File size: 30,032 Bytes
d65b6e8 66992f6 10008f1 640dd0e af81629 10008f1 af81629 10008f1 fd289b1 42eafc4 89943a0 a5c083c 10008f1 42eafc4 a58ada6 29eb5aa 9a6051e 10008f1 fd289b1 42eafc4 640dd0e 9a6051e af81629 9a6051e af81629 9a6051e fd289b1 10008f1 af81629 9a6051e fd289b1 9a6051e fd289b1 9a6051e fd289b1 9a6051e fd289b1 af81629 640dd0e 66992f6 640dd0e af81629 78869ff 640dd0e 78869ff 640dd0e 9a6051e 640dd0e 9a6051e 78869ff af81629 640dd0e 66992f6 78869ff 9a6051e af81629 78869ff 66992f6 9a6051e 78869ff af81629 78869ff 640dd0e 9a6051e 78869ff 640dd0e fd289b1 9a6051e fd289b1 9a6051e fd289b1 9a6051e fd289b1 9a6051e fd289b1 9a6051e fd289b1 9a6051e fd289b1 af81629 9a6051e 640dd0e af81629 66992f6 9a6051e af81629 9a6051e af81629 9a6051e af81629 640dd0e af81629 9a6051e af81629 9a6051e 66992f6 af81629 9a6051e 66992f6 af81629 9a6051e af81629 9a6051e af81629 9a6051e af81629 9a6051e af81629 9a6051e af81629 9a6051e af81629 9a6051e 66992f6 9a6051e af81629 9a6051e af81629 9a6051e af81629 66992f6 117eca9 fd289b1 10008f1 9a6051e 10008f1 9a6051e 10008f1 fd289b1 640dd0e 42eafc4 9a6051e fd289b1 9a6051e 10008f1 fd289b1 9a6051e b9dea2c 10008f1 fd289b1 66992f6 640dd0e 9a6051e 640dd0e 9a6051e 640dd0e 9a6051e fd289b1 9a6051e 10008f1 fd289b1 9a6051e 3466e71 9a6051e 10008f1 a5c083c 91b17d7 42eafc4 9a6051e 91b17d7 10008f1 42eafc4 fd289b1 9a6051e 10008f1 9a6051e fd289b1 10008f1 9a6051e b9dea2c 9a6051e 10008f1 9a6051e 3466e71 9a6051e 10008f1 9a6051e fd289b1 42eafc4 9a6051e 78869ff 91b17d7 78869ff 91b17d7 78869ff 42eafc4 9a6051e 42eafc4 78869ff 91b17d7 42eafc4 9a6051e 42eafc4 78869ff 42eafc4 9a6051e 42eafc4 10008f1 42eafc4 78869ff 42eafc4 b9dea2c 10008f1 9a6051e fd289b1 640dd0e 10008f1 9a6051e 10008f1 9a6051e 10008f1 9a6051e 10008f1 9a6051e 10008f1 af81629 7662a6a 9a6051e 7662a6a 9a6051e 7662a6a 9a6051e 7662a6a 9a6051e 7662a6a 9a6051e 3466e71 9a6051e 3466e71 9a6051e 78869ff 29eb5aa a5c083c 78869ff 35b21b4 78869ff a5c083c 57c1aba 9a6051e a5c083c 91b17d7 a5c083c 691302d a5c083c 691302d a5c083c 42eafc4 af81629 a5c083c 9a6051e 91b17d7 42eafc4 691302d 91b17d7 691302d 9a6051e 691302d 9a6051e 691302d 42eafc4 691302d f66d06e 691302d 42eafc4 691302d 42eafc4 691302d 42eafc4 691302d 42eafc4 691302d 42eafc4 691302d 42eafc4 a5c083c 6ac4977 a5c083c a3ec320 a5c083c 2ab617a 9a6051e 691302d 2ab617a a5c083c 2ab617a 691302d 9a6051e 691302d a5c083c 9a6051e 691302d 2ab617a 9a6051e a5c083c 2ab617a 35b21b4 2ab617a a5c083c 9a6051e 35b21b4 2ab617a a5c083c 2ab617a 9a6051e 2ab617a 9a6051e 691302d a5c083c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 |
import gradio as gr
import numpy as np
import queue
import torch
import time
import threading
import os
import urllib.request
import torchaudio
from scipy.spatial.distance import cosine
from RealtimeSTT import AudioToTextRecorder
from fastapi import FastAPI, APIRouter
from fastrtc import Stream, ReplyOnPause, AudioStreamHandler
import json
import asyncio
import uvicorn
from queue import Queue
import logging
# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Simplified configuration parameters
SILENCE_THRESHS = [0, 0.4]
FINAL_TRANSCRIPTION_MODEL = "distil-large-v3"
FINAL_BEAM_SIZE = 5
REALTIME_TRANSCRIPTION_MODEL = "distil-small.en"
REALTIME_BEAM_SIZE = 5
TRANSCRIPTION_LANGUAGE = "en"
SILERO_SENSITIVITY = 0.4
WEBRTC_SENSITIVITY = 3
MIN_LENGTH_OF_RECORDING = 0.7
PRE_RECORDING_BUFFER_DURATION = 0.35
# Speaker change detection parameters
DEFAULT_CHANGE_THRESHOLD = 0.65
EMBEDDING_HISTORY_SIZE = 5
MIN_SEGMENT_DURATION = 1.5
DEFAULT_MAX_SPEAKERS = 4
ABSOLUTE_MAX_SPEAKERS = 8
# Global variables
SAMPLE_RATE = 16000
BUFFER_SIZE = 1024
CHANNELS = 1
# Speaker colors - more distinguishable colors
SPEAKER_COLORS = [
"#FF6B6B", # Red
"#4ECDC4", # Teal
"#45B7D1", # Blue
"#96CEB4", # Green
"#FFEAA7", # Yellow
"#DDA0DD", # Plum
"#98D8C8", # Mint
"#F7DC6F", # Gold
]
SPEAKER_COLOR_NAMES = [
"Red", "Teal", "Blue", "Green", "Yellow", "Plum", "Mint", "Gold"
]
class SpeechBrainEncoder:
"""ECAPA-TDNN encoder from SpeechBrain for speaker embeddings"""
def __init__(self, device="cpu"):
self.device = device
self.model = None
self.embedding_dim = 192
self.model_loaded = False
self.cache_dir = os.path.join(os.path.expanduser("~"), ".cache", "speechbrain")
os.makedirs(self.cache_dir, exist_ok=True)
def load_model(self):
"""Load the ECAPA-TDNN model"""
try:
from speechbrain.pretrained import EncoderClassifier
self.model = EncoderClassifier.from_hparams(
source="speechbrain/spkrec-ecapa-voxceleb",
savedir=self.cache_dir,
run_opts={"device": self.device}
)
self.model_loaded = True
logger.info("ECAPA-TDNN model loaded successfully!")
return True
except Exception as e:
logger.error(f"Error loading ECAPA-TDNN model: {e}")
return False
def embed_utterance(self, audio, sr=16000):
"""Extract speaker embedding from audio"""
if not self.model_loaded:
raise ValueError("Model not loaded. Call load_model() first.")
try:
if isinstance(audio, np.ndarray):
# Ensure audio is float32 and properly normalized
audio = audio.astype(np.float32)
if np.max(np.abs(audio)) > 1.0:
audio = audio / np.max(np.abs(audio))
waveform = torch.tensor(audio).unsqueeze(0)
else:
waveform = audio.unsqueeze(0)
# Resample if necessary
if sr != 16000:
waveform = torchaudio.functional.resample(waveform, orig_freq=sr, new_freq=16000)
with torch.no_grad():
embedding = self.model.encode_batch(waveform)
return embedding.squeeze().cpu().numpy()
except Exception as e:
logger.error(f"Error extracting embedding: {e}")
return np.zeros(self.embedding_dim)
class AudioProcessor:
"""Processes audio data to extract speaker embeddings"""
def __init__(self, encoder):
self.encoder = encoder
self.audio_buffer = []
self.min_audio_length = int(SAMPLE_RATE * 1.0) # Minimum 1 second of audio
def add_audio_chunk(self, audio_chunk):
"""Add audio chunk to buffer"""
self.audio_buffer.extend(audio_chunk)
# Keep buffer from getting too large
max_buffer_size = int(SAMPLE_RATE * 10) # 10 seconds max
if len(self.audio_buffer) > max_buffer_size:
self.audio_buffer = self.audio_buffer[-max_buffer_size:]
def extract_embedding_from_buffer(self):
"""Extract embedding from current audio buffer"""
if len(self.audio_buffer) < self.min_audio_length:
return None
try:
# Use the last portion of the buffer for embedding
audio_segment = np.array(self.audio_buffer[-self.min_audio_length:], dtype=np.float32)
# Normalize audio
if np.max(np.abs(audio_segment)) > 0:
audio_segment = audio_segment / np.max(np.abs(audio_segment))
else:
return None
embedding = self.encoder.embed_utterance(audio_segment)
return embedding
except Exception as e:
logger.error(f"Embedding extraction error: {e}")
return None
class SpeakerChangeDetector:
"""Improved speaker change detector"""
def __init__(self, embedding_dim=192, change_threshold=DEFAULT_CHANGE_THRESHOLD, max_speakers=DEFAULT_MAX_SPEAKERS):
self.embedding_dim = embedding_dim
self.change_threshold = change_threshold
self.max_speakers = min(max_speakers, ABSOLUTE_MAX_SPEAKERS)
self.current_speaker = 0
self.speaker_embeddings = [[] for _ in range(self.max_speakers)]
self.speaker_centroids = [None] * self.max_speakers
self.last_change_time = time.time()
self.last_similarity = 1.0
self.active_speakers = set([0])
self.segment_counter = 0
def set_max_speakers(self, max_speakers):
"""Update the maximum number of speakers"""
new_max = min(max_speakers, ABSOLUTE_MAX_SPEAKERS)
if new_max < self.max_speakers:
# Remove speakers beyond the new limit
for speaker_id in list(self.active_speakers):
if speaker_id >= new_max:
self.active_speakers.discard(speaker_id)
if self.current_speaker >= new_max:
self.current_speaker = 0
# Resize arrays
if new_max > self.max_speakers:
self.speaker_embeddings.extend([[] for _ in range(new_max - self.max_speakers)])
self.speaker_centroids.extend([None] * (new_max - self.max_speakers))
else:
self.speaker_embeddings = self.speaker_embeddings[:new_max]
self.speaker_centroids = self.speaker_centroids[:new_max]
self.max_speakers = new_max
def set_change_threshold(self, threshold):
"""Update the threshold for detecting speaker changes"""
self.change_threshold = max(0.1, min(threshold, 0.95))
def add_embedding(self, embedding, timestamp=None):
"""Add a new embedding and detect speaker changes"""
current_time = timestamp or time.time()
self.segment_counter += 1
# Initialize first speaker
if not self.speaker_embeddings[0]:
self.speaker_embeddings[0].append(embedding)
self.speaker_centroids[0] = embedding.copy()
self.active_speakers.add(0)
return 0, 1.0
# Calculate similarity with current speaker
current_centroid = self.speaker_centroids[self.current_speaker]
if current_centroid is not None:
similarity = 1.0 - cosine(embedding, current_centroid)
else:
similarity = 0.5
self.last_similarity = similarity
# Check for speaker change
time_since_last_change = current_time - self.last_change_time
speaker_changed = False
if time_since_last_change >= MIN_SEGMENT_DURATION and similarity < self.change_threshold:
# Find best matching speaker
best_speaker = self.current_speaker
best_similarity = similarity
for speaker_id in self.active_speakers:
if speaker_id == self.current_speaker:
continue
centroid = self.speaker_centroids[speaker_id]
if centroid is not None:
speaker_similarity = 1.0 - cosine(embedding, centroid)
if speaker_similarity > best_similarity and speaker_similarity > self.change_threshold:
best_similarity = speaker_similarity
best_speaker = speaker_id
# If no good match found and we can add a new speaker
if best_speaker == self.current_speaker and len(self.active_speakers) < self.max_speakers:
for new_id in range(self.max_speakers):
if new_id not in self.active_speakers:
best_speaker = new_id
self.active_speakers.add(new_id)
break
if best_speaker != self.current_speaker:
self.current_speaker = best_speaker
self.last_change_time = current_time
speaker_changed = True
# Update speaker embeddings and centroids
self.speaker_embeddings[self.current_speaker].append(embedding)
# Keep only recent embeddings (sliding window)
max_embeddings = 20
if len(self.speaker_embeddings[self.current_speaker]) > max_embeddings:
self.speaker_embeddings[self.current_speaker] = self.speaker_embeddings[self.current_speaker][-max_embeddings:]
# Update centroid
if self.speaker_embeddings[self.current_speaker]:
self.speaker_centroids[self.current_speaker] = np.mean(
self.speaker_embeddings[self.current_speaker], axis=0
)
return self.current_speaker, similarity
def get_color_for_speaker(self, speaker_id):
"""Return color for speaker ID"""
if 0 <= speaker_id < len(SPEAKER_COLORS):
return SPEAKER_COLORS[speaker_id]
return "#FFFFFF"
def get_status_info(self):
"""Return status information"""
speaker_counts = [len(self.speaker_embeddings[i]) for i in range(self.max_speakers)]
return {
"current_speaker": self.current_speaker,
"speaker_counts": speaker_counts,
"active_speakers": len(self.active_speakers),
"max_speakers": self.max_speakers,
"last_similarity": self.last_similarity,
"threshold": self.change_threshold,
"segment_counter": self.segment_counter
}
class RealtimeSpeakerDiarization:
def __init__(self):
self.encoder = None
self.audio_processor = None
self.speaker_detector = None
self.recorder = None
self.sentence_queue = queue.Queue()
self.full_sentences = []
self.sentence_speakers = []
self.pending_sentences = []
self.current_conversation = ""
self.is_running = False
self.change_threshold = DEFAULT_CHANGE_THRESHOLD
self.max_speakers = DEFAULT_MAX_SPEAKERS
self.last_transcription = ""
self.transcription_lock = threading.Lock()
def initialize_models(self):
"""Initialize the speaker encoder model"""
try:
device_str = "cuda" if torch.cuda.is_available() else "cpu"
logger.info(f"Using device: {device_str}")
self.encoder = SpeechBrainEncoder(device=device_str)
success = self.encoder.load_model()
if success:
self.audio_processor = AudioProcessor(self.encoder)
self.speaker_detector = SpeakerChangeDetector(
embedding_dim=self.encoder.embedding_dim,
change_threshold=self.change_threshold,
max_speakers=self.max_speakers
)
logger.info("Models initialized successfully!")
return True
else:
logger.error("Failed to load models")
return False
except Exception as e:
logger.error(f"Model initialization error: {e}")
return False
def feed_audio(self, audio_data):
"""Feed audio data directly to the recorder for live transcription"""
if not self.is_running or not self.recorder:
return
try:
# Normalize if needed
if isinstance(audio_data, np.ndarray):
if audio_data.dtype != np.float32:
audio_data = audio_data.astype(np.float32)
# Convert to int16 for the recorder
audio_int16 = (audio_data * 32767).astype(np.int16)
audio_bytes = audio_int16.tobytes()
# Feed to recorder
self.recorder.feed_audio(audio_bytes)
# Also process for speaker detection
self.process_audio_chunk(audio_data)
elif isinstance(audio_data, bytes):
# Feed raw bytes directly
self.recorder.feed_audio(audio_data)
# Convert to float for speaker detection
audio_int16 = np.frombuffer(audio_data, dtype=np.int16)
audio_float = audio_int16.astype(np.float32) / 32768.0
self.process_audio_chunk(audio_float)
logger.debug("Audio fed to recorder")
except Exception as e:
logger.error(f"Error feeding audio: {e}")
def live_text_detected(self, text):
"""Callback for real-time transcription updates"""
with self.transcription_lock:
self.last_transcription = text.strip()
# Update the display immediately on new transcription
self.update_conversation_display()
def process_final_text(self, text):
"""Process final transcribed text with speaker embedding"""
text = text.strip()
if text:
try:
# Get audio data for this transcription
audio_bytes = getattr(self.recorder, 'last_transcription_bytes', None)
if audio_bytes:
self.sentence_queue.put((text, audio_bytes))
else:
# If no audio bytes, use current speaker
self.sentence_queue.put((text, None))
except Exception as e:
logger.error(f"Error processing final text: {e}")
def process_sentence_queue(self):
"""Process sentences in the queue for speaker detection"""
while self.is_running:
try:
text, audio_bytes = self.sentence_queue.get(timeout=1)
current_speaker = self.speaker_detector.current_speaker
if audio_bytes:
# Convert audio data and extract embedding
audio_int16 = np.frombuffer(audio_bytes, dtype=np.int16)
audio_float = audio_int16.astype(np.float32) / 32768.0
# Extract embedding
embedding = self.audio_processor.encoder.embed_utterance(audio_float)
if embedding is not None:
current_speaker, similarity = self.speaker_detector.add_embedding(embedding)
# Store sentence with speaker
with self.transcription_lock:
self.full_sentences.append((text, current_speaker))
self.update_conversation_display()
except queue.Empty:
continue
except Exception as e:
logger.error(f"Error processing sentence: {e}")
def update_conversation_display(self):
"""Update the conversation display"""
try:
sentences_with_style = []
for sentence_text, speaker_id in self.full_sentences:
color = self.speaker_detector.get_color_for_speaker(speaker_id)
speaker_name = f"Speaker {speaker_id + 1}"
sentences_with_style.append(
f'<span style="color:{color}; font-weight: bold;">{speaker_name}:</span> '
f'<span style="color:#333333;">{sentence_text}</span>'
)
# Add current transcription if available
if self.last_transcription:
current_color = self.speaker_detector.get_color_for_speaker(self.speaker_detector.current_speaker)
current_speaker = f"Speaker {self.speaker_detector.current_speaker + 1}"
sentences_with_style.append(
f'<span style="color:{current_color}; font-weight: bold; opacity: 0.7;">{current_speaker}:</span> '
f'<span style="color:#666666; font-style: italic;">{self.last_transcription}...</span>'
)
if sentences_with_style:
self.current_conversation = "<br><br>".join(sentences_with_style)
else:
self.current_conversation = "<i>Waiting for speech input...</i>"
except Exception as e:
logger.error(f"Error updating conversation display: {e}")
self.current_conversation = f"<i>Error: {str(e)}</i>"
def start_recording(self):
"""Start the recording and transcription process"""
if self.encoder is None:
return "Please initialize models first!"
try:
# Setup recorder configuration
recorder_config = {
'spinner': False,
'use_microphone': False, # Change to False for Hugging Face Spaces
'model': FINAL_TRANSCRIPTION_MODEL,
'language': TRANSCRIPTION_LANGUAGE,
'silero_sensitivity': SILERO_SENSITIVITY,
'webrtc_sensitivity': WEBRTC_SENSITIVITY,
'post_speech_silence_duration': SILENCE_THRESHS[1],
'min_length_of_recording': MIN_LENGTH_OF_RECORDING,
'pre_recording_buffer_duration': PRE_RECORDING_BUFFER_DURATION,
'min_gap_between_recordings': 0,
'enable_realtime_transcription': True,
'realtime_processing_pause': 0.1,
'realtime_model_type': REALTIME_TRANSCRIPTION_MODEL,
'on_realtime_transcription_update': self.live_text_detected,
'beam_size': FINAL_BEAM_SIZE,
'beam_size_realtime': REALTIME_BEAM_SIZE,
'sample_rate': SAMPLE_RATE,
}
self.recorder = AudioToTextRecorder(**recorder_config)
# Start processing threads
self.is_running = True
self.sentence_thread = threading.Thread(target=self.process_sentence_queue, daemon=True)
self.sentence_thread.start()
self.transcription_thread = threading.Thread(target=self.run_transcription, daemon=True)
self.transcription_thread.start()
return "Recording started successfully!"
except Exception as e:
logger.error(f"Error starting recording: {e}")
return f"Error starting recording: {e}"
def run_transcription(self):
"""Run the transcription loop"""
try:
while self.is_running:
self.recorder.text(self.process_final_text)
except Exception as e:
logger.error(f"Transcription error: {e}")
def stop_recording(self):
"""Stop the recording process"""
self.is_running = False
if self.recorder:
self.recorder.stop()
return "Recording stopped!"
def clear_conversation(self):
"""Clear all conversation data"""
with self.transcription_lock:
self.full_sentences = []
self.last_transcription = ""
self.current_conversation = "Conversation cleared!"
if self.speaker_detector:
self.speaker_detector = SpeakerChangeDetector(
embedding_dim=self.encoder.embedding_dim,
change_threshold=self.change_threshold,
max_speakers=self.max_speakers
)
return "Conversation cleared!"
def update_settings(self, threshold, max_speakers):
"""Update speaker detection settings"""
self.change_threshold = threshold
self.max_speakers = max_speakers
if self.speaker_detector:
self.speaker_detector.set_change_threshold(threshold)
self.speaker_detector.set_max_speakers(max_speakers)
return f"Settings updated: Threshold={threshold:.2f}, Max Speakers={max_speakers}"
def get_formatted_conversation(self):
"""Get the formatted conversation"""
return self.current_conversation
def get_status_info(self):
"""Get current status information"""
if not self.speaker_detector:
return "Speaker detector not initialized"
try:
status = self.speaker_detector.get_status_info()
status_lines = [
f"**Current Speaker:** {status['current_speaker'] + 1}",
f"**Active Speakers:** {status['active_speakers']} of {status['max_speakers']}",
f"**Last Similarity:** {status['last_similarity']:.3f}",
f"**Change Threshold:** {status['threshold']:.2f}",
f"**Total Sentences:** {len(self.full_sentences)}",
f"**Segments Processed:** {status['segment_counter']}",
"",
"**Speaker Activity:**"
]
for i in range(status['max_speakers']):
color_name = SPEAKER_COLOR_NAMES[i] if i < len(SPEAKER_COLOR_NAMES) else f"Speaker {i+1}"
count = status['speaker_counts'][i]
active = "π’" if count > 0 else "β«"
status_lines.append(f"{active} Speaker {i+1} ({color_name}): {count} segments")
return "\n".join(status_lines)
except Exception as e:
return f"Error getting status: {e}"
def process_audio_chunk(self, audio_data, sample_rate=16000):
"""Process audio chunk from FastRTC input"""
if not self.is_running or self.audio_processor is None:
return
try:
# Ensure audio is float32
if isinstance(audio_data, np.ndarray):
if audio_data.dtype != np.float32:
audio_data = audio_data.astype(np.float32)
else:
audio_data = np.array(audio_data, dtype=np.float32)
# Ensure mono
if len(audio_data.shape) > 1:
audio_data = np.mean(audio_data, axis=1) if audio_data.shape[1] > 1 else audio_data.flatten()
# Normalize if needed
if np.max(np.abs(audio_data)) > 1.0:
audio_data = audio_data / np.max(np.abs(audio_data))
# Add to audio processor buffer for speaker detection
self.audio_processor.add_audio_chunk(audio_data)
# Periodically extract embeddings for speaker detection
if len(self.audio_processor.audio_buffer) % (SAMPLE_RATE // 2) == 0: # Every 0.5 seconds
embedding = self.audio_processor.extract_embedding_from_buffer()
if embedding is not None:
self.speaker_detector.add_embedding(embedding)
except Exception as e:
logger.error(f"Error processing audio chunk: {e}")
# Create diarization handler for FastRTC
class DiarizationAudioHandler(AudioStreamHandler):
def __init__(self, diarization_system):
super().__init__()
self.diarization_system = diarization_system
def receive(self, frame):
"""Process incoming audio frame"""
if not self.diarization_system.is_running:
return
try:
# Extract audio data
sample_rate, audio_array = frame
# Send audio to diarization system for processing
self.diarization_system.feed_audio(audio_array)
except Exception as e:
logger.error(f"Error processing FastRTC audio: {e}")
def copy(self):
"""Return a fresh handler instance"""
return DiarizationAudioHandler(self.diarization_system)
def shutdown(self):
"""Clean up resources"""
pass
def start_up(self):
"""Initialize resources"""
logger.info("DiarizationAudioHandler started")
# Global diarization system instance
diarization_system = RealtimeSpeakerDiarization()
def initialize_system():
"""Initialize the diarization system"""
try:
success = diarization_system.initialize_models()
if success:
return "β
System initialized successfully!"
else:
return "β Failed to initialize system. Check logs for details."
except Exception as e:
logger.error(f"Initialization error: {e}")
return f"β Initialization error: {str(e)}"
def start_recording():
"""Start recording and transcription"""
try:
result = diarization_system.start_recording()
return result
except Exception as e:
return f"β Failed to start recording: {str(e)}"
def stop_recording():
"""Stop recording and transcription"""
try:
result = diarization_system.stop_recording()
return f"βΉοΈ {result}"
except Exception as e:
return f"β Failed to stop recording: {str(e)}"
def clear_conversation():
"""Clear the conversation"""
try:
result = diarization_system.clear_conversation()
return f"ποΈ {result}"
except Exception as e:
return f"β Failed to clear conversation: {str(e)}"
def update_settings(threshold, max_speakers):
"""Update system settings"""
try:
result = diarization_system.update_settings(threshold, max_speakers)
return f"βοΈ {result}"
except Exception as e:
return f"β Failed to update settings: {str(e)}"
def get_conversation():
"""Get the current conversation"""
try:
return diarization_system.get_formatted_conversation()
except Exception as e:
return f"<i>Error getting conversation: {str(e)}</i>"
def get_status():
"""Get system status"""
try:
return diarization_system.get_status_info()
except Exception as e:
return f"Error getting status: {str(e)}"
# Create handler wrapper function for FastRTC
def diarization_handler(audio_data):
"""Handler function for FastRTC stream"""
try:
# Process the audio data
diarization_system.process_audio_chunk(audio_data[1], audio_data[0])
# Just yield the original audio back (echo)
# This can be changed to just return None since we don't need echo
# This can be changed to just return None since we don't need echo
yield audio_data
except Exception as e:
logger.error(f"Error in diarization handler: {e}")
# Create FastRTC stream with ReplyOnPause pattern
stream = Stream(
handler=ReplyOnPause(diarization_handler),
modality="audio",
mode="send-receive",
ui_args={
"title": "Real-time Speaker Diarization",
"description": "Live transcription with automatic speaker identification"
}
)
# Main execution
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser(description="Real-time Speaker Diarization System")
parser.add_argument("--mode", choices=["ui", "api", "both"], default="ui",
help="Run mode: FastRTC UI, API only, or both")
parser.add_argument("--host", default="0.0.0.0", help="Host to bind to")
parser.add_argument("--port", type=int, default=7860, help="Port to bind to")
parser.add_argument("--api-port", type=int, default=8000, help="API port (when running both)")
args = parser.parse_args()
# Initialize the system before running anything
initialize_system()
start_recording()
if args.mode == "ui":
# Launch the FastRTC built-in UI
stream.ui.launch(
server_name=args.host,
server_port=args.port,
share=True,
show_error=True
)
elif args.mode == "api":
# Run FastAPI only
app = FastAPI()
stream.mount(app)
uvicorn.run(
app,
host=args.host,
port=args.port,
log_level="info"
)
elif args.mode == "both":
# Run both FastRTC UI and API
import threading
def run_fastapi():
app = FastAPI()
stream.mount(app)
uvicorn.run(
app,
host=args.host,
port=args.api_port,
log_level="info"
)
# Start FastAPI in a separate thread
api_thread = threading.Thread(target=run_fastapi, daemon=True)
api_thread.start()
# Start FastRTC UI in main thread
stream.ui.launch(
server_name=args.host,
server_port=args.port,
share=True,
show_error=True
) |