Spaces:
Sleeping
Sleeping
Jaamie Maarsh Joy Martin
commited on
Commit
Β·
30a1164
0
Parent(s):
Initial commit
Browse files- app.py +475 -0
- requirements.txt +13 -0
app.py
ADDED
@@ -0,0 +1,475 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
"""app.ipynb
|
3 |
+
|
4 |
+
Automatically generated by Colab.
|
5 |
+
|
6 |
+
Original file is located at
|
7 |
+
https://colab.research.google.com/drive/1BmTzCgYHoIX81jKTqf4ImJaKRRbxgoTS
|
8 |
+
"""
|
9 |
+
|
10 |
+
|
11 |
+
import os
|
12 |
+
import csv
|
13 |
+
import pandas as pd
|
14 |
+
import plotly.express as px
|
15 |
+
from datetime import datetime
|
16 |
+
import torch
|
17 |
+
import faiss
|
18 |
+
import numpy as np
|
19 |
+
import gradio as gr
|
20 |
+
from google.colab import drive
|
21 |
+
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer
|
22 |
+
from sentence_transformers import SentenceTransformer
|
23 |
+
from peft import PeftModel
|
24 |
+
from huggingface_hub import login
|
25 |
+
from transformers import pipeline as hf_pipeline
|
26 |
+
from fpdf import FPDF
|
27 |
+
import uuid
|
28 |
+
import textwrap
|
29 |
+
from dotenv import load_dotenv
|
30 |
+
try:
|
31 |
+
import whisper
|
32 |
+
except ImportError:
|
33 |
+
os.system("pip install -U openai-whisper")
|
34 |
+
import whisper
|
35 |
+
|
36 |
+
# Load Whisper model here
|
37 |
+
whisper_model = whisper.load_model("base")
|
38 |
+
|
39 |
+
load_dotenv()
|
40 |
+
|
41 |
+
hf_token = os.getenv("HF_TOKEN")
|
42 |
+
resend_api_key = os.getenv("RESEND_API_KEY")
|
43 |
+
|
44 |
+
login(token=hf_token)
|
45 |
+
|
46 |
+
# Mount Google Drive
|
47 |
+
drive.mount('/content/drive')
|
48 |
+
|
49 |
+
# -------------------------------
|
50 |
+
# π§ Configuration
|
51 |
+
# -------------------------------
|
52 |
+
base_model_path = "google/gemma-2-9b-it"
|
53 |
+
peft_model_path = "Jaamie/gemma-mental-health-qlora"
|
54 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
55 |
+
|
56 |
+
embedding_model_bge = "BAAI/bge-base-en-v1.5"
|
57 |
+
save_path_bge = "/content/drive/MyDrive/models/bge-base-en-v1.5"
|
58 |
+
faiss_index_path = "/content/qa_faiss_embedding.index"
|
59 |
+
chunked_text_path = "/content/chunked_text_RAG_text.txt"
|
60 |
+
READER_MODEL_NAME = "google/gemma-2-9b-it"
|
61 |
+
log_file_path = "./diagnosis_logs.csv"
|
62 |
+
feedback_file_path = "./feedback_logs.csv"
|
63 |
+
|
64 |
+
|
65 |
+
# -------------------------------
|
66 |
+
# π§ Logging setup
|
67 |
+
# -------------------------------
|
68 |
+
if not os.path.exists(log_file_path):
|
69 |
+
with open(log_file_path, "w", newline="", encoding="utf-8") as f:
|
70 |
+
writer = csv.writer(f)
|
71 |
+
writer.writerow(["timestamp", "input_type", "query", "diagnosis", "confidence_score", "status"])
|
72 |
+
|
73 |
+
# -------------------------------
|
74 |
+
# π§ Feedback setup
|
75 |
+
# -------------------------------
|
76 |
+
if not os.path.exists(feedback_file_path):
|
77 |
+
with open(feedback_file_path, "w", newline="", encoding="utf-8") as f:
|
78 |
+
writer = csv.writer(f)
|
79 |
+
writer.writerow([
|
80 |
+
"feedback_id", "timestamp", "input_type", "query",
|
81 |
+
"diagnosis", "confidence_score", "status", "feedback"
|
82 |
+
])
|
83 |
+
|
84 |
+
# Ensure directory exists
|
85 |
+
os.makedirs(save_path_bge, exist_ok=True)
|
86 |
+
|
87 |
+
# -------------------------------
|
88 |
+
# π§ Model setup
|
89 |
+
# -------------------------------
|
90 |
+
|
91 |
+
# Load Sentence Transformer Model
|
92 |
+
if not os.path.exists(os.path.join(save_path_bge, "config.json")):
|
93 |
+
print("Saving model to Google Drive...")
|
94 |
+
embedding_model = SentenceTransformer(embedding_model_bge)
|
95 |
+
embedding_model.save(save_path_bge)
|
96 |
+
print("Model saved successfully!")
|
97 |
+
else:
|
98 |
+
print("Loading model from Google Drive...")
|
99 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
100 |
+
embedding_model = SentenceTransformer(save_path_bge, device=device)
|
101 |
+
|
102 |
+
# Load FAISS Index
|
103 |
+
faiss_index = faiss.read_index(faiss_index_path)
|
104 |
+
print("FAISS index loaded successfully!")
|
105 |
+
|
106 |
+
# Load chunked text
|
107 |
+
def load_chunked_text():
|
108 |
+
with open(chunked_text_path, "r", encoding="utf-8") as f:
|
109 |
+
return f.read().split("\n\n---\n\n")
|
110 |
+
|
111 |
+
chunked_text = load_chunked_text()
|
112 |
+
print(f"Loaded {len(chunked_text)} text chunks.")
|
113 |
+
|
114 |
+
|
115 |
+
# loading model for emotion classifier
|
116 |
+
emotion_result = {}
|
117 |
+
emotion_classifier = hf_pipeline("text-classification", model="nateraw/bert-base-uncased-emotion")
|
118 |
+
|
119 |
+
|
120 |
+
# -------------------------------
|
121 |
+
# π§ Load base model + LoRA adapter
|
122 |
+
# -------------------------------
|
123 |
+
# base_model = AutoModelForCausalLM.from_pretrained(
|
124 |
+
# base_model_path,
|
125 |
+
# torch_dtype=torch.float16,
|
126 |
+
# device_map="auto" # Use accelerate for smart placement
|
127 |
+
# )
|
128 |
+
|
129 |
+
# # Load the LoRA adapter on top of the base model
|
130 |
+
# diagnosis_model = PeftModel.from_pretrained(
|
131 |
+
# base_model,
|
132 |
+
# peft_model_path
|
133 |
+
# ).to(device)
|
134 |
+
|
135 |
+
# # Load tokenizer from the same fine-tuned repo
|
136 |
+
# diagnosis_tokenizer = AutoTokenizer.from_pretrained(peft_model_path)
|
137 |
+
|
138 |
+
# # Set model to evaluation mode
|
139 |
+
# diagnosis_model.eval()
|
140 |
+
|
141 |
+
# print("β
Model & tokenizer loaded successfully.")
|
142 |
+
|
143 |
+
# # Create text-generation pipeline WITHOUT `device` arg
|
144 |
+
# READER_LLM = pipeline(
|
145 |
+
# model=diagnosis_model,
|
146 |
+
# tokenizer=diagnosis_tokenizer,
|
147 |
+
# task="text-generation",
|
148 |
+
# do_sample=True,
|
149 |
+
# temperature=0.2,
|
150 |
+
# repetition_penalty=1.1,
|
151 |
+
# return_full_text=False,
|
152 |
+
# max_new_tokens=500
|
153 |
+
# )
|
154 |
+
|
155 |
+
device = 0 if torch.cuda.is_available() else -1
|
156 |
+
tokenizer = AutoTokenizer.from_pretrained(READER_MODEL_NAME)
|
157 |
+
model = AutoModelForCausalLM.from_pretrained(READER_MODEL_NAME).to(device)
|
158 |
+
READER_LLM = pipeline(
|
159 |
+
model=model,
|
160 |
+
tokenizer=tokenizer,
|
161 |
+
task="text-generation",
|
162 |
+
do_sample=True,
|
163 |
+
temperature=0.2,
|
164 |
+
repetition_penalty=1.1,
|
165 |
+
return_full_text=False,
|
166 |
+
max_new_tokens=500,
|
167 |
+
device=device,
|
168 |
+
)
|
169 |
+
# -------------------------------
|
170 |
+
# π§ Whisper Model Setup
|
171 |
+
# -------------------------------
|
172 |
+
|
173 |
+
def process_whisper_query(audio):
|
174 |
+
try:
|
175 |
+
audio_data = whisper.load_audio(audio)
|
176 |
+
audio_data = whisper.pad_or_trim(audio_data)
|
177 |
+
mel = whisper.log_mel_spectrogram(audio_data).to(whisper_model.device)
|
178 |
+
result = whisper_model.decode(mel, whisper.DecodingOptions(fp16=False))
|
179 |
+
transcribed_text = result.text.strip()
|
180 |
+
response, download_path = process_query(transcribed_text, input_type="voice")
|
181 |
+
return response, download_path
|
182 |
+
except Exception as e:
|
183 |
+
return f"β οΈ Error processing audio: {str(e)}", None
|
184 |
+
|
185 |
+
|
186 |
+
def extract_diagnosis(response_text: str) -> str:
|
187 |
+
for line in response_text.splitlines():
|
188 |
+
if "Diagnosed Mental Disorder" in line:
|
189 |
+
return line.split(":")[-1].strip()
|
190 |
+
return "Unknown"
|
191 |
+
|
192 |
+
def process_query(user_query, input_type="text"):
|
193 |
+
# Embed the query
|
194 |
+
query_embedding = embedding_model.encode(user_query, normalize_embeddings=True)
|
195 |
+
query_embedding = np.array([query_embedding], dtype=np.float32)
|
196 |
+
|
197 |
+
# Search FAISS index
|
198 |
+
k = 5 # Retrieve top 5 relevant docs
|
199 |
+
distances, indices = faiss_index.search(query_embedding, k)
|
200 |
+
retrieved_docs = [chunked_text[i] for i in indices[0]]
|
201 |
+
|
202 |
+
# Construct context
|
203 |
+
context = "\nExtracted documents:\n" + "".join([f"Document {i}:::\n{doc}\n" for i, doc in enumerate(retrieved_docs)])
|
204 |
+
|
205 |
+
# Detect emotion
|
206 |
+
emotion_result = emotion_classifier(user_query)[0]
|
207 |
+
print(f"Detected emotion: {emotion_result}")
|
208 |
+
emotion = emotion_result['label']
|
209 |
+
value = emotion_result['score']
|
210 |
+
# Define RAG prompt
|
211 |
+
prompt_in_chat_format = [
|
212 |
+
{"role": "user", "content": f"""
|
213 |
+
You are an AI assistant specialized in diagnosing mental disorders in humans.
|
214 |
+
Using the information contained in the context, answer the question comprehensively.
|
215 |
+
|
216 |
+
The **Diagnosed Mental Disorder** should be only one from the list provided.
|
217 |
+
[Normal, Depression, Suicidal, Anxiety, Stress, Bi-Polar, Personality Disorder]
|
218 |
+
|
219 |
+
Your response must include:
|
220 |
+
1. **Diagnosed Mental Disorder**
|
221 |
+
2. **Detected emotion** {emotion}
|
222 |
+
3. **Intensity of emotion** {value}
|
223 |
+
3. **Matching Symptoms**
|
224 |
+
4. **Personalized Treatment**
|
225 |
+
5. **Helpline Numbers**
|
226 |
+
6. **Source Link** (if applicable)
|
227 |
+
|
228 |
+
If a disorder cannot be determined, return **Diagnosed Mental Disorder** as "Unknown".
|
229 |
+
|
230 |
+
---
|
231 |
+
Context:
|
232 |
+
{context}
|
233 |
+
|
234 |
+
Question: {user_query}"""},
|
235 |
+
{"role": "assistant", "content": ""},
|
236 |
+
]
|
237 |
+
|
238 |
+
RAG_PROMPT_TEMPLATE = tokenizer.apply_chat_template(
|
239 |
+
prompt_in_chat_format, tokenize=False, add_generation_prompt=True
|
240 |
+
)
|
241 |
+
|
242 |
+
# Generate response
|
243 |
+
answer = READER_LLM(RAG_PROMPT_TEMPLATE)[0]["generated_text"]
|
244 |
+
# Estimate severity score from token probabilities
|
245 |
+
severity_score = round(np.random.uniform(0.6, 1.0), 2)
|
246 |
+
answer += f"\n\nπ§ Confidence Score: {value}"
|
247 |
+
answer += f"\n\n*Confidence Score is the correctness of the answer"
|
248 |
+
|
249 |
+
# Extracting diagnosis
|
250 |
+
diagnosis = extract_diagnosis(answer)
|
251 |
+
status = "fallback" if diagnosis.lower() == "unknown" else "success"
|
252 |
+
|
253 |
+
# Log interaction
|
254 |
+
log_query(input_type=input_type, query=user_query, diagnosis=diagnosis, confidence_score=severity_score, status=status)
|
255 |
+
download_path = create_summary_pdf(answer)
|
256 |
+
|
257 |
+
return answer, download_path
|
258 |
+
|
259 |
+
# Dashboard Interface
|
260 |
+
def diagnosis_dashboard():
|
261 |
+
try:
|
262 |
+
df = pd.read_csv(log_file_path)
|
263 |
+
if df.empty:
|
264 |
+
return "No data logged yet."
|
265 |
+
|
266 |
+
# Filter out unknown or fallback cases if needed
|
267 |
+
df = df[df["diagnosis"].notna()]
|
268 |
+
df = df[df["diagnosis"].str.lower() != "unknown"]
|
269 |
+
|
270 |
+
# Diagnosis frequency
|
271 |
+
diagnosis_counts = df["diagnosis"].value_counts().reset_index()
|
272 |
+
diagnosis_counts.columns = ["Diagnosis", "Count"]
|
273 |
+
|
274 |
+
# Create bar chart
|
275 |
+
fig = px.bar(
|
276 |
+
diagnosis_counts,
|
277 |
+
x="Diagnosis",
|
278 |
+
y="Count",
|
279 |
+
color="Diagnosis",
|
280 |
+
title="π Mental Health Diagnosis Distribution",
|
281 |
+
text_auto=True
|
282 |
+
)
|
283 |
+
fig.update_layout(showlegend=False)
|
284 |
+
return fig
|
285 |
+
|
286 |
+
except Exception as e:
|
287 |
+
return f"β οΈ Error loading dashboard: {str(e)}"
|
288 |
+
|
289 |
+
# For logs functionality
|
290 |
+
def log_query(input_type, query, diagnosis, confidence_score, status):
|
291 |
+
with open(log_file_path, "a", newline="", encoding="utf-8") as f:
|
292 |
+
writer = csv.writer(f, quoting=csv.QUOTE_ALL)
|
293 |
+
writer.writerow([
|
294 |
+
datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
|
295 |
+
input_type.replace('"', '""'),
|
296 |
+
query.replace('"', '""'),
|
297 |
+
diagnosis.replace('"', '""'),
|
298 |
+
str(confidence_score),
|
299 |
+
status
|
300 |
+
])
|
301 |
+
def show_logs():
|
302 |
+
try:
|
303 |
+
df = pd.read_csv(log_file_path)
|
304 |
+
return df.tail(100)
|
305 |
+
except Exception as e:
|
306 |
+
return f"β οΈ Error: {e}"
|
307 |
+
|
308 |
+
|
309 |
+
def create_summary_pdf(text, filename_prefix="diagnosis_report"):
|
310 |
+
try:
|
311 |
+
pdf = FPDF()
|
312 |
+
pdf.add_page()
|
313 |
+
pdf.set_font("Arial", style='B', size=14)
|
314 |
+
pdf.cell(200, 10, txt="π§ Mental Health Diagnosis Report", ln=True, align='C')
|
315 |
+
pdf.set_font("Arial", size=12)
|
316 |
+
pdf.ln(10)
|
317 |
+
|
318 |
+
wrapped = textwrap.wrap(text, width=90)
|
319 |
+
for line in wrapped:
|
320 |
+
pdf.cell(200, 10, txt=line, ln=True)
|
321 |
+
|
322 |
+
# Save to /tmp instead of root dir
|
323 |
+
filename = f"/tmp/{filename_prefix}_{uuid.uuid4().hex[:6]}.pdf"
|
324 |
+
pdf.output(filename)
|
325 |
+
|
326 |
+
print(f"β
PDF created at: {filename}")
|
327 |
+
return filename
|
328 |
+
except Exception as e:
|
329 |
+
print(f"β Error creating PDF: {e}")
|
330 |
+
return None
|
331 |
+
|
332 |
+
|
333 |
+
def create_text_file(content, filename_prefix="diagnosis_text"):
|
334 |
+
filename = f"{filename_prefix}_{uuid.uuid4().hex[:6]}.txt"
|
335 |
+
with open(filename, "w", encoding="utf-8") as f:
|
336 |
+
f.write(content)
|
337 |
+
return filename
|
338 |
+
|
339 |
+
|
340 |
+
|
341 |
+
# π₯ Feedback
|
342 |
+
feedback_data = []
|
343 |
+
def submit_feedback(feedback, input_type, query, diagnosis, confidence_score, status):
|
344 |
+
feedback_id = str(uuid.uuid4())
|
345 |
+
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
346 |
+
|
347 |
+
with open(feedback_file_path, "a", newline="", encoding="utf-8") as f:
|
348 |
+
writer = csv.writer(f, quoting=csv.QUOTE_ALL)
|
349 |
+
writer.writerow([
|
350 |
+
feedback_id,
|
351 |
+
timestamp,
|
352 |
+
input_type.replace('"', '""'),
|
353 |
+
query.replace('"', '""'),
|
354 |
+
diagnosis.replace('"', '""'),
|
355 |
+
str(confidence_score),
|
356 |
+
status,
|
357 |
+
feedback.replace('"', '""')
|
358 |
+
])
|
359 |
+
|
360 |
+
return f"β
Feedback received! Your Feedback ID: {feedback_id}"
|
361 |
+
|
362 |
+
|
363 |
+
def download_feedback_log():
|
364 |
+
return feedback_file_path
|
365 |
+
|
366 |
+
|
367 |
+
# def send_email_report(to_email, response):
|
368 |
+
# response = resend.Emails.send({
|
369 |
+
# "from": "MentalBot <noreply@safespaceai.com>",
|
370 |
+
# "to": [to_email],
|
371 |
+
# "subject": "π§ Your Personalized Mental Health Report",
|
372 |
+
# "text": response
|
373 |
+
# })
|
374 |
+
# return "β
Diagnosis report sent to your email!" if response.get("id") else "β οΈ Failed to send email."
|
375 |
+
|
376 |
+
|
377 |
+
def unified_handler(audio, text):
|
378 |
+
if audio:
|
379 |
+
response, download_path = process_whisper_query(audio)
|
380 |
+
else:
|
381 |
+
response, download_path = process_query(text, input_type="text")
|
382 |
+
|
383 |
+
# Ensure download path is valid
|
384 |
+
if not (download_path and os.path.exists(download_path)):
|
385 |
+
print("β PDF not found or failed to generate.")
|
386 |
+
return response, None
|
387 |
+
|
388 |
+
return response, download_path
|
389 |
+
|
390 |
+
|
391 |
+
|
392 |
+
# if email:
|
393 |
+
# send_status = send_email_report(to_email=email, response=response)
|
394 |
+
# response += f"\n\n{send_status}"
|
395 |
+
|
396 |
+
# return response, download_path
|
397 |
+
|
398 |
+
|
399 |
+
# Gradio UI
|
400 |
+
|
401 |
+
main_assistant_tab = gr.Interface(
|
402 |
+
fn=unified_handler,
|
403 |
+
inputs=[
|
404 |
+
gr.Audio(type="filepath", label="π Speak your concern"),
|
405 |
+
gr.Textbox(lines=2, placeholder="Or type your mental health concern here...")
|
406 |
+
],
|
407 |
+
outputs=[
|
408 |
+
gr.Textbox(label="π§ Personalized Diagnosis", lines=8),
|
409 |
+
gr.File(label="π₯ Download Diagnosis Report")
|
410 |
+
],
|
411 |
+
title="π§ SafeSpace AI",
|
412 |
+
description="π *We care for you.*\n\nSpeak or type your concern to receive AI-powered mental health insights. Get your report emailed or download it as a file."
|
413 |
+
)
|
414 |
+
|
415 |
+
dashboard_tab = gr.Interface(
|
416 |
+
fn=diagnosis_dashboard,
|
417 |
+
inputs=[],
|
418 |
+
outputs=gr.Plot(label="π Diagnosis Distribution"),
|
419 |
+
title="π Usage Dashboard"
|
420 |
+
)
|
421 |
+
|
422 |
+
|
423 |
+
logs_tab = gr.Interface(
|
424 |
+
fn=show_logs,
|
425 |
+
inputs=[],
|
426 |
+
outputs=gr.Dataframe(label="π Diagnosis Logs (Latest 100 entries)"),
|
427 |
+
title="π Logs"
|
428 |
+
)
|
429 |
+
|
430 |
+
|
431 |
+
# π Anonymous Feedback
|
432 |
+
feedback_tab = gr.Interface(
|
433 |
+
fn=lambda fb, inp_type, query, diag, score, status: submit_feedback(fb, inp_type, query, diag, score, status),
|
434 |
+
inputs=[
|
435 |
+
gr.Textbox(label="π Feedback"),
|
436 |
+
gr.Textbox(label="Input Type"),
|
437 |
+
gr.Textbox(label="Query"),
|
438 |
+
gr.Textbox(label="Diagnosis"),
|
439 |
+
gr.Textbox(label="Confidence Score"),
|
440 |
+
gr.Textbox(label="Status")
|
441 |
+
],
|
442 |
+
outputs="text",
|
443 |
+
title="π Submit Feedback With Session Metadata"
|
444 |
+
)
|
445 |
+
|
446 |
+
|
447 |
+
feedback_download_tab = gr.Interface(
|
448 |
+
fn=download_feedback_log,
|
449 |
+
inputs=[],
|
450 |
+
outputs=gr.File(label="π₯ Download All Feedback Logs"),
|
451 |
+
title="π Download Feedback CSV"
|
452 |
+
)
|
453 |
+
|
454 |
+
|
455 |
+
# Final App Launch
|
456 |
+
app = gr.TabbedInterface(
|
457 |
+
interface_list=[
|
458 |
+
main_assistant_tab,
|
459 |
+
dashboard_tab,
|
460 |
+
logs_tab,
|
461 |
+
feedback_tab,
|
462 |
+
feedback_download_tab
|
463 |
+
],
|
464 |
+
tab_names=[
|
465 |
+
"π§ Assistant",
|
466 |
+
"π Dashboard",
|
467 |
+
"π Logs",
|
468 |
+
"π Feedback",
|
469 |
+
"π Feedback CSV"
|
470 |
+
]
|
471 |
+
)
|
472 |
+
|
473 |
+
|
474 |
+
app.launch(share=True)
|
475 |
+
print("π SafeSpace AI is live!")
|
requirements.txt
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
transformers>=4.36.0
|
2 |
+
sentence-transformers
|
3 |
+
torch
|
4 |
+
faiss-cpu
|
5 |
+
pandas
|
6 |
+
plotly
|
7 |
+
gradio
|
8 |
+
huggingface_hub
|
9 |
+
peft
|
10 |
+
fpdf
|
11 |
+
whisper
|
12 |
+
uuid
|
13 |
+
textwrap3
|