Jaamie commited on
Commit
a879be7
·
verified ·
1 Parent(s): 6a488a9

Upload app.py

Browse files
Files changed (1) hide show
  1. app.py +16 -13
app.py CHANGED
@@ -17,7 +17,7 @@ import torch
17
  import faiss
18
  import numpy as np
19
  import gradio as gr
20
- from google.colab import drive
21
  from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer
22
  from sentence_transformers import SentenceTransformer
23
  from peft import PeftModel
@@ -54,9 +54,9 @@ peft_model_path = "Jaamie/gemma-mental-health-qlora"
54
  device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
55
 
56
  embedding_model_bge = "BAAI/bge-base-en-v1.5"
57
- save_path_bge = "/content/drive/MyDrive/models/bge-base-en-v1.5"
58
- faiss_index_path = "/content/qa_faiss_embedding.index"
59
- chunked_text_path = "/content/chunked_text_RAG_text.txt"
60
  READER_MODEL_NAME = "google/gemma-2-9b-it"
61
  log_file_path = "./diagnosis_logs.csv"
62
  feedback_file_path = "./feedback_logs.csv"
@@ -89,15 +89,18 @@ os.makedirs(save_path_bge, exist_ok=True)
89
  # -------------------------------
90
 
91
  # Load Sentence Transformer Model
92
- if not os.path.exists(os.path.join(save_path_bge, "config.json")):
93
- print("Saving model to Google Drive...")
94
- embedding_model = SentenceTransformer(embedding_model_bge)
95
- embedding_model.save(save_path_bge)
96
- print("Model saved successfully!")
97
- else:
98
- print("Loading model from Google Drive...")
99
- device = 'cuda' if torch.cuda.is_available() else 'cpu'
100
- embedding_model = SentenceTransformer(save_path_bge, device=device)
 
 
 
101
 
102
  # Load FAISS Index
103
  faiss_index = faiss.read_index(faiss_index_path)
 
17
  import faiss
18
  import numpy as np
19
  import gradio as gr
20
+ # from google.colab import drive
21
  from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer
22
  from sentence_transformers import SentenceTransformer
23
  from peft import PeftModel
 
54
  device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
55
 
56
  embedding_model_bge = "BAAI/bge-base-en-v1.5"
57
+ #save_path_bge = "./models/bge-base-en-v1.5"
58
+ faiss_index_path = "./qa_faiss_embedding.index"
59
+ chunked_text_path = "./chunked_text_RAG_text.txt"
60
  READER_MODEL_NAME = "google/gemma-2-9b-it"
61
  log_file_path = "./diagnosis_logs.csv"
62
  feedback_file_path = "./feedback_logs.csv"
 
89
  # -------------------------------
90
 
91
  # Load Sentence Transformer Model
92
+ # if not os.path.exists(os.path.join(save_path_bge, "config.json")):
93
+ # print("Saving model to Google Drive...")
94
+ # embedding_model = SentenceTransformer(embedding_model_bge)
95
+ # embedding_model.save(save_path_bge)
96
+ # print("Model saved successfully!")
97
+ # else:
98
+ # print("Loading model from Google Drive...")
99
+ # device = 'cuda' if torch.cuda.is_available() else 'cpu'
100
+ # embedding_model = SentenceTransformer(save_path_bge, device=device)
101
+
102
+ embedding_model = SentenceTransformer(embedding_model_bge, device=device)
103
+ print("✅ BGE Embedding model loaded from Hugging Face.")
104
 
105
  # Load FAISS Index
106
  faiss_index = faiss.read_index(faiss_index_path)