Spaces:
Sleeping
Sleeping
Commit
·
66992f6
1
Parent(s):
4611564
Code Update
Browse files
app.py
ADDED
@@ -0,0 +1,453 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import numpy as np
|
3 |
+
import torch
|
4 |
+
import torchaudio
|
5 |
+
from scipy.spatial.distance import cosine
|
6 |
+
import tempfile
|
7 |
+
import os
|
8 |
+
import warnings
|
9 |
+
warnings.filterwarnings("ignore", category=UserWarning)
|
10 |
+
|
11 |
+
try:
|
12 |
+
from transformers import pipeline
|
13 |
+
except ImportError:
|
14 |
+
print("transformers not found. Install with: pip install transformers")
|
15 |
+
|
16 |
+
# Configuration
|
17 |
+
class Config:
|
18 |
+
# Audio settings
|
19 |
+
SAMPLE_RATE = 16000
|
20 |
+
|
21 |
+
# Speaker detection
|
22 |
+
CHANGE_THRESHOLD = 0.65
|
23 |
+
MAX_SPEAKERS = 4
|
24 |
+
MIN_SEGMENT_DURATION = 1.0
|
25 |
+
EMBEDDING_HISTORY_SIZE = 3
|
26 |
+
SPEAKER_MEMORY_SIZE = 20
|
27 |
+
|
28 |
+
# Console colors for speakers (HTML version)
|
29 |
+
SPEAKER_COLORS = [
|
30 |
+
"#FFD700", # Gold
|
31 |
+
"#FF6B6B", # Red
|
32 |
+
"#4ECDC4", # Teal
|
33 |
+
"#45B7D1", # Blue
|
34 |
+
"#96CEB4", # Mint
|
35 |
+
"#FFEAA7", # Light Yellow
|
36 |
+
"#DDA0DD", # Plum
|
37 |
+
"#98D8C8", # Mint Green
|
38 |
+
]
|
39 |
+
|
40 |
+
class SpeakerEncoder:
|
41 |
+
"""Simplified speaker encoder using torchaudio transforms"""
|
42 |
+
|
43 |
+
def __init__(self, device="cpu"):
|
44 |
+
self.device = device
|
45 |
+
self.embedding_dim = 128
|
46 |
+
self.model_loaded = False
|
47 |
+
self._setup_model()
|
48 |
+
|
49 |
+
def _setup_model(self):
|
50 |
+
"""Setup a simple MFCC-based feature extractor"""
|
51 |
+
try:
|
52 |
+
self.mfcc_transform = torchaudio.transforms.MFCC(
|
53 |
+
sample_rate=Config.SAMPLE_RATE,
|
54 |
+
n_mfcc=13,
|
55 |
+
melkwargs={"n_fft": 400, "hop_length": 160, "n_mels": 23}
|
56 |
+
).to(self.device)
|
57 |
+
self.model_loaded = True
|
58 |
+
print("Simple MFCC-based encoder initialized")
|
59 |
+
except Exception as e:
|
60 |
+
print(f"Error setting up encoder: {e}")
|
61 |
+
self.model_loaded = False
|
62 |
+
|
63 |
+
def extract_embedding(self, audio):
|
64 |
+
"""Extract speaker embedding from audio"""
|
65 |
+
if not self.model_loaded:
|
66 |
+
return np.zeros(self.embedding_dim)
|
67 |
+
|
68 |
+
try:
|
69 |
+
# Ensure audio is float32 and normalized
|
70 |
+
if isinstance(audio, np.ndarray):
|
71 |
+
audio = torch.from_numpy(audio).float()
|
72 |
+
|
73 |
+
# Normalize audio
|
74 |
+
if audio.abs().max() > 0:
|
75 |
+
audio = audio / audio.abs().max()
|
76 |
+
|
77 |
+
# Add batch dimension if needed
|
78 |
+
if audio.dim() == 1:
|
79 |
+
audio = audio.unsqueeze(0)
|
80 |
+
|
81 |
+
# Extract MFCC features
|
82 |
+
with torch.no_grad():
|
83 |
+
mfcc = self.mfcc_transform(audio)
|
84 |
+
# Simple statistics-based embedding
|
85 |
+
embedding = torch.cat([
|
86 |
+
mfcc.mean(dim=2).flatten(),
|
87 |
+
mfcc.std(dim=2).flatten(),
|
88 |
+
mfcc.max(dim=2)[0].flatten(),
|
89 |
+
mfcc.min(dim=2)[0].flatten()
|
90 |
+
])
|
91 |
+
|
92 |
+
# Pad or truncate to fixed size
|
93 |
+
if embedding.size(0) > self.embedding_dim:
|
94 |
+
embedding = embedding[:self.embedding_dim]
|
95 |
+
elif embedding.size(0) < self.embedding_dim:
|
96 |
+
padding = torch.zeros(self.embedding_dim - embedding.size(0))
|
97 |
+
embedding = torch.cat([embedding, padding])
|
98 |
+
|
99 |
+
return embedding.cpu().numpy()
|
100 |
+
|
101 |
+
except Exception as e:
|
102 |
+
print(f"Error extracting embedding: {e}")
|
103 |
+
return np.zeros(self.embedding_dim)
|
104 |
+
|
105 |
+
class SpeakerDetector:
|
106 |
+
"""Speaker change detection using embeddings"""
|
107 |
+
|
108 |
+
def __init__(self, threshold=Config.CHANGE_THRESHOLD, max_speakers=Config.MAX_SPEAKERS):
|
109 |
+
self.threshold = threshold
|
110 |
+
self.max_speakers = max_speakers
|
111 |
+
self.current_speaker = 0
|
112 |
+
self.speaker_embeddings = [[] for _ in range(max_speakers)]
|
113 |
+
self.speaker_centroids = [None] * max_speakers
|
114 |
+
self.active_speakers = {0}
|
115 |
+
|
116 |
+
def reset(self):
|
117 |
+
"""Reset speaker detection state"""
|
118 |
+
self.current_speaker = 0
|
119 |
+
self.speaker_embeddings = [[] for _ in range(self.max_speakers)]
|
120 |
+
self.speaker_centroids = [None] * self.max_speakers
|
121 |
+
self.active_speakers = {0}
|
122 |
+
|
123 |
+
def detect_speaker(self, embedding):
|
124 |
+
"""Detect current speaker from embedding"""
|
125 |
+
# Initialize first speaker
|
126 |
+
if not self.speaker_embeddings[0]:
|
127 |
+
self.speaker_embeddings[0].append(embedding)
|
128 |
+
self.speaker_centroids[0] = embedding.copy()
|
129 |
+
return 0, 1.0
|
130 |
+
|
131 |
+
# Calculate similarity with current speaker
|
132 |
+
current_centroid = self.speaker_centroids[self.current_speaker]
|
133 |
+
if current_centroid is not None:
|
134 |
+
similarity = 1.0 - cosine(embedding, current_centroid)
|
135 |
+
else:
|
136 |
+
similarity = 0.0
|
137 |
+
|
138 |
+
# Check for speaker change
|
139 |
+
if similarity < self.threshold:
|
140 |
+
# Find best matching existing speaker
|
141 |
+
best_speaker = self.current_speaker
|
142 |
+
best_similarity = similarity
|
143 |
+
|
144 |
+
for speaker_id in self.active_speakers:
|
145 |
+
if speaker_id == self.current_speaker:
|
146 |
+
continue
|
147 |
+
|
148 |
+
centroid = self.speaker_centroids[speaker_id]
|
149 |
+
if centroid is not None:
|
150 |
+
sim = 1.0 - cosine(embedding, centroid)
|
151 |
+
if sim > best_similarity and sim > self.threshold:
|
152 |
+
best_similarity = sim
|
153 |
+
best_speaker = speaker_id
|
154 |
+
|
155 |
+
# Create new speaker if no good match and slots available
|
156 |
+
if (best_speaker == self.current_speaker and
|
157 |
+
len(self.active_speakers) < self.max_speakers):
|
158 |
+
for new_id in range(self.max_speakers):
|
159 |
+
if new_id not in self.active_speakers:
|
160 |
+
best_speaker = new_id
|
161 |
+
best_similarity = 0.0
|
162 |
+
self.active_speakers.add(new_id)
|
163 |
+
break
|
164 |
+
|
165 |
+
# Update current speaker if changed
|
166 |
+
if best_speaker != self.current_speaker:
|
167 |
+
self.current_speaker = best_speaker
|
168 |
+
similarity = best_similarity
|
169 |
+
|
170 |
+
# Update speaker model
|
171 |
+
self._update_speaker_model(self.current_speaker, embedding)
|
172 |
+
return self.current_speaker, similarity
|
173 |
+
|
174 |
+
def _update_speaker_model(self, speaker_id, embedding):
|
175 |
+
"""Update speaker model with new embedding"""
|
176 |
+
self.speaker_embeddings[speaker_id].append(embedding)
|
177 |
+
|
178 |
+
# Keep only recent embeddings
|
179 |
+
if len(self.speaker_embeddings[speaker_id]) > Config.SPEAKER_MEMORY_SIZE:
|
180 |
+
self.speaker_embeddings[speaker_id] = \
|
181 |
+
self.speaker_embeddings[speaker_id][-Config.SPEAKER_MEMORY_SIZE:]
|
182 |
+
|
183 |
+
# Update centroid
|
184 |
+
if self.speaker_embeddings[speaker_id]:
|
185 |
+
self.speaker_centroids[speaker_id] = np.mean(
|
186 |
+
self.speaker_embeddings[speaker_id], axis=0
|
187 |
+
)
|
188 |
+
|
189 |
+
class AudioProcessor:
|
190 |
+
"""Handles audio processing and transcription"""
|
191 |
+
|
192 |
+
def __init__(self):
|
193 |
+
self.encoder = SpeakerEncoder()
|
194 |
+
self.detector = SpeakerDetector()
|
195 |
+
|
196 |
+
# Initialize Whisper model for transcription
|
197 |
+
try:
|
198 |
+
self.transcriber = pipeline(
|
199 |
+
"automatic-speech-recognition",
|
200 |
+
model="openai/whisper-base",
|
201 |
+
chunk_length_s=30,
|
202 |
+
device=0 if torch.cuda.is_available() else -1
|
203 |
+
)
|
204 |
+
print("Whisper model loaded successfully")
|
205 |
+
except Exception as e:
|
206 |
+
print(f"Error loading Whisper model: {e}")
|
207 |
+
self.transcriber = None
|
208 |
+
|
209 |
+
def process_audio_file(self, audio_file):
|
210 |
+
"""Process uploaded audio file"""
|
211 |
+
if audio_file is None:
|
212 |
+
return "Please upload an audio file.", ""
|
213 |
+
|
214 |
+
try:
|
215 |
+
# Reset speaker detection for new file
|
216 |
+
self.detector.reset()
|
217 |
+
|
218 |
+
# Load audio file
|
219 |
+
waveform, sample_rate = torchaudio.load(audio_file)
|
220 |
+
|
221 |
+
# Convert to mono if stereo
|
222 |
+
if waveform.shape[0] > 1:
|
223 |
+
waveform = waveform.mean(dim=0, keepdim=True)
|
224 |
+
|
225 |
+
# Resample to 16kHz if needed
|
226 |
+
if sample_rate != Config.SAMPLE_RATE:
|
227 |
+
resampler = torchaudio.transforms.Resample(sample_rate, Config.SAMPLE_RATE)
|
228 |
+
waveform = resampler(waveform)
|
229 |
+
|
230 |
+
# Convert to numpy
|
231 |
+
audio_data = waveform.squeeze().numpy()
|
232 |
+
|
233 |
+
# Transcribe entire audio
|
234 |
+
if self.transcriber:
|
235 |
+
transcription_result = self.transcriber(audio_file)
|
236 |
+
full_transcription = transcription_result['text']
|
237 |
+
else:
|
238 |
+
full_transcription = "Transcription service unavailable"
|
239 |
+
|
240 |
+
# Process audio in chunks for speaker detection
|
241 |
+
chunk_duration = 3.0 # 3 second chunks
|
242 |
+
chunk_samples = int(chunk_duration * Config.SAMPLE_RATE)
|
243 |
+
results = []
|
244 |
+
|
245 |
+
for i in range(0, len(audio_data), chunk_samples // 2): # 50% overlap
|
246 |
+
chunk = audio_data[i:i + chunk_samples]
|
247 |
+
|
248 |
+
if len(chunk) < Config.SAMPLE_RATE: # Skip chunks less than 1 second
|
249 |
+
continue
|
250 |
+
|
251 |
+
# Extract speaker embedding
|
252 |
+
embedding = self.encoder.extract_embedding(chunk)
|
253 |
+
speaker_id, similarity = self.detector.detect_speaker(embedding)
|
254 |
+
|
255 |
+
# Get timestamp
|
256 |
+
start_time = i / Config.SAMPLE_RATE
|
257 |
+
end_time = (i + len(chunk)) / Config.SAMPLE_RATE
|
258 |
+
|
259 |
+
# Transcribe chunk
|
260 |
+
if self.transcriber and len(chunk) > Config.SAMPLE_RATE:
|
261 |
+
# Save chunk temporarily for transcription
|
262 |
+
with tempfile.NamedTemporaryFile(suffix='.wav', delete=False) as tmp_file:
|
263 |
+
torchaudio.save(tmp_file.name, torch.tensor(chunk).unsqueeze(0), Config.SAMPLE_RATE)
|
264 |
+
chunk_result = self.transcriber(tmp_file.name)
|
265 |
+
chunk_text = chunk_result['text'].strip()
|
266 |
+
os.unlink(tmp_file.name) # Clean up temp file
|
267 |
+
else:
|
268 |
+
chunk_text = ""
|
269 |
+
|
270 |
+
if chunk_text: # Only add if there's actual text
|
271 |
+
results.append({
|
272 |
+
'speaker_id': speaker_id,
|
273 |
+
'start_time': start_time,
|
274 |
+
'end_time': end_time,
|
275 |
+
'text': chunk_text,
|
276 |
+
'similarity': similarity
|
277 |
+
})
|
278 |
+
|
279 |
+
# Format results
|
280 |
+
formatted_output = self._format_results(results)
|
281 |
+
return formatted_output, full_transcription
|
282 |
+
|
283 |
+
except Exception as e:
|
284 |
+
return f"Error processing audio: {str(e)}", ""
|
285 |
+
|
286 |
+
def _format_results(self, results):
|
287 |
+
"""Format results with speaker colors"""
|
288 |
+
if not results:
|
289 |
+
return "No speech detected in the audio file."
|
290 |
+
|
291 |
+
formatted_lines = []
|
292 |
+
formatted_lines.append("🎤 **Speaker Diarization Results**\n")
|
293 |
+
|
294 |
+
for result in results:
|
295 |
+
speaker_id = result['speaker_id']
|
296 |
+
start_time = result['start_time']
|
297 |
+
end_time = result['end_time']
|
298 |
+
text = result['text']
|
299 |
+
similarity = result['similarity']
|
300 |
+
|
301 |
+
color = SPEAKER_COLORS[speaker_id % len(SPEAKER_COLORS)]
|
302 |
+
|
303 |
+
# Format timestamp
|
304 |
+
start_min, start_sec = divmod(int(start_time), 60)
|
305 |
+
end_min, end_sec = divmod(int(end_time), 60)
|
306 |
+
timestamp = f"[{start_min:02d}:{start_sec:02d} - {end_min:02d}:{end_sec:02d}]"
|
307 |
+
|
308 |
+
# Create colored HTML output
|
309 |
+
formatted_lines.append(
|
310 |
+
f'<div style="margin-bottom: 10px; padding: 8px; border-left: 4px solid {color}; background-color: {color}20;">'
|
311 |
+
f'<strong style="color: {color};">Speaker {speaker_id + 1}</strong> '
|
312 |
+
f'<span style="color: #666; font-size: 0.9em;">{timestamp}</span><br>'
|
313 |
+
f'<span style="color: #333;">{text}</span>'
|
314 |
+
f'</div>'
|
315 |
+
)
|
316 |
+
|
317 |
+
return "".join(formatted_lines)
|
318 |
+
|
319 |
+
# Global processor instance
|
320 |
+
processor = AudioProcessor()
|
321 |
+
|
322 |
+
def process_audio(audio_file, sensitivity):
|
323 |
+
"""Process audio file with speaker detection"""
|
324 |
+
if audio_file is None:
|
325 |
+
return "Please upload an audio file.", ""
|
326 |
+
|
327 |
+
# Update sensitivity
|
328 |
+
processor.detector.threshold = sensitivity
|
329 |
+
|
330 |
+
# Process the audio
|
331 |
+
diarized_output, full_transcription = processor.process_audio_file(audio_file)
|
332 |
+
|
333 |
+
return diarized_output, full_transcription
|
334 |
+
|
335 |
+
# Create Gradio interface
|
336 |
+
def create_interface():
|
337 |
+
"""Create Gradio interface"""
|
338 |
+
|
339 |
+
with gr.Blocks(
|
340 |
+
theme=gr.themes.Soft(),
|
341 |
+
title="Speaker Diarization & Transcription",
|
342 |
+
css="""
|
343 |
+
.gradio-container {
|
344 |
+
max-width: 1200px !important;
|
345 |
+
}
|
346 |
+
.speaker-output {
|
347 |
+
font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
|
348 |
+
}
|
349 |
+
"""
|
350 |
+
) as demo:
|
351 |
+
|
352 |
+
gr.Markdown(
|
353 |
+
"""
|
354 |
+
# 🎙️ Speaker Diarization & Transcription
|
355 |
+
|
356 |
+
Upload an audio file to automatically detect different speakers and transcribe their speech.
|
357 |
+
The system will identify speaker changes and display each speaker's text in different colors.
|
358 |
+
"""
|
359 |
+
)
|
360 |
+
|
361 |
+
with gr.Row():
|
362 |
+
with gr.Column(scale=1):
|
363 |
+
audio_input = gr.Audio(
|
364 |
+
label="Upload Audio File",
|
365 |
+
type="filepath",
|
366 |
+
sources=["upload", "microphone"]
|
367 |
+
)
|
368 |
+
|
369 |
+
sensitivity_slider = gr.Slider(
|
370 |
+
minimum=0.1,
|
371 |
+
maximum=1.0,
|
372 |
+
value=0.65,
|
373 |
+
step=0.05,
|
374 |
+
label="Speaker Change Sensitivity",
|
375 |
+
info="Lower values = more sensitive to speaker changes"
|
376 |
+
)
|
377 |
+
|
378 |
+
process_btn = gr.Button("🎯 Process Audio", variant="primary", size="lg")
|
379 |
+
|
380 |
+
gr.Markdown(
|
381 |
+
"""
|
382 |
+
### Instructions:
|
383 |
+
1. Upload an audio file (WAV, MP3, etc.)
|
384 |
+
2. Adjust sensitivity if needed
|
385 |
+
3. Click "Process Audio"
|
386 |
+
4. View results with speaker colors
|
387 |
+
|
388 |
+
### Tips:
|
389 |
+
- Works best with clear speech
|
390 |
+
- Supports multiple file formats
|
391 |
+
- Different speakers shown in different colors
|
392 |
+
- Processing may take a moment for longer files
|
393 |
+
"""
|
394 |
+
)
|
395 |
+
|
396 |
+
with gr.Column(scale=2):
|
397 |
+
with gr.Tabs():
|
398 |
+
with gr.TabItem("🎨 Speaker Diarization"):
|
399 |
+
diarized_output = gr.HTML(
|
400 |
+
label="Speaker Diarization Results",
|
401 |
+
elem_classes=["speaker-output"]
|
402 |
+
)
|
403 |
+
|
404 |
+
with gr.TabItem("📝 Full Transcription"):
|
405 |
+
full_transcription = gr.Textbox(
|
406 |
+
label="Complete Transcription",
|
407 |
+
lines=15,
|
408 |
+
max_lines=20,
|
409 |
+
show_copy_button=True
|
410 |
+
)
|
411 |
+
|
412 |
+
# Event handlers
|
413 |
+
process_btn.click(
|
414 |
+
fn=process_audio,
|
415 |
+
inputs=[audio_input, sensitivity_slider],
|
416 |
+
outputs=[diarized_output, full_transcription],
|
417 |
+
show_progress=True
|
418 |
+
)
|
419 |
+
|
420 |
+
# Auto-process when audio is uploaded
|
421 |
+
audio_input.change(
|
422 |
+
fn=process_audio,
|
423 |
+
inputs=[audio_input, sensitivity_slider],
|
424 |
+
outputs=[diarized_output, full_transcription],
|
425 |
+
show_progress=True
|
426 |
+
)
|
427 |
+
|
428 |
+
gr.Markdown(
|
429 |
+
"""
|
430 |
+
---
|
431 |
+
### About
|
432 |
+
This application uses:
|
433 |
+
- **MFCC features** for speaker embedding extraction
|
434 |
+
- **Cosine similarity** for speaker change detection
|
435 |
+
- **OpenAI Whisper** for speech-to-text transcription
|
436 |
+
- **Gradio** for the web interface
|
437 |
+
|
438 |
+
**Note**: This is a simplified speaker diarization system. For production use,
|
439 |
+
consider more advanced speaker embedding models like speechbrain or pyannote.audio.
|
440 |
+
"""
|
441 |
+
)
|
442 |
+
|
443 |
+
return demo
|
444 |
+
|
445 |
+
# Create and launch the interface
|
446 |
+
if __name__ == "__main__":
|
447 |
+
demo = create_interface()
|
448 |
+
demo.launch(
|
449 |
+
server_name="0.0.0.0",
|
450 |
+
server_port=7860,
|
451 |
+
share=False,
|
452 |
+
show_error=True
|
453 |
+
)
|