Spaces:
Sleeping
Sleeping
Upload app.py
Browse files
app.py
CHANGED
@@ -158,8 +158,8 @@ emotion_classifier = hf_pipeline("text-classification", model="nateraw/bert-base
|
|
158 |
|
159 |
device = 0 if torch.cuda.is_available() else -1
|
160 |
tokenizer = AutoTokenizer.from_pretrained(READER_MODEL_NAME)
|
161 |
-
model = AutoModelForCausalLM.from_pretrained(READER_MODEL_NAME)
|
162 |
-
|
163 |
READER_LLM = pipeline(
|
164 |
model=model,
|
165 |
tokenizer=tokenizer,
|
@@ -169,7 +169,7 @@ READER_LLM = pipeline(
|
|
169 |
repetition_penalty=1.1,
|
170 |
return_full_text=False,
|
171 |
max_new_tokens=500,
|
172 |
-
|
173 |
)
|
174 |
# -------------------------------
|
175 |
# 🔧 Whisper Model Setup
|
@@ -245,7 +245,14 @@ def process_query(user_query, input_type="text"):
|
|
245 |
)
|
246 |
|
247 |
# Generate response
|
248 |
-
answer = READER_LLM(RAG_PROMPT_TEMPLATE)[0]["generated_text"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
249 |
# Estimate severity score from token probabilities
|
250 |
severity_score = round(np.random.uniform(0.6, 1.0), 2)
|
251 |
answer += f"\n\n🧭 Confidence Score: {value}"
|
|
|
158 |
|
159 |
device = 0 if torch.cuda.is_available() else -1
|
160 |
tokenizer = AutoTokenizer.from_pretrained(READER_MODEL_NAME)
|
161 |
+
#model = AutoModelForCausalLM.from_pretrained(READER_MODEL_NAME)
|
162 |
+
model = AutoModelForCausalLM.from_pretrained(READER_MODEL_NAME).to(device)
|
163 |
READER_LLM = pipeline(
|
164 |
model=model,
|
165 |
tokenizer=tokenizer,
|
|
|
169 |
repetition_penalty=1.1,
|
170 |
return_full_text=False,
|
171 |
max_new_tokens=500,
|
172 |
+
device=device,
|
173 |
)
|
174 |
# -------------------------------
|
175 |
# 🔧 Whisper Model Setup
|
|
|
245 |
)
|
246 |
|
247 |
# Generate response
|
248 |
+
#answer = READER_LLM(RAG_PROMPT_TEMPLATE)[0]["generated_text"]
|
249 |
+
try:
|
250 |
+
response = READER_LLM(RAG_PROMPT_TEMPLATE)
|
251 |
+
answer = response[0]["generated_text"] if response and "generated_text" in response[0] else "⚠️ No output generated."
|
252 |
+
except Exception as e:
|
253 |
+
print("❌ Error during generation:", e)
|
254 |
+
answer = "⚠️ An error occurred while generating the response."
|
255 |
+
|
256 |
# Estimate severity score from token probabilities
|
257 |
severity_score = round(np.random.uniform(0.6, 1.0), 2)
|
258 |
answer += f"\n\n🧭 Confidence Score: {value}"
|