Jaamie commited on
Commit
ec6aa13
·
verified ·
1 Parent(s): d186f48

Upload app.py

Browse files
Files changed (1) hide show
  1. app.py +14 -14
app.py CHANGED
@@ -57,8 +57,8 @@ embedding_model_bge = "BAAI/bge-base-en-v1.5"
57
  #save_path_bge = "./models/bge-base-en-v1.5"
58
  faiss_index_path = "./qa_faiss_embedding.index"
59
  chunked_text_path = "./chunked_text_RAG_text.txt"
60
- #READER_MODEL_NAME = "google/gemma-2-9b-it"
61
- READER_MODEL_NAME = "google/gemma-2b-it"
62
  log_file_path = "./diagnosis_logs.csv"
63
  feedback_file_path = "./feedback_logs.csv"
64
 
@@ -157,18 +157,18 @@ emotion_classifier = hf_pipeline("text-classification", model="nateraw/bert-base
157
  # )
158
 
159
  device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
160
- # tokenizer = AutoTokenizer.from_pretrained(READER_MODEL_NAME)
161
- # #model = AutoModelForCausalLM.from_pretrained(READER_MODEL_NAME)
162
- # model = AutoModelForCausalLM.from_pretrained(READER_MODEL_NAME).to(device)
163
-
164
- model_id = "mistralai/Mistral-7B-Instruct-v0.1"
165
- #model_id = "TheBloke/Gemma-2-7B-IT-GGUF"
166
- tokenizer = AutoTokenizer.from_pretrained(model_id)
167
- model = AutoModelForCausalLM.from_pretrained(
168
- model_id,
169
- torch_dtype=torch.float16,
170
- device_map="auto",
171
- ).to(device)
172
 
173
  READER_LLM = pipeline(
174
  model=model,
 
57
  #save_path_bge = "./models/bge-base-en-v1.5"
58
  faiss_index_path = "./qa_faiss_embedding.index"
59
  chunked_text_path = "./chunked_text_RAG_text.txt"
60
+ READER_MODEL_NAME = "google/gemma-2-9b-it"
61
+ #READER_MODEL_NAME = "google/gemma-2b-it"
62
  log_file_path = "./diagnosis_logs.csv"
63
  feedback_file_path = "./feedback_logs.csv"
64
 
 
157
  # )
158
 
159
  device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
160
+ tokenizer = AutoTokenizer.from_pretrained(READER_MODEL_NAME)
161
+ #model = AutoModelForCausalLM.from_pretrained(READER_MODEL_NAME)
162
+ model = AutoModelForCausalLM.from_pretrained(READER_MODEL_NAME).to(device)
163
+
164
+ # model_id = "mistralai/Mistral-7B-Instruct-v0.1"
165
+ # #model_id = "TheBloke/Gemma-2-7B-IT-GGUF"
166
+ # tokenizer = AutoTokenizer.from_pretrained(model_id)
167
+ # model = AutoModelForCausalLM.from_pretrained(
168
+ # model_id,
169
+ # torch_dtype=torch.float16,
170
+ # device_map="auto",
171
+ # ).to(device)
172
 
173
  READER_LLM = pipeline(
174
  model=model,