Jaamie commited on
Commit
f492ccb
·
verified ·
1 Parent(s): 9790593

Upload app.py

Browse files
Files changed (1) hide show
  1. app.py +11 -4
app.py CHANGED
@@ -158,8 +158,8 @@ emotion_classifier = hf_pipeline("text-classification", model="nateraw/bert-base
158
 
159
  device = 0 if torch.cuda.is_available() else -1
160
  tokenizer = AutoTokenizer.from_pretrained(READER_MODEL_NAME)
161
- model = AutoModelForCausalLM.from_pretrained(READER_MODEL_NAME)
162
- #model = AutoModelForCausalLM.from_pretrained(READER_MODEL_NAME).to(device)
163
  READER_LLM = pipeline(
164
  model=model,
165
  tokenizer=tokenizer,
@@ -169,7 +169,7 @@ READER_LLM = pipeline(
169
  repetition_penalty=1.1,
170
  return_full_text=False,
171
  max_new_tokens=500,
172
- # device=device,
173
  )
174
  # -------------------------------
175
  # 🔧 Whisper Model Setup
@@ -245,7 +245,14 @@ def process_query(user_query, input_type="text"):
245
  )
246
 
247
  # Generate response
248
- answer = READER_LLM(RAG_PROMPT_TEMPLATE)[0]["generated_text"]
 
 
 
 
 
 
 
249
  # Estimate severity score from token probabilities
250
  severity_score = round(np.random.uniform(0.6, 1.0), 2)
251
  answer += f"\n\n🧭 Confidence Score: {value}"
 
158
 
159
  device = 0 if torch.cuda.is_available() else -1
160
  tokenizer = AutoTokenizer.from_pretrained(READER_MODEL_NAME)
161
+ #model = AutoModelForCausalLM.from_pretrained(READER_MODEL_NAME)
162
+ model = AutoModelForCausalLM.from_pretrained(READER_MODEL_NAME).to(device)
163
  READER_LLM = pipeline(
164
  model=model,
165
  tokenizer=tokenizer,
 
169
  repetition_penalty=1.1,
170
  return_full_text=False,
171
  max_new_tokens=500,
172
+ device=device,
173
  )
174
  # -------------------------------
175
  # 🔧 Whisper Model Setup
 
245
  )
246
 
247
  # Generate response
248
+ #answer = READER_LLM(RAG_PROMPT_TEMPLATE)[0]["generated_text"]
249
+ try:
250
+ response = READER_LLM(RAG_PROMPT_TEMPLATE)
251
+ answer = response[0]["generated_text"] if response and "generated_text" in response[0] else "⚠️ No output generated."
252
+ except Exception as e:
253
+ print("❌ Error during generation:", e)
254
+ answer = "⚠️ An error occurred while generating the response."
255
+
256
  # Estimate severity score from token probabilities
257
  severity_score = round(np.random.uniform(0.6, 1.0), 2)
258
  answer += f"\n\n🧭 Confidence Score: {value}"