File size: 19,887 Bytes
30a1164
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0a2ec0e
a879be7
30a1164
 
 
 
 
 
 
 
 
57f2dd9
30a1164
 
 
 
 
 
 
 
 
 
 
0a2ec0e
 
30a1164
0a2ec0e
30a1164
 
57f2dd9
30a1164
d30ff12
30a1164
 
 
 
 
0a2ec0e
30a1164
 
 
a879be7
 
 
ec6aa13
 
30a1164
 
 
 
 
 
 
 
 
 
a7b09bc
30a1164
 
 
 
 
 
 
 
a7b09bc
 
30a1164
 
a7b09bc
30a1164
d30ff12
30a1164
 
 
 
 
 
a879be7
 
 
 
 
 
 
 
 
 
 
 
30a1164
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
321e0f3
ec6aa13
 
 
 
 
 
 
 
 
 
 
 
5e453b9
30a1164
 
 
 
 
 
 
 
 
ee06014
30a1164
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0a2ec0e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30a1164
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
571c381
0a2ec0e
30a1164
 
 
 
 
 
 
 
 
 
 
 
 
57f2dd9
 
30a1164
 
 
57f2dd9
 
30a1164
 
 
 
 
 
 
 
 
 
 
 
 
57f2dd9
30a1164
 
f492ccb
 
 
57f2dd9
f492ccb
 
 
 
 
0a2ec0e
 
 
 
 
 
 
 
 
 
 
30a1164
 
 
 
 
 
0a2ec0e
a7b09bc
 
 
571c381
30a1164
a7b09bc
 
 
 
 
 
30a1164
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a7b09bc
 
 
 
 
 
 
 
 
 
 
 
 
 
30a1164
a7b09bc
 
 
 
 
 
 
 
 
 
 
 
 
30a1164
 
 
a7b09bc
 
 
 
 
30a1164
a7b09bc
30a1164
a7b09bc
 
30a1164
 
 
 
 
 
 
 
0a2ec0e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30a1164
 
a7b09bc
 
 
30a1164
 
a7b09bc
 
30a1164
 
 
 
 
a7b09bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30a1164
 
 
 
 
 
 
a7b09bc
 
 
 
 
30a1164
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a7b09bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30a1164
 
 
a7b09bc
30a1164
a7b09bc
30a1164
0a2ec0e
a7b09bc
 
57f2dd9
30a1164
 
 
 
 
 
 
 
 
 
 
 
a7b09bc
30a1164
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4f72911
30a1164
a7b09bc
 
 
 
30a1164
 
 
4f72911
a7b09bc
30a1164
 
 
 
 
 
 
9bcc2d8
a7b09bc
9bcc2d8
a7b09bc
 
 
 
 
9bcc2d8
a7b09bc
9bcc2d8
30a1164
a7b09bc
 
99195dc
30a1164
 
 
 
 
 
99195dc
a7b09bc
30a1164
 
 
 
 
 
99195dc
a7b09bc
30a1164
 
 
 
9bcc2d8
cd671cf
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
# -*- coding: utf-8 -*-
"""app.ipynb

Automatically generated by Colab.

Original file is located at
    https://colab.research.google.com/drive/1BmTzCgYHoIX81jKTqf4ImJaKRRbxgoTS
"""


import os
import csv
import pandas as pd
import plotly.express as px
from datetime import datetime
import torch
import faiss
import numpy as np
import gradio as gr
from sklearn.metrics.pairwise import cosine_similarity
# from google.colab import drive
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer
from sentence_transformers import SentenceTransformer
from peft import PeftModel
from huggingface_hub import login
from transformers import pipeline as hf_pipeline
from fpdf import FPDF
import uuid
import textwrap
from dotenv import load_dotenv
import shutil
try:
    import whisper
except ImportError:
    os.system("pip install -U openai-whisper")
    import whisper

# Load Whisper model here
whisper_model = whisper.load_model("base")

load_dotenv()



hf_token = os.getenv("HF_TOKEN")

login(token=hf_token)


# Mount Google Drive
#drive.mount('/content/drive')

# -------------------------------
# πŸ”§ Configuration
# -------------------------------
base_model_path = "google/gemma-2-9b-it"
#peft_model_path = "Jaamie/gemma-mental-health-qlora"
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

embedding_model_bge = "BAAI/bge-base-en-v1.5"
#save_path_bge = "./models/bge-base-en-v1.5"
faiss_index_path = "./qa_faiss_embedding.index"
chunked_text_path = "./chunked_text_RAG_text.txt"
READER_MODEL_NAME = "google/gemma-2-9b-it"
#READER_MODEL_NAME = "google/gemma-2b-it"
log_file_path = "./diagnosis_logs.csv"
feedback_file_path = "./feedback_logs.csv"


# -------------------------------
# πŸ”§ Logging setup
# -------------------------------
if not os.path.exists(log_file_path):
    with open(log_file_path, "w", newline="", encoding="utf-8") as f:
      writer = csv.writer(f)
      writer.writerow(["timestamp", "user_id", "input_type", "query", "diagnosis", "confidence_score", "status"])

# -------------------------------
# πŸ”§ Feedback setup
# -------------------------------
if not os.path.exists(feedback_file_path):
    with open(feedback_file_path, "w", newline="", encoding="utf-8") as f:
        writer = csv.writer(f)
        writer.writerow([
            "feedback_id", "timestamp", "user_id", "input_type", "query",
            "diagnosis", "status", "feedback"
        ])


# Ensure directory exists
#os.makedirs(save_path_bge, exist_ok=True)

# -------------------------------
# πŸ”§ Model setup
# -------------------------------

# Load Sentence Transformer Model
# if not os.path.exists(os.path.join(save_path_bge, "config.json")):
#     print("Saving model to Google Drive...")
#     embedding_model = SentenceTransformer(embedding_model_bge)
#     embedding_model.save(save_path_bge)
#     print("Model saved successfully!")
# else:
#     print("Loading model from Google Drive...")
#     device = 'cuda' if torch.cuda.is_available() else 'cpu'
#     embedding_model = SentenceTransformer(save_path_bge, device=device)

embedding_model = SentenceTransformer(embedding_model_bge, device=device)
print("βœ… BGE Embedding model loaded from Hugging Face.")

# Load FAISS Index
faiss_index = faiss.read_index(faiss_index_path)
print("FAISS index loaded successfully!")

# Load chunked text
def load_chunked_text():
    with open(chunked_text_path, "r", encoding="utf-8") as f:
        return f.read().split("\n\n---\n\n")

chunked_text = load_chunked_text()
print(f"Loaded {len(chunked_text)} text chunks.")


# loading model for emotion classifier
emotion_result = {}
emotion_classifier = hf_pipeline("text-classification", model="nateraw/bert-base-uncased-emotion")


# -------------------------------
# 🧠 Load base model + LoRA adapter
# -------------------------------
# base_model = AutoModelForCausalLM.from_pretrained(
#     base_model_path,
#     torch_dtype=torch.float16,
#     device_map="auto"  # Use accelerate for smart placement
# )

# # Load the LoRA adapter on top of the base model
# diagnosis_model = PeftModel.from_pretrained(
#     base_model,
#     peft_model_path
# ).to(device)

# # Load tokenizer from the same fine-tuned repo
# diagnosis_tokenizer = AutoTokenizer.from_pretrained(peft_model_path)

# # Set model to evaluation mode
# diagnosis_model.eval()

# print("βœ… Model & tokenizer loaded successfully.")

# # Create text-generation pipeline WITHOUT `device` arg
# READER_LLM = pipeline(
#     model=diagnosis_model,
#     tokenizer=diagnosis_tokenizer,
#     task="text-generation",
#     do_sample=True,
#     temperature=0.2,
#     repetition_penalty=1.1,
#     return_full_text=False,
#     max_new_tokens=500
# )

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
tokenizer = AutoTokenizer.from_pretrained(READER_MODEL_NAME)
#model = AutoModelForCausalLM.from_pretrained(READER_MODEL_NAME)
model = AutoModelForCausalLM.from_pretrained(READER_MODEL_NAME).to(device)

# model_id = "mistralai/Mistral-7B-Instruct-v0.1"
# #model_id = "TheBloke/Gemma-2-7B-IT-GGUF"
# tokenizer = AutoTokenizer.from_pretrained(model_id)
# model = AutoModelForCausalLM.from_pretrained(
#     model_id,
#     torch_dtype=torch.float16,
#     device_map="auto",
# ).to(device)

READER_LLM = pipeline(
    model=model,
    tokenizer=tokenizer,
    task="text-generation",
    do_sample=True,
    temperature=0.2,
    repetition_penalty=1.1,
    return_full_text=False,
    max_new_tokens=500,
    #device=device,
)
# -------------------------------
# πŸ”§ Whisper Model Setup
# -------------------------------

def process_whisper_query(audio):
    try:
        audio_data = whisper.load_audio(audio)
        audio_data = whisper.pad_or_trim(audio_data)
        mel = whisper.log_mel_spectrogram(audio_data).to(whisper_model.device)
        result = whisper_model.decode(mel, whisper.DecodingOptions(fp16=False))
        transcribed_text = result.text.strip()
        response, download_path = process_query(transcribed_text, input_type="voice")
        return response, download_path
    except Exception as e:
        return f"⚠️ Error processing audio: {str(e)}", None


def extract_diagnosis(response_text: str) -> str:
    for line in response_text.splitlines():
        if "Diagnosed Mental Disorder" in line:
            return line.split(":")[-1].strip()
    return "Unknown"

# calculating the correctness of the answer - Hallucination
def calculate_rag_confidence(query_embedding, top_k_docs_embeddings, generation_logprobs=None):
    """
    Combines retriever and generation signals to compute a confidence score.
    Args:
        query_embedding (np.ndarray): Embedding vector of the user query (shape: [1, dim]).
        top_k_docs_embeddings (np.ndarray): Embedding matrix of top-k retrieved documents (shape: [k, dim]).
        generation_logprobs (list, optional): List of logprobs for generated tokens.
    Returns:
        float: Final confidence score (0 to 1).
    """
    retriever_similarities = cosine_similarity(query_embedding, top_k_docs_embeddings)
    retriever_confidence = float(np.max(retriever_similarities))  

    if generation_logprobs:
        gen_confidence = float(np.exp(np.mean(generation_logprobs)))
    else:
        gen_confidence = 0.0  # fallback if unavailable

    alpha, beta = 0.6, 0.4
    final_confidence = alpha * retriever_confidence + beta * gen_confidence
    return round(final_confidence, 4)

# Main Process
def process_query(user_query, input_type="text"):
    # Embed the query
    query_embedding = embedding_model.encode(user_query, normalize_embeddings=True)
    query_embedding = np.array([query_embedding], dtype=np.float32)

    # Search FAISS index
    k = 5  # Retrieve top 5 relevant docs
    distances, indices = faiss_index.search(query_embedding, k)
    retrieved_docs = [chunked_text[i] for i in indices[0]]

    # Construct context
    context = "\nExtracted documents:\n" + "".join([f"Document {i}:::\n{doc}\n" for i, doc in enumerate(retrieved_docs)])

    # Detect emotion
    emotion_result = emotion_classifier(user_query)[0]
    print(f"Detected emotion: {emotion_result}")
    emotion = emotion_result['label']
    value = round(emotion_result['score'], 2)

    # Define RAG prompt
    prompt_in_chat_format = [
        {"role": "user", "content": f"""
        You are an AI assistant specialized in diagnosing mental disorders in humans.
        Using the information contained in the context, answer the question comprehensively.

        The **Diagnosed Mental Disorder** should be only one from the list provided.
        [Normal, Depression, Suicidal, Anxiety, Stress, Bi-Polar, Personality Disorder]

        Your response must include:
        1. **Diagnosed Mental Disorder**
        2. **Detected emotion** {emotion}
        3. **Intensity of emotion** {value}
        3. **Matching Symptoms** from the context
        4. **Personalized Treatment** 
        5. **Helpline Numbers**
        6. **Source Link** (if applicable)

        Make sure to provide a comprehensive and accurate diagnosis and explain the personalised treatment in detail.

        If a disorder cannot be determined, return **Diagnosed Mental Disorder** as "Unknown".

        ---
        Context:
        {context}

        Question: {user_query}"""},
        {"role": "assistant", "content": ""},
    ]

    RAG_PROMPT_TEMPLATE = tokenizer.apply_chat_template(
        prompt_in_chat_format, tokenize=False, add_generation_prompt=True
    )
    

    # Generate response
    #answer = READER_LLM(RAG_PROMPT_TEMPLATE)[0]["generated_text"]
    try:
        response = READER_LLM(RAG_PROMPT_TEMPLATE)
        # print("πŸ” Raw LLM output:", response)
        answer = response[0]["generated_text"] if response and "generated_text" in response[0] else "⚠️ No output generated."
    except Exception as e:
        print("❌ Error during generation:", e)
        answer = "⚠️ An error occurred while generating the response."

    # Get embeddings of retrieved docs
    retrieved_doc_embeddings = embedding_model.encode(retrieved_docs, normalize_embeddings=True)
    retrieved_doc_embeddings = np.array(retrieved_doc_embeddings, dtype=np.float32)

    # Calculate RAG-based confidence
    confidence_score = calculate_rag_confidence(query_embedding, retrieved_doc_embeddings)

    # Add to response
    answer += f"\n\n🧭 Accuracy & Closeness of the Answer: {confidence_score:.2f}"
    answer += "\n\n*Derived from semantic similarity and generation certainty."


    # Extracting diagnosis
    diagnosis = extract_diagnosis(answer)
    status = "fallback" if diagnosis.lower() == "unknown" else "success"

    # Log interaction
    log_query(input_type=input_type, query=user_query, diagnosis=diagnosis, confidence_score=confidence_score, status=status)
    download_path = create_summary_txt(answer)

    timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
    user_id = session_data["latest"]["user_id"]  

    # Prepend to the answer string
    answer_header = f"🧾 Session ID: {user_id}\nπŸ“… Timestamp: {timestamp}\n\n"
    return answer_header + answer, download_path


    #return answer, download_path

# Dashboard Interface
def diagnosis_dashboard():
    try:
        df = pd.read_csv(log_file_path)
        if df.empty:
            return "No data logged yet."

        # Filter out unknown or fallback cases if needed
        df = df[df["diagnosis"].notna()]
        df = df[df["diagnosis"].str.lower() != "unknown"]

        # Diagnosis frequency
        diagnosis_counts = df["diagnosis"].value_counts().reset_index()
        diagnosis_counts.columns = ["Diagnosis", "Count"]

        # Create bar chart
        fig = px.bar(
            diagnosis_counts,
            x="Diagnosis",
            y="Count",
            color="Diagnosis",
            title="πŸ“Š Mental Health Diagnosis Distribution",
            text_auto=True
        )
        fig.update_layout(showlegend=False)
        return fig

    except Exception as e:
        return f"⚠️ Error loading dashboard: {str(e)}"

# For logs functionality
# def log_query(input_type, query, diagnosis, confidence_score, status):
#     with open(log_file_path, "a", newline="", encoding="utf-8") as f:
#         writer = csv.writer(f, quoting=csv.QUOTE_ALL)
#         writer.writerow([
#             datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
#             input_type.replace('"', '""'),
#             query.replace('"', '""'),
#             diagnosis.replace('"', '""'),
#             str(confidence_score),
#             status
#         ])

session_data = {}

def log_query(input_type, query, diagnosis, confidence_score, status):
    
    user_id = f"SSuser_ID_{uuid.uuid4().hex[:8]}"

    # Store in-memory session data for feedback use
    session_data["latest"] = {
        "user_id": user_id,
        "input_type": input_type,
        "query": query,
        "diagnosis": diagnosis,
        "confidence_score": confidence_score,
        "status": status
    }

    with open(log_file_path, "a", newline="", encoding="utf-8") as f:
        writer = csv.writer(f, quoting=csv.QUOTE_ALL)
        writer.writerow([
            str(datetime.now().strftime("%Y-%m-%d %H:%M:%S")),
            str(user_id),
            str(input_type).replace('"', '""'),
            str(query).replace('"', '""'),
            str(diagnosis).replace('"', '""'),
            str(confidence_score),
            str(status)
        ])


def show_logs():
    try:
        df = pd.read_csv(log_file_path)
        return df.tail(100)
    except Exception as e:
        return f"⚠️ Error: {e}"


# def create_summary_pdf(text, filename_prefix="diagnosis_report"):
#     try:
#         filename = f"{filename_prefix}_{uuid.uuid4().hex[:6]}.pdf"
#         filepath = os.path.join(".", filename)  # Save in current directory
#         pdf = FPDF()
#         pdf.add_page()
#         pdf.set_font("Arial", style='B', size=14)
#         pdf.cell(200, 10, txt="🧠 Mental Health Diagnosis Report", ln=True, align='C')
#         pdf.set_font("Arial", size=12)
#         pdf.ln(10)

#         wrapped = textwrap.wrap(text, width=90)
#         for line in wrapped:
#             pdf.cell(200, 10, txt=line, ln=True)

#         pdf.output(filepath)
#         print(f"βœ… PDF created at: {filepath}")
#         return filepath
#     except Exception as e:
#         print(f"❌ Error creating PDF: {e}")
#         return None




def create_summary_txt(text, filename_prefix="diagnosis_report"):
    filename = f"{filename_prefix}_{uuid.uuid4().hex[:6]}.txt"
    with open(filename, "w", encoding="utf-8") as f:
        f.write(text)
    print(f"βœ… TXT report created: {filename}")
    return filename



# πŸ“₯ Feedback
# feedback_data = []
# def submit_feedback(feedback, input_type, query, diagnosis, confidence_score, status):
#     feedback_id = str(uuid.uuid4())
#     timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")

#     with open(feedback_file_path, "a", newline="", encoding="utf-8") as f:
#         writer = csv.writer(f, quoting=csv.QUOTE_ALL)
#         writer.writerow([
#             feedback_id,
#             timestamp,
#             input_type.replace('"', '""'),
#             query.replace('"', '""'),
#             diagnosis.replace('"', '""'),
#             str(confidence_score),
#             status,
#             feedback.replace('"', '""')
#         ])

#     return f"βœ… Feedback received! Your Feedback ID: {feedback_id}"


def submit_feedback(feedback):
    # if "latest" not in session_data:
    #     return "⚠️ No diagnosis found for this session. Please get a diagnosis first."

    user_info = session_data["latest"]
    feedback_id = f"fb_{uuid.uuid4().hex[:8]}"
    timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")

    with open(feedback_file_path, "a", newline="", encoding="utf-8") as f:
        writer = csv.writer(f, quoting=csv.QUOTE_ALL)
        writer.writerow([
            feedback_id,
            timestamp,
            user_info["user_id"],
            user_info["input_type"],
            user_info["query"],
            user_info["diagnosis"],
            user_info["status"],
            feedback.replace('"', '""')
        ])

    return f"βœ… Feedback received! Your Feedback ID: {feedback_id}"


def download_feedback_log():
    return feedback_file_path


# def send_email_report(to_email, response):
#     response = resend.Emails.send({
#         "from": "MentalBot <noreply@safespaceai.com>",
#         "to": [to_email],
#         "subject": "🧠 Your Personalized Mental Health Report",
#         "text": response
#     })
#     return "βœ… Diagnosis report sent to your email!" if response.get("id") else "⚠️ Failed to send email."

# For pdf

# def unified_handler(audio, text):
#     if audio:
#         response, download_path = process_whisper_query(audio)
#     else:
#         response, download_path = process_query(text, input_type="text")

#     # Ensure download path is valid
#     # if not (download_path and os.path.exists(download_path)):
#     #     print("❌ PDF not found or failed to generate.")
#     #     return response, None

#     if download_path and os.path.exists(download_path):
#         return response, download_path
#     else:
#         print("❌ PDF not found or failed to generate.")
#         return response, None

# for text doc download

def unified_handler(audio, text):
    if audio:
        response, _ = process_whisper_query(audio)
    else:
        response, _ = process_query(text, input_type="text")

    download_path = create_summary_txt(response)  

    return response, download_path




# Gradio UI

main_assistant_tab = gr.Interface(
    fn=unified_handler,
    inputs=[
        gr.Audio(type="filepath", label="πŸŽ™ Speak your concern"),
        gr.Textbox(lines=2, placeholder="Or type your mental health concern here...")
    ],
    outputs=[
        gr.Textbox(label="🧠 Personalized Diagnosis", lines=15, show_copy_button=True),
        gr.File(label="πŸ“₯ Download Diagnosis Report")
    ],
    title="🧠 SafeSpace AI",
    description="πŸ’™ *We care for you.*\n\nSpeak or type your concern to receive AI-powered mental health insights. Get your report emailed or download it as a file."
)

dashboard_tab = gr.Interface(
    fn=diagnosis_dashboard,
    inputs=[],
    outputs=gr.Plot(label="πŸ“Š Diagnosis Distribution"),
    title="πŸ“Š Usage Dashboard"
)


logs_tab = gr.Interface(
    fn=show_logs,
    inputs=[],
    outputs=gr.Dataframe(label="πŸ“„ Diagnosis Logs (Latest 100 entries)"),
    title="πŸ“„ Logs"
)



feedback_tab = gr.Interface(
    fn=submit_feedback,
    inputs=[gr.Textbox(label="πŸ“ Share your thoughts")],
    outputs="text",
    title="πŸ“ Submit Feedback"
)




feedback_download_tab = gr.Interface(
    fn=download_feedback_log,
    inputs=[],
    outputs=gr.File(label="πŸ“₯ Download All Feedback Logs"),
    title="πŸ“‚ Download Feedback CSV"
)

agent_tab = gr.Interface(
    fn=lambda: "",
    inputs=[],
    outputs=gr.HTML(
        """<button onclick="window.open('https://jaamie-mental-health-agent.hf.space', '_blank')" 
           style='padding:10px 20px; font-size:16px; background-color:#4CAF50; color:white; border:none; border-radius:5px;'>
           🧠 Launch Agent SafeSpace 001
        </button>"""
    ),
    title="πŸ€– Agent SafeSpace 001"
)



# Add to your tab list
app = gr.TabbedInterface(
    interface_list=[
        main_assistant_tab,
        dashboard_tab,
        logs_tab,
        feedback_tab,
        feedback_download_tab,
        agent_tab 
    ],
    tab_names=[
        "🧠 Assistant",
        "πŸ“Š Dashboard",
        "πŸ“„ Logs",
        "πŸ“ Feedback",
        "πŸ“‚ Feedback CSV",
        "πŸ€– Agent 001"
    ]
)


#app.launch(share=True)
print("πŸš€ SafeSpace AI is live!")
# Launch the Gradio App
if __name__ == "__main__":
    app.launch()