CONTEXT_CHUNKS = 3
|
25 |
+
HF_MODEL = "meta-llama/Llama-3.1-8B-Instruct"
|
26 |
+
HF_TOKEN = os.environ.get("HF_TOKEN")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
|
28 |
+
# ---------------------------
|
29 |
+
# 🧹 Helpers
|
30 |
+
# ---------------------------
|
31 |
def clean(text):
|
32 |
+
lines = text.splitlines()
|
33 |
+
return "\n".join(line.strip() for line in lines if line.strip())
|
34 |
|
35 |
def split_sentences(text):
|
36 |
+
return re.split(r'(?<=[.!?])\s+', text.strip())
|
37 |
|
38 |
+
def chunk_sentences(sentences, max_len=CHUNK_SIZE, overlap=CHUNK_OVERLAP):
|
39 |
+
chunks, chunk, length = [], [], 0
|
40 |
+
for sent in sentences:
|
41 |
+
tokens = len(sent.split())
|
42 |
+
if length + tokens > max_len and chunk:
|
43 |
chunks.append(" ".join(chunk))
|
44 |
+
chunk = chunk[-overlap:] if overlap else []
|
45 |
+
length = sum(len(s.split()) for s in chunk)
|
46 |
+
chunk.append(sent)
|
47 |
+
length += tokens
|
48 |
if chunk:
|
49 |
chunks.append(" ".join(chunk))
|
50 |
return chunks
|
51 |
|
52 |
+
def extract_text_from_pdf(path):
|
53 |
+
doc = fitz.open(path)
|
54 |
+
full_text = []
|
55 |
+
for page in doc:
|
56 |
+
text = page.get_text().strip()
|
57 |
+
if not text:
|
58 |
+
try:
|
59 |
+
pix = page.get_pixmap(dpi=300)
|
60 |
+
img_data = pix.tobytes("png")
|
61 |
+
img = Image.open(io.BytesIO(img_data))
|
62 |
+
text = pytesseract.image_to_string(img).strip()
|
63 |
+
except Exception:
|
64 |
+
text = ""
|
65 |
+
full_text.append(text)
|
66 |
+
return "\n".join(full_text)
|
67 |
+
|
68 |
+
def extract_text_from_docx(path):
|
69 |
+
doc = Document(path)
|
70 |
+
return "\n".join([para.text for para in doc.paragraphs if para.text.strip()])
|
71 |
+
|
72 |
+
def extract_metadata(filename):
|
73 |
name = filename.lower()
|
74 |
+
model = next((m for m in ["se3hd", "se3", "se4", "symbio", "explore", "integrity x", "integrity sl", "everest", "engage", "inspire", "discover", "95t", "95x", "95c", "95r", "97c"] if m in name), "unknown")
|
75 |
+
if "om" in name or "owner" in name:
|
76 |
+
doc_type = "owner manual"
|
77 |
+
elif "sm" in name or "service" in name:
|
78 |
+
doc_type = "service manual"
|
79 |
+
elif "assembly" in name:
|
80 |
+
doc_type = "assembly instructions"
|
81 |
+
elif "alert" in name:
|
82 |
+
doc_type = "installer alert"
|
83 |
+
elif "parts" in name:
|
84 |
+
doc_type = "parts manual"
|
85 |
+
elif "bulletin" in name:
|
86 |
+
doc_type = "service bulletin"
|
87 |
+
else:
|
88 |
+
doc_type = "unknown"
|
89 |
+
return model, doc_type
|
90 |
+
|
91 |
+
# ---------------------------
|
92 |
+
# 🚀 Build ChromaDB at Startup
|
93 |
+
# ---------------------------
|
94 |
def embed_all():
|
|
|
95 |
client = chromadb.PersistentClient(path=CHROMA_PATH)
|
96 |
+
if COLLECTION_NAME in [c.name for c in client.list_collections()]:
|
97 |
client.delete_collection(COLLECTION_NAME)
|
|
|
|
|
98 |
collection = client.create_collection(COLLECTION_NAME)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
99 |
|
100 |
+
embedder = SentenceTransformer("all-MiniLM-L6-v2")
|
101 |
+
records = []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
102 |
|
103 |
+
for fname in os.listdir(MANUALS_FOLDER):
|
104 |
+
path = os.path.join(MANUALS_FOLDER, fname)
|
105 |
+
if not fname.lower().endswith((".pdf", ".docx")):
|
106 |
+
continue
|
107 |
+
text = extract_text_from_pdf(path) if fname.endswith(".pdf") else extract_text_from_docx(path)
|
108 |
+
sents = split_sentences(clean(text))
|
109 |
+
chunks = chunk_sentences(sents)
|
110 |
+
model, doc_type = extract_metadata(fname)
|
111 |
+
for i, chunk in enumerate(chunks):
|
112 |
+
records.append({
|
113 |
+
"id": f"{fname}::chunk_{i+1}",
|
114 |
+
"text": chunk,
|
115 |
+
"metadata": {"source_file": fname, "model": model, "doc_type": doc_type}
|
116 |
+
})
|
117 |
+
|
118 |
+
for i in range(0, len(records), 16):
|
119 |
+
batch = records[i:i+16]
|
120 |
+
texts = [r["text"] for r in batch]
|
121 |
+
ids = [r["id"] for r in batch]
|
122 |
+
metas = [r["metadata"] for r in batch]
|
123 |
+
embeddings = embedder.encode(texts).tolist()
|
124 |
+
collection.add(documents=texts, ids=ids, metadatas=metas, embeddings=embeddings)
|
125 |
|
126 |
+
return collection, embedder
|
127 |
|
128 |
+
# ---------------------------
|
129 |
+
# 💬 Load HF Model
|
130 |
+
# ---------------------------
|
131 |
+
llm_pipe = None
|
132 |
+
if HF_TOKEN:
|
133 |
+
tokenizer = AutoTokenizer.from_pretrained(HF_MODEL, token=HF_TOKEN)
|
134 |
+
model = AutoModelForCausalLM.from_pretrained(HF_MODEL, token=HF_TOKEN, torch_dtype=torch.float32)
|
135 |
+
llm_pipe = pipeline("text-generation", model=model, tokenizer=tokenizer, device=-1)
|
136 |
+
|
137 |
+
# ---------------------------
|
138 |
+
# 🔎 RAG Function
|
139 |
+
# ---------------------------
|
140 |
+
def run_query(question):
|
141 |
+
if not question.strip():
|
142 |
+
return "Please enter a question."
|
143 |
+
if not db or not embedder:
|
144 |
+
return "Chroma or embedder not ready."
|
145 |
+
|
146 |
+
q_embed = embedder.encode(question).tolist()
|
147 |
+
res = db.query(query_embeddings=[q_embed], n_results=MAX_CONTEXT_CHUNKS)
|
148 |
+
contexts = res["documents"][0]
|
149 |
+
prompt = """
|
150 |
+
You are a technical assistant.
|
151 |
+
Answer only using the context below.
|
152 |
+
Say 'I don't know' if not found.
|
153 |
+
|
154 |
+
"""
|
155 |
+
context_text = "\n\n".join(contexts)
|
156 |
+
final_prompt = prompt + f"Context:\n{context_text}\n\nQuestion: {question}\nAnswer:"
|
157 |
+
if llm_pipe:
|
158 |
+
result = llm_pipe(final_prompt, max_new_tokens=300)[0]['generated_text']
|
159 |
+
return result.split("Answer:")[-1].strip()
|
160 |
+
return "Model not loaded."
|
161 |
+
|
162 |
+
# ---------------------------
|
163 |
+
# 🧠 Init embeddings once
|
164 |
+
# ---------------------------
|
165 |
db, embedder = embed_all()
|
166 |
+
|
167 |
+
# ---------------------------
|
168 |
+
# 🎛️ Gradio Interface
|
169 |
+
# ---------------------------
|
170 |
+
with gr.Blocks() as demo:
|
171 |
+
gr.Markdown("# 🤖 SmartManuals-AI: Ask Technical Questions about Your Manuals")
|
172 |
+
question = gr.Textbox(placeholder="e.g. How do I reset the treadmill console?", label="Enter Question")
|
173 |
+
submit = gr.Button("Get Answer")
|
174 |
+
output = gr.Textbox(label="Answer")
|
175 |
+
submit.click(fn=run_query, inputs=question, outputs=output)
|
176 |
+
|
177 |
demo.launch()
|