Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,4 +1,3 @@
|
|
1 |
-
|
2 |
import os
|
3 |
import fitz
|
4 |
import json
|
@@ -6,100 +5,85 @@ import gradio as gr
|
|
6 |
import pytesseract
|
7 |
import chromadb
|
8 |
import torch
|
9 |
-
import asyncio
|
10 |
-
import docx2txt
|
11 |
import nltk
|
12 |
import traceback
|
|
|
13 |
from PIL import Image
|
14 |
from io import BytesIO
|
15 |
from tqdm import tqdm
|
16 |
-
from transformers import
|
17 |
-
pipeline,
|
18 |
-
AutoModelForCausalLM,
|
19 |
-
AutoTokenizer
|
20 |
-
)
|
21 |
from sentence_transformers import SentenceTransformer, util
|
22 |
from nltk.tokenize import sent_tokenize
|
23 |
|
24 |
-
# Ensure punkt is
|
25 |
try:
|
26 |
nltk.data.find("tokenizers/punkt")
|
27 |
except LookupError:
|
28 |
nltk.download("punkt")
|
29 |
|
30 |
-
#
|
|
|
31 |
MANUALS_DIR = "Manuals"
|
32 |
CHROMA_PATH = "chroma_store"
|
33 |
COLLECTION_NAME = "manual_chunks"
|
34 |
CHUNK_SIZE = 750
|
35 |
CHUNK_OVERLAP = 100
|
36 |
MAX_CONTEXT_CHUNKS = 3
|
|
|
37 |
|
38 |
-
MODELS = {
|
39 |
-
"LLaMA 3 (8B)": "meta-llama/Llama-3.1-8B-Instruct",
|
40 |
-
"Mistral 7B": "mistralai/Mistral-7B-Instruct-v0.3",
|
41 |
-
"Gemma 2B": "google/gemma-1.1-2b-it",
|
42 |
-
"LLaMA 4 (Scout 17B)": "meta-llama/Llama-4-Scout-17B-16E",
|
43 |
-
"Qwen 30B": "Qwen/Qwen3-30B-A3B"
|
44 |
-
}
|
45 |
-
|
46 |
-
HF_TOKEN = os.environ.get("HF_TOKEN")
|
47 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
48 |
|
49 |
-
# ----------------
|
50 |
def clean(text):
|
51 |
return "\n".join([line.strip() for line in text.splitlines() if line.strip()])
|
52 |
|
53 |
def split_sentences(text):
|
54 |
try:
|
55 |
return sent_tokenize(text)
|
56 |
-
except
|
57 |
-
print("
|
58 |
return text.split(". ")
|
59 |
|
60 |
-
def
|
61 |
chunks = []
|
62 |
-
current_chunk,
|
63 |
|
64 |
-
for
|
65 |
-
words =
|
66 |
-
if
|
67 |
chunks.append(" ".join(current_chunk))
|
68 |
current_chunk = current_chunk[-overlap:]
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
current_len += len(words)
|
73 |
|
74 |
if current_chunk:
|
75 |
chunks.append(" ".join(current_chunk))
|
76 |
-
|
77 |
return chunks
|
78 |
|
79 |
-
|
80 |
-
|
|
|
81 |
try:
|
82 |
-
doc = fitz.open(
|
83 |
for i, page in enumerate(doc):
|
84 |
text = page.get_text().strip()
|
85 |
if not text:
|
86 |
-
|
87 |
-
img = Image.open(BytesIO(pix.tobytes("png")))
|
88 |
text = pytesseract.image_to_string(img)
|
89 |
-
|
90 |
except Exception as e:
|
91 |
-
print("❌
|
92 |
-
return
|
93 |
|
94 |
-
def extract_docx_text(
|
95 |
try:
|
96 |
-
|
97 |
-
return [(docx_path, 1, text)]
|
98 |
except Exception as e:
|
99 |
-
print("❌
|
100 |
return []
|
101 |
|
102 |
-
# ----------------
|
103 |
def embed_all():
|
104 |
embedder = SentenceTransformer("all-MiniLM-L6-v2")
|
105 |
embedder.eval()
|
@@ -111,9 +95,8 @@ def embed_all():
|
|
111 |
pass
|
112 |
collection = client.get_or_create_collection(COLLECTION_NAME)
|
113 |
|
114 |
-
|
115 |
-
|
116 |
-
print("📄 Scanning Manuals folder...")
|
117 |
|
118 |
for fname in os.listdir(MANUALS_DIR):
|
119 |
fpath = os.path.join(MANUALS_DIR, fname)
|
@@ -124,80 +107,77 @@ def embed_all():
|
|
124 |
else:
|
125 |
continue
|
126 |
|
127 |
-
for
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
ids.append(f"{fname}::{page}::{i}")
|
133 |
metas.append({"source": fname, "page": page})
|
134 |
|
135 |
-
if len(
|
136 |
-
embs = embedder.encode(
|
137 |
-
collection.add(documents=
|
138 |
-
|
139 |
|
140 |
-
if
|
141 |
-
embs = embedder.encode(
|
142 |
-
collection.add(documents=
|
143 |
|
144 |
print(f"✅ Embedded {len(ids)} chunks.")
|
145 |
return collection, embedder
|
146 |
|
147 |
-
# ---------------- Model
|
148 |
-
def load_model(
|
149 |
-
tokenizer = AutoTokenizer.from_pretrained(
|
150 |
-
model = AutoModelForCausalLM.from_pretrained(
|
|
|
|
|
|
|
|
|
|
|
151 |
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer, device=0 if torch.cuda.is_available() else -1)
|
152 |
return pipe, tokenizer
|
153 |
|
154 |
-
|
155 |
-
|
156 |
-
prompt = f"""<|begin_of_text|><|start_header_id|>system<|end_header_id|>
|
157 |
-
You are a helpful assistant. Use only the following context to answer. If uncertain, say: 'I don't know.'
|
158 |
|
|
|
159 |
{context}
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
"""
|
164 |
-
|
165 |
-
return
|
166 |
-
|
167 |
-
|
|
|
168 |
try:
|
169 |
-
model_id = MODELS[model_choice]
|
170 |
-
pipe, tokenizer = load_model(model_id)
|
171 |
query_emb = embedder.encode(question, convert_to_tensor=True)
|
172 |
-
|
173 |
results = db.query(query_texts=[question], n_results=MAX_CONTEXT_CHUNKS)
|
174 |
-
|
175 |
-
context
|
176 |
-
|
177 |
-
answer = query_llm(context, question, pipe, tokenizer)
|
178 |
-
return answer
|
179 |
except Exception as e:
|
180 |
-
|
181 |
-
return f"
|
182 |
|
183 |
-
# ----------------
|
184 |
with gr.Blocks() as demo:
|
185 |
-
gr.Markdown("
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
# Run background embed on startup
|
195 |
try:
|
196 |
db, embedder = embed_all()
|
|
|
197 |
except Exception as e:
|
198 |
-
print("❌
|
199 |
db, embedder = None, None
|
|
|
200 |
|
201 |
-
# Only launch if in HF Space
|
202 |
if __name__ == "__main__":
|
203 |
demo.launch()
|
|
|
|
|
1 |
import os
|
2 |
import fitz
|
3 |
import json
|
|
|
5 |
import pytesseract
|
6 |
import chromadb
|
7 |
import torch
|
|
|
|
|
8 |
import nltk
|
9 |
import traceback
|
10 |
+
import docx2txt
|
11 |
from PIL import Image
|
12 |
from io import BytesIO
|
13 |
from tqdm import tqdm
|
14 |
+
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
|
|
|
|
|
|
|
|
|
15 |
from sentence_transformers import SentenceTransformer, util
|
16 |
from nltk.tokenize import sent_tokenize
|
17 |
|
18 |
+
# Ensure punkt is downloaded
|
19 |
try:
|
20 |
nltk.data.find("tokenizers/punkt")
|
21 |
except LookupError:
|
22 |
nltk.download("punkt")
|
23 |
|
24 |
+
# Configuration
|
25 |
+
HF_TOKEN = os.getenv("HF_TOKEN")
|
26 |
MANUALS_DIR = "Manuals"
|
27 |
CHROMA_PATH = "chroma_store"
|
28 |
COLLECTION_NAME = "manual_chunks"
|
29 |
CHUNK_SIZE = 750
|
30 |
CHUNK_OVERLAP = 100
|
31 |
MAX_CONTEXT_CHUNKS = 3
|
32 |
+
MODEL_ID = "ibm-granite/granite-vision-3.2-2b"
|
33 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
35 |
|
36 |
+
# ---------------- Text Helpers ----------------
|
37 |
def clean(text):
|
38 |
return "\n".join([line.strip() for line in text.splitlines() if line.strip()])
|
39 |
|
40 |
def split_sentences(text):
|
41 |
try:
|
42 |
return sent_tokenize(text)
|
43 |
+
except:
|
44 |
+
print("⚠️ Tokenizer fallback: simple split.")
|
45 |
return text.split(". ")
|
46 |
|
47 |
+
def split_chunks(sentences, max_tokens=CHUNK_SIZE, overlap=CHUNK_OVERLAP):
|
48 |
chunks = []
|
49 |
+
current_chunk, length = [], 0
|
50 |
|
51 |
+
for sent in sentences:
|
52 |
+
words = sent.split()
|
53 |
+
if length + len(words) > max_tokens and current_chunk:
|
54 |
chunks.append(" ".join(current_chunk))
|
55 |
current_chunk = current_chunk[-overlap:]
|
56 |
+
length = sum(len(s.split()) for s in current_chunk)
|
57 |
+
current_chunk.append(sent)
|
58 |
+
length += len(words)
|
|
|
59 |
|
60 |
if current_chunk:
|
61 |
chunks.append(" ".join(current_chunk))
|
|
|
62 |
return chunks
|
63 |
|
64 |
+
# ---------------- File Readers ----------------
|
65 |
+
def extract_pdf_text(path):
|
66 |
+
chunks = []
|
67 |
try:
|
68 |
+
doc = fitz.open(path)
|
69 |
for i, page in enumerate(doc):
|
70 |
text = page.get_text().strip()
|
71 |
if not text:
|
72 |
+
img = Image.open(BytesIO(page.get_pixmap(dpi=300).tobytes("png")))
|
|
|
73 |
text = pytesseract.image_to_string(img)
|
74 |
+
chunks.append((path, i + 1, clean(text)))
|
75 |
except Exception as e:
|
76 |
+
print("❌ PDF read error:", path, e)
|
77 |
+
return chunks
|
78 |
|
79 |
+
def extract_docx_text(path):
|
80 |
try:
|
81 |
+
return [(path, 1, clean(docx2txt.process(path)))]
|
|
|
82 |
except Exception as e:
|
83 |
+
print("❌ DOCX read error:", path, e)
|
84 |
return []
|
85 |
|
86 |
+
# ---------------- Embedding ----------------
|
87 |
def embed_all():
|
88 |
embedder = SentenceTransformer("all-MiniLM-L6-v2")
|
89 |
embedder.eval()
|
|
|
95 |
pass
|
96 |
collection = client.get_or_create_collection(COLLECTION_NAME)
|
97 |
|
98 |
+
docs, ids, metas = [], [], []
|
99 |
+
print("📄 Processing manuals...")
|
|
|
100 |
|
101 |
for fname in os.listdir(MANUALS_DIR):
|
102 |
fpath = os.path.join(MANUALS_DIR, fname)
|
|
|
107 |
else:
|
108 |
continue
|
109 |
|
110 |
+
for path, page, text in pages:
|
111 |
+
for i, chunk in enumerate(split_chunks(split_sentences(text))):
|
112 |
+
chunk_id = f"{fname}::{page}::{i}"
|
113 |
+
docs.append(chunk)
|
114 |
+
ids.append(chunk_id)
|
|
|
115 |
metas.append({"source": fname, "page": page})
|
116 |
|
117 |
+
if len(docs) >= 16:
|
118 |
+
embs = embedder.encode(docs).tolist()
|
119 |
+
collection.add(documents=docs, ids=ids, metadatas=metas, embeddings=embs)
|
120 |
+
docs, ids, metas = [], [], []
|
121 |
|
122 |
+
if docs:
|
123 |
+
embs = embedder.encode(docs).tolist()
|
124 |
+
collection.add(documents=docs, ids=ids, metadatas=metas, embeddings=embs)
|
125 |
|
126 |
print(f"✅ Embedded {len(ids)} chunks.")
|
127 |
return collection, embedder
|
128 |
|
129 |
+
# ---------------- Model Setup ----------------
|
130 |
+
def load_model():
|
131 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID, token=HF_TOKEN)
|
132 |
+
model = AutoModelForCausalLM.from_pretrained(
|
133 |
+
MODEL_ID,
|
134 |
+
token=HF_TOKEN,
|
135 |
+
device_map="auto" if torch.cuda.is_available() else None,
|
136 |
+
torch_dtype=torch.bfloat16 if torch.cuda.is_available() else torch.float32
|
137 |
+
).to(device)
|
138 |
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer, device=0 if torch.cuda.is_available() else -1)
|
139 |
return pipe, tokenizer
|
140 |
|
141 |
+
def ask_model(question, context, pipe, tokenizer):
|
142 |
+
prompt = f"""Use only the following context to answer. If uncertain, say "I don't know."
|
|
|
|
|
143 |
|
144 |
+
<context>
|
145 |
{context}
|
146 |
+
</context>
|
147 |
+
|
148 |
+
Q: {question}
|
149 |
+
A:"""
|
150 |
+
output = pipe(prompt, max_new_tokens=512)[0]["generated_text"]
|
151 |
+
return output.split("A:")[-1].strip()
|
152 |
+
|
153 |
+
# ---------------- Query ----------------
|
154 |
+
def get_answer(question):
|
155 |
try:
|
|
|
|
|
156 |
query_emb = embedder.encode(question, convert_to_tensor=True)
|
|
|
157 |
results = db.query(query_texts=[question], n_results=MAX_CONTEXT_CHUNKS)
|
158 |
+
context = "\n\n".join(results["documents"][0])
|
159 |
+
return ask_model(question, context, model_pipe, model_tokenizer)
|
|
|
|
|
|
|
160 |
except Exception as e:
|
161 |
+
print("❌ Query error:", e)
|
162 |
+
return f"Error: {e}"
|
163 |
|
164 |
+
# ---------------- UI ----------------
|
165 |
with gr.Blocks() as demo:
|
166 |
+
gr.Markdown("## 🤖 SmartManuals-AI (Granite 3.2-2B)")
|
167 |
+
with gr.Row():
|
168 |
+
question = gr.Textbox(label="Ask your question")
|
169 |
+
ask = gr.Button("Ask")
|
170 |
+
answer = gr.Textbox(label="Answer", lines=8)
|
171 |
+
ask.click(fn=get_answer, inputs=question, outputs=answer)
|
172 |
+
|
173 |
+
# Embed + Load Model at Startup
|
|
|
|
|
174 |
try:
|
175 |
db, embedder = embed_all()
|
176 |
+
model_pipe, model_tokenizer = load_model()
|
177 |
except Exception as e:
|
178 |
+
print("❌ Startup failure:", e)
|
179 |
db, embedder = None, None
|
180 |
+
model_pipe, model_tokenizer = None, None
|
181 |
|
|
|
182 |
if __name__ == "__main__":
|
183 |
demo.launch()
|