Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,147 +1,192 @@
|
|
|
|
|
|
|
|
1 |
import os
|
2 |
import json
|
3 |
import fitz # PyMuPDF
|
4 |
-
import docx
|
5 |
import chromadb
|
6 |
import torch
|
7 |
-
import
|
8 |
import gradio as gr
|
|
|
|
|
|
|
9 |
from tqdm import tqdm
|
10 |
-
from typing import List
|
11 |
from PIL import Image
|
12 |
-
from
|
13 |
from sentence_transformers import SentenceTransformer, util
|
14 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
15 |
-
|
16 |
|
17 |
-
|
18 |
-
|
19 |
-
#
|
20 |
-
|
21 |
-
nltk.data.find("tokenizers/punkt")
|
22 |
-
except LookupError:
|
23 |
-
nltk.download("punkt")
|
24 |
-
|
25 |
-
# --- Configuration ---
|
26 |
-
MANUALS_FOLDER = "./Manuals"
|
27 |
CHROMA_PATH = "./chroma_store"
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
HF_TOKEN = os.environ.get("HF_TOKEN")
|
35 |
-
MAX_CONTEXT_CHUNKS = 3
|
36 |
|
37 |
-
#
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
|
|
|
|
44 |
|
45 |
-
def
|
46 |
-
|
47 |
-
doc = docx.Document(path)
|
48 |
-
return "\n".join([para.text.strip() for para in doc.paragraphs])
|
49 |
-
except:
|
50 |
-
return ""
|
51 |
|
|
|
|
|
|
|
52 |
def clean(text):
|
53 |
return "\n".join([line.strip() for line in text.splitlines() if line.strip()])
|
54 |
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
chunks = []
|
64 |
current = []
|
65 |
-
|
66 |
-
for
|
67 |
-
|
68 |
-
if
|
69 |
chunks.append(" ".join(current))
|
70 |
current = current[-overlap:]
|
71 |
-
|
72 |
-
current.append(
|
73 |
-
|
74 |
if current:
|
75 |
chunks.append(" ".join(current))
|
76 |
return chunks
|
77 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
def embed_all():
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
for fname in os.listdir(
|
88 |
-
path = os.path.join(
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
text = extract_text_from_docx(path)
|
94 |
else:
|
95 |
continue
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
117 |
context = "\n\n".join(results["documents"][0])
|
118 |
-
model_id = MODEL_OPTIONS.get(model_choice)
|
119 |
-
|
120 |
-
tokenizer = AutoTokenizer.from_pretrained(model_id, token=HF_TOKEN)
|
121 |
-
model = AutoModelForCausalLM.from_pretrained(model_id, token=HF_TOKEN)
|
122 |
-
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer)
|
123 |
-
|
124 |
prompt = f"""
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
140 |
with gr.Row():
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
|
147 |
demo.launch()
|
|
|
1 |
+
# β
SmartManuals-AI App for Hugging Face Spaces
|
2 |
+
# Full app.py with spaCy-based sentence segmentation and model dropdown selection
|
3 |
+
|
4 |
import os
|
5 |
import json
|
6 |
import fitz # PyMuPDF
|
|
|
7 |
import chromadb
|
8 |
import torch
|
9 |
+
import docx
|
10 |
import gradio as gr
|
11 |
+
import pytesseract
|
12 |
+
import numpy as np
|
13 |
+
import spacy
|
14 |
from tqdm import tqdm
|
|
|
15 |
from PIL import Image
|
16 |
+
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
|
17 |
from sentence_transformers import SentenceTransformer, util
|
|
|
|
|
18 |
|
19 |
+
# ---------------------------
|
20 |
+
# βοΈ Configuration
|
21 |
+
# ---------------------------
|
22 |
+
MANUALS_DIR = "./Manuals"
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
CHROMA_PATH = "./chroma_store"
|
24 |
+
CHROMA_COLLECTION = "manual_chunks"
|
25 |
+
CHUNK_SIZE = 750
|
26 |
+
CHUNK_OVERLAP = 100
|
27 |
+
EMBED_MODEL = "all-MiniLM-L6-v2"
|
28 |
+
DEFAULT_MODEL = "meta-llama/Llama-3-8B-Instruct"
|
29 |
+
AVAILABLE_MODELS = [
|
30 |
+
"meta-llama/Llama-3-8B-Instruct",
|
31 |
+
"meta-llama/Llama-4-Scout-17B-16E-Instruct",
|
32 |
+
"google/gemma-1.1-7b-it",
|
33 |
+
"mistralai/Mistral-7B-Instruct-v0.3",
|
34 |
+
"Qwen/Qwen1.5-7B-Chat"
|
35 |
+
]
|
36 |
HF_TOKEN = os.environ.get("HF_TOKEN")
|
|
|
37 |
|
38 |
+
# ---------------------------
|
39 |
+
# π Load NLP model for sentence splitting
|
40 |
+
# ---------------------------
|
41 |
+
try:
|
42 |
+
import spacy
|
43 |
+
nlp = spacy.load("en_core_web_sm")
|
44 |
+
except:
|
45 |
+
os.system("python -m spacy download en_core_web_sm")
|
46 |
+
nlp = spacy.load("en_core_web_sm")
|
47 |
|
48 |
+
def split_sentences(text):
|
49 |
+
return [sent.text.strip() for sent in nlp(text).sents if sent.text.strip()]
|
|
|
|
|
|
|
|
|
50 |
|
51 |
+
# ---------------------------
|
52 |
+
# π§Ή Text cleanup
|
53 |
+
# ---------------------------
|
54 |
def clean(text):
|
55 |
return "\n".join([line.strip() for line in text.splitlines() if line.strip()])
|
56 |
|
57 |
+
# ---------------------------
|
58 |
+
# π PDF and DOCX extractors
|
59 |
+
# ---------------------------
|
60 |
+
def extract_pdf_text(path):
|
61 |
+
doc = fitz.open(path)
|
62 |
+
pages = []
|
63 |
+
for i, page in enumerate(doc):
|
64 |
+
text = page.get_text()
|
65 |
+
if not text.strip():
|
66 |
+
pix = page.get_pixmap(dpi=300)
|
67 |
+
img = Image.open(io.BytesIO(pix.tobytes("png")))
|
68 |
+
text = pytesseract.image_to_string(img)
|
69 |
+
pages.append((i + 1, text))
|
70 |
+
return pages
|
71 |
+
|
72 |
+
def extract_docx_text(path):
|
73 |
+
doc = docx.Document(path)
|
74 |
+
full_text = "\n".join([para.text for para in doc.paragraphs if para.text.strip()])
|
75 |
+
return [(1, full_text)]
|
76 |
+
|
77 |
+
# ---------------------------
|
78 |
+
# π¦ Chunk splitter
|
79 |
+
# ---------------------------
|
80 |
+
def chunkify(sentences, max_tokens=CHUNK_SIZE, overlap=CHUNK_OVERLAP):
|
81 |
chunks = []
|
82 |
current = []
|
83 |
+
length = 0
|
84 |
+
for s in sentences:
|
85 |
+
tokens = len(s.split())
|
86 |
+
if length + tokens > max_tokens:
|
87 |
chunks.append(" ".join(current))
|
88 |
current = current[-overlap:]
|
89 |
+
length = sum(len(w.split()) for w in current)
|
90 |
+
current.append(s)
|
91 |
+
length += tokens
|
92 |
if current:
|
93 |
chunks.append(" ".join(current))
|
94 |
return chunks
|
95 |
|
96 |
+
# ---------------------------
|
97 |
+
# π Metadata from file
|
98 |
+
# ---------------------------
|
99 |
+
def extract_meta(name):
|
100 |
+
name = name.lower()
|
101 |
+
return {
|
102 |
+
"model": next((m for m in ["se3", "se4", "symbio", "explore"] if m in name), "unknown"),
|
103 |
+
"doc_type": next((d for d in ["owner", "service", "parts"] if d in name), "unknown"),
|
104 |
+
"brand": "life fitness"
|
105 |
+
}
|
106 |
+
|
107 |
+
# ---------------------------
|
108 |
+
# π Embed and store chunks
|
109 |
+
# ---------------------------
|
110 |
def embed_all():
|
111 |
+
embedder = SentenceTransformer(EMBED_MODEL)
|
112 |
+
client = chromadb.PersistentClient(path=CHROMA_PATH)
|
113 |
+
try:
|
114 |
+
client.delete_collection(CHROMA_COLLECTION)
|
115 |
+
except:
|
116 |
+
pass
|
117 |
+
db = client.create_collection(CHROMA_COLLECTION)
|
118 |
+
|
119 |
+
for fname in os.listdir(MANUALS_DIR):
|
120 |
+
path = os.path.join(MANUALS_DIR, fname)
|
121 |
+
if fname.endswith(".pdf"):
|
122 |
+
pages = extract_pdf_text(path)
|
123 |
+
elif fname.endswith(".docx"):
|
124 |
+
pages = extract_docx_text(path)
|
|
|
125 |
else:
|
126 |
continue
|
127 |
+
meta = extract_meta(fname)
|
128 |
+
for page, text in pages:
|
129 |
+
sents = split_sentences(clean(text))
|
130 |
+
chunks = chunkify(sents)
|
131 |
+
for i, chunk in enumerate(chunks):
|
132 |
+
db.add(
|
133 |
+
ids=[f"{fname}::p{page}::c{i}"],
|
134 |
+
documents=[chunk],
|
135 |
+
metadatas=[{**meta, "source": fname, "page": page}]
|
136 |
+
)
|
137 |
+
return db, embedder
|
138 |
+
|
139 |
+
# ---------------------------
|
140 |
+
# π€ Load selected LLM model
|
141 |
+
# ---------------------------
|
142 |
+
def load_model(repo):
|
143 |
+
tokenizer = AutoTokenizer.from_pretrained(repo, token=HF_TOKEN)
|
144 |
+
model = AutoModelForCausalLM.from_pretrained(
|
145 |
+
repo, torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
|
146 |
+
device_map="auto" if torch.cuda.is_available() else None, token=HF_TOKEN
|
147 |
+
)
|
148 |
+
return pipeline("text-generation", model=model, tokenizer=tokenizer, device=0 if torch.cuda.is_available() else -1)
|
149 |
+
|
150 |
+
# ---------------------------
|
151 |
+
# π₯ Retrieval-Augmented QA
|
152 |
+
# ---------------------------
|
153 |
+
def answer_query(q, model_choice):
|
154 |
+
results = db.query(query_texts=[q], n_results=3)
|
155 |
context = "\n\n".join(results["documents"][0])
|
|
|
|
|
|
|
|
|
|
|
|
|
156 |
prompt = f"""
|
157 |
+
You are a helpful assistant. Answer based on the context. If unsure, say "I don't know".
|
158 |
+
|
159 |
+
Context:
|
160 |
+
{context}
|
161 |
+
|
162 |
+
Question: {q}
|
163 |
+
Answer:
|
164 |
+
"""
|
165 |
+
pipe = load_model(model_choice)
|
166 |
+
out = pipe(prompt, max_new_tokens=300, do_sample=False)[0]["generated_text"]
|
167 |
+
return out.split("Answer:")[-1].strip()
|
168 |
+
|
169 |
+
# ---------------------------
|
170 |
+
# π Initialize app
|
171 |
+
# ---------------------------
|
172 |
+
print("Embedding documents...")
|
173 |
+
db, embedder = embed_all()
|
174 |
+
print("Done embedding.")
|
175 |
+
|
176 |
+
# ---------------------------
|
177 |
+
# ποΈ Gradio UI
|
178 |
+
# ---------------------------
|
179 |
+
demo = gr.Blocks()
|
180 |
+
|
181 |
+
with demo:
|
182 |
+
gr.Markdown("""# π§ SmartManuals-AI
|
183 |
+
Ask any question and let the model answer from your uploaded manuals.
|
184 |
+
""")
|
185 |
with gr.Row():
|
186 |
+
qbox = gr.Textbox(label="Ask a Question", placeholder="e.g. How to reset the SE3 console?")
|
187 |
+
model_select = gr.Dropdown(choices=AVAILABLE_MODELS, label="Choose LLM", value=DEFAULT_MODEL)
|
188 |
+
ansbox = gr.Textbox(label="Answer", lines=10)
|
189 |
+
btn = gr.Button("π Submit")
|
190 |
+
btn.click(fn=answer_query, inputs=[qbox, model_select], outputs=ansbox)
|
191 |
|
192 |
demo.launch()
|