Jaamie commited on
Commit
0a2ec0e
Β·
verified Β·
1 Parent(s): a7b09bc

Upload app.py

Browse files
Files changed (1) hide show
  1. app.py +64 -55
app.py CHANGED
@@ -17,6 +17,7 @@ import torch
17
  import faiss
18
  import numpy as np
19
  import gradio as gr
 
20
  # from google.colab import drive
21
  from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer
22
  from sentence_transformers import SentenceTransformer
@@ -39,7 +40,10 @@ whisper_model = whisper.load_model("base")
39
 
40
  load_dotenv()
41
 
 
 
42
  hf_token = os.getenv("HF_TOKEN")
 
43
  login(token=hf_token)
44
 
45
 
@@ -50,7 +54,7 @@ login(token=hf_token)
50
  # πŸ”§ Configuration
51
  # -------------------------------
52
  base_model_path = "google/gemma-2-9b-it"
53
- peft_model_path = "Jaamie/gemma-mental-health-qlora"
54
  device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
55
 
56
  embedding_model_bge = "BAAI/bge-base-en-v1.5"
@@ -205,6 +209,30 @@ def extract_diagnosis(response_text: str) -> str:
205
  return line.split(":")[-1].strip()
206
  return "Unknown"
207
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
208
  def process_query(user_query, input_type="text"):
209
  # Embed the query
210
  query_embedding = embedding_model.encode(user_query, normalize_embeddings=True)
@@ -223,6 +251,7 @@ def process_query(user_query, input_type="text"):
223
  print(f"Detected emotion: {emotion_result}")
224
  emotion = emotion_result['label']
225
  value = emotion_result['score']
 
226
  # Define RAG prompt
227
  prompt_in_chat_format = [
228
  {"role": "user", "content": f"""
@@ -268,17 +297,24 @@ def process_query(user_query, input_type="text"):
268
  print("❌ Error during generation:", e)
269
  answer = "⚠️ An error occurred while generating the response."
270
 
271
- # Estimate severity score from token probabilities
272
- severity_score = round(np.random.uniform(0.6, 1.0), 2)
273
- answer += f"\n\n🧭 Confidence Score: {value}"
274
- answer += f"\n\n*Confidence Score is the correctness of the answer"
 
 
 
 
 
 
 
275
 
276
  # Extracting diagnosis
277
  diagnosis = extract_diagnosis(answer)
278
  status = "fallback" if diagnosis.lower() == "unknown" else "success"
279
 
280
  # Log interaction
281
- log_query(input_type=input_type, query=user_query, diagnosis=diagnosis, confidence_score=severity_score, status=status)
282
  download_path = create_summary_txt(answer)
283
 
284
  timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
@@ -371,27 +407,27 @@ def show_logs():
371
  return f"⚠️ Error: {e}"
372
 
373
 
374
- def create_summary_pdf(text, filename_prefix="diagnosis_report"):
375
- try:
376
- filename = f"{filename_prefix}_{uuid.uuid4().hex[:6]}.pdf"
377
- filepath = os.path.join(".", filename) # Save in current directory
378
- pdf = FPDF()
379
- pdf.add_page()
380
- pdf.set_font("Arial", style='B', size=14)
381
- pdf.cell(200, 10, txt="🧠 Mental Health Diagnosis Report", ln=True, align='C')
382
- pdf.set_font("Arial", size=12)
383
- pdf.ln(10)
384
-
385
- wrapped = textwrap.wrap(text, width=90)
386
- for line in wrapped:
387
- pdf.cell(200, 10, txt=line, ln=True)
388
-
389
- pdf.output(filepath)
390
- print(f"βœ… PDF created at: {filepath}")
391
- return filepath
392
- except Exception as e:
393
- print(f"❌ Error creating PDF: {e}")
394
- return None
395
 
396
 
397
 
@@ -491,22 +527,12 @@ def unified_handler(audio, text):
491
  else:
492
  response, _ = process_query(text, input_type="text")
493
 
494
- download_path = create_summary_txt(response) # <- save as txt instead
495
 
496
  return response, download_path
497
 
498
- #Agentic Framework from HF spaces
499
- # agent_iframe = gr.HTML(
500
- # '<iframe src="https://jaamie-mental-health-agent.hf.space" width="100%" height="700px" style="border:none;"></iframe>'
501
- # )
502
 
503
 
504
- # if email:
505
- # send_status = send_email_report(to_email=email, response=response)
506
- # response += f"\n\n{send_status}"
507
-
508
- # return response, download_path
509
-
510
 
511
  # Gradio UI
512
 
@@ -540,23 +566,6 @@ logs_tab = gr.Interface(
540
  )
541
 
542
 
543
- # πŸ“ Anonymous Feedback
544
- # feedback_tab = gr.Interface(
545
- # fn=lambda fb, inp_type, query, diag, score, status: submit_feedback(fb, inp_type, query, diag, score, status),
546
- # inputs=[
547
- # gr.Textbox(label="πŸ“ Feedback"),
548
- # gr.Textbox(label="Input Type"),
549
- # gr.Textbox(label="Query"),
550
- # gr.Textbox(label="Diagnosis"),
551
- # gr.Textbox(label="Confidence Score"),
552
- # gr.Textbox(label="Status")
553
- # ],
554
- # outputs="text",
555
- # title="πŸ“ Submit Feedback With Session Metadata"
556
- # )
557
-
558
- # def feedback_handler(fb, inp_type, query, diag, score, status):
559
- # return submit_feedback(fb, inp_type, query, diag, score, status)
560
 
561
  feedback_tab = gr.Interface(
562
  fn=submit_feedback,
 
17
  import faiss
18
  import numpy as np
19
  import gradio as gr
20
+ from sklearn.metrics.pairwise import cosine_similarity
21
  # from google.colab import drive
22
  from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer
23
  from sentence_transformers import SentenceTransformer
 
40
 
41
  load_dotenv()
42
 
43
+
44
+
45
  hf_token = os.getenv("HF_TOKEN")
46
+
47
  login(token=hf_token)
48
 
49
 
 
54
  # πŸ”§ Configuration
55
  # -------------------------------
56
  base_model_path = "google/gemma-2-9b-it"
57
+ #peft_model_path = "Jaamie/gemma-mental-health-qlora"
58
  device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
59
 
60
  embedding_model_bge = "BAAI/bge-base-en-v1.5"
 
209
  return line.split(":")[-1].strip()
210
  return "Unknown"
211
 
212
+ # calculating the correctness of the answer - Hallucination
213
+ def calculate_rag_confidence(query_embedding, top_k_docs_embeddings, generation_logprobs=None):
214
+ """
215
+ Combines retriever and generation signals to compute a confidence score.
216
+ Args:
217
+ query_embedding (np.ndarray): Embedding vector of the user query (shape: [1, dim]).
218
+ top_k_docs_embeddings (np.ndarray): Embedding matrix of top-k retrieved documents (shape: [k, dim]).
219
+ generation_logprobs (list, optional): List of logprobs for generated tokens.
220
+ Returns:
221
+ float: Final confidence score (0 to 1).
222
+ """
223
+ retriever_similarities = cosine_similarity(query_embedding, top_k_docs_embeddings)
224
+ retriever_confidence = float(np.max(retriever_similarities))
225
+
226
+ if generation_logprobs:
227
+ gen_confidence = float(np.exp(np.mean(generation_logprobs)))
228
+ else:
229
+ gen_confidence = 0.0 # fallback if unavailable
230
+
231
+ alpha, beta = 0.6, 0.4
232
+ final_confidence = alpha * retriever_confidence + beta * gen_confidence
233
+ return round(final_confidence, 4)
234
+
235
+ # Main Process
236
  def process_query(user_query, input_type="text"):
237
  # Embed the query
238
  query_embedding = embedding_model.encode(user_query, normalize_embeddings=True)
 
251
  print(f"Detected emotion: {emotion_result}")
252
  emotion = emotion_result['label']
253
  value = emotion_result['score']
254
+
255
  # Define RAG prompt
256
  prompt_in_chat_format = [
257
  {"role": "user", "content": f"""
 
297
  print("❌ Error during generation:", e)
298
  answer = "⚠️ An error occurred while generating the response."
299
 
300
+ # Get embeddings of retrieved docs
301
+ retrieved_doc_embeddings = embedding_model.encode(retrieved_docs, normalize_embeddings=True)
302
+ retrieved_doc_embeddings = np.array(retrieved_doc_embeddings, dtype=np.float32)
303
+
304
+ # Calculate RAG-based confidence
305
+ confidence_score = calculate_rag_confidence(query_embedding, retrieved_doc_embeddings)
306
+
307
+ # Add to response
308
+ answer += f"\n\n🧭 Accuracy & Closeness of the Answer: {confidence_score:.2f}"
309
+ answer += "\n\n*Derived from semantic similarity and generation certainty."
310
+
311
 
312
  # Extracting diagnosis
313
  diagnosis = extract_diagnosis(answer)
314
  status = "fallback" if diagnosis.lower() == "unknown" else "success"
315
 
316
  # Log interaction
317
+ log_query(input_type=input_type, query=user_query, diagnosis=diagnosis, confidence_score=confidence_score, status=status)
318
  download_path = create_summary_txt(answer)
319
 
320
  timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
 
407
  return f"⚠️ Error: {e}"
408
 
409
 
410
+ # def create_summary_pdf(text, filename_prefix="diagnosis_report"):
411
+ # try:
412
+ # filename = f"{filename_prefix}_{uuid.uuid4().hex[:6]}.pdf"
413
+ # filepath = os.path.join(".", filename) # Save in current directory
414
+ # pdf = FPDF()
415
+ # pdf.add_page()
416
+ # pdf.set_font("Arial", style='B', size=14)
417
+ # pdf.cell(200, 10, txt="🧠 Mental Health Diagnosis Report", ln=True, align='C')
418
+ # pdf.set_font("Arial", size=12)
419
+ # pdf.ln(10)
420
+
421
+ # wrapped = textwrap.wrap(text, width=90)
422
+ # for line in wrapped:
423
+ # pdf.cell(200, 10, txt=line, ln=True)
424
+
425
+ # pdf.output(filepath)
426
+ # print(f"βœ… PDF created at: {filepath}")
427
+ # return filepath
428
+ # except Exception as e:
429
+ # print(f"❌ Error creating PDF: {e}")
430
+ # return None
431
 
432
 
433
 
 
527
  else:
528
  response, _ = process_query(text, input_type="text")
529
 
530
+ download_path = create_summary_txt(response)
531
 
532
  return response, download_path
533
 
 
 
 
 
534
 
535
 
 
 
 
 
 
 
536
 
537
  # Gradio UI
538
 
 
566
  )
567
 
568
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
569
 
570
  feedback_tab = gr.Interface(
571
  fn=submit_feedback,