Saiyaswanth007 commited on
Commit
117eca9
·
1 Parent(s): acd1802

Adding fastrtc

Browse files
Files changed (1) hide show
  1. app.py +162 -176
app.py CHANGED
@@ -8,7 +8,6 @@ import os
8
  import urllib.request
9
  import torchaudio
10
  from scipy.spatial.distance import cosine
11
- from RealtimeSTT import AudioToTextRecorder
12
  import json
13
  import io
14
  import wave
@@ -126,14 +125,13 @@ class AudioProcessor:
126
  def __init__(self, encoder):
127
  self.encoder = encoder
128
 
129
- def extract_embedding(self, audio_int16):
130
  try:
131
- float_audio = audio_int16.astype(np.float32) / 32768.0
 
 
132
 
133
- if np.abs(float_audio).max() > 1.0:
134
- float_audio = float_audio / np.abs(float_audio).max()
135
-
136
- embedding = self.encoder.embed_utterance(float_audio)
137
 
138
  return embedding
139
  except Exception as e:
@@ -271,52 +269,58 @@ class SpeakerChangeDetector:
271
  }
272
 
273
 
274
- class WebRTCAudioProcessor:
275
- """Processes WebRTC audio streams for speaker diarization"""
276
- def __init__(self, diarization_system):
277
- self.diarization_system = diarization_system
278
- self.audio_buffer = []
279
- self.buffer_lock = threading.Lock()
280
- self.processing_thread = None
281
- self.is_processing = False
282
 
283
- def process_audio(self, audio_data, sample_rate):
284
- """Process incoming audio data from WebRTC"""
285
  try:
286
- # Convert audio data to numpy array if needed
287
- if isinstance(audio_data, bytes):
288
- audio_array = np.frombuffer(audio_data, dtype=np.int16)
289
- elif isinstance(audio_data, tuple):
290
- # Handle tuple format (sample_rate, audio_array)
291
- sample_rate, audio_array = audio_data
292
- if isinstance(audio_array, np.ndarray):
293
- if audio_array.dtype != np.int16:
294
- audio_array = (audio_array * 32767).astype(np.int16)
295
- else:
296
- audio_array = np.array(audio_array, dtype=np.int16)
297
- else:
298
- audio_array = np.array(audio_data, dtype=np.int16)
299
 
300
- # Ensure mono audio
301
- if len(audio_array.shape) > 1:
302
- audio_array = audio_array[:, 0]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
303
 
304
- # Add to buffer
305
- with self.buffer_lock:
306
- self.audio_buffer.extend(audio_array)
307
-
308
- # Process buffer when it's large enough (1 second of audio)
309
- if len(self.audio_buffer) >= sample_rate:
310
- buffer_to_process = np.array(self.audio_buffer[:sample_rate])
311
- self.audio_buffer = self.audio_buffer[sample_rate//2:] # Keep 50% overlap
312
-
313
- # Feed to recorder in separate thread
314
- if self.diarization_system.recorder:
315
- audio_bytes = buffer_to_process.tobytes()
316
- self.diarization_system.recorder.feed_audio(audio_bytes)
317
-
318
  except Exception as e:
319
- print(f"Error processing WebRTC audio: {e}")
 
320
 
321
 
322
  class RealtimeSpeakerDiarization:
@@ -324,86 +328,112 @@ class RealtimeSpeakerDiarization:
324
  self.encoder = None
325
  self.audio_processor = None
326
  self.speaker_detector = None
327
- self.recorder = None
328
- self.webrtc_processor = None
 
329
  self.sentence_queue = queue.Queue()
330
  self.full_sentences = []
331
  self.sentence_speakers = []
332
  self.pending_sentences = []
333
  self.displayed_text = ""
334
- self.last_realtime_text = ""
335
  self.is_running = False
336
  self.change_threshold = DEFAULT_CHANGE_THRESHOLD
337
  self.max_speakers = DEFAULT_MAX_SPEAKERS
 
 
338
 
339
  def initialize_models(self):
340
- """Initialize the speaker encoder model"""
341
  try:
342
  device_str = "cuda" if torch.cuda.is_available() else "cpu"
343
  print(f"Using device: {device_str}")
344
 
 
345
  self.encoder = SpeechBrainEncoder(device=device_str)
346
- success = self.encoder.load_model()
 
 
 
 
347
 
348
- if success:
349
  self.audio_processor = AudioProcessor(self.encoder)
350
  self.speaker_detector = SpeakerChangeDetector(
351
  embedding_dim=self.encoder.embedding_dim,
352
  change_threshold=self.change_threshold,
353
  max_speakers=self.max_speakers
354
  )
355
- self.webrtc_processor = WebRTCAudioProcessor(self)
356
- print("ECAPA-TDNN model loaded successfully!")
357
  return True
358
  else:
359
- print("Failed to load ECAPA-TDNN model")
360
  return False
361
  except Exception as e:
362
  print(f"Model initialization error: {e}")
363
  return False
364
 
365
- def live_text_detected(self, text):
366
- """Callback for real-time transcription updates"""
367
- text = text.strip()
368
- if text:
369
- sentence_delimiters = '.?!。'
370
- prob_sentence_end = (
371
- len(self.last_realtime_text) > 0
372
- and text[-1] in sentence_delimiters
373
- and self.last_realtime_text[-1] in sentence_delimiters
374
- )
375
-
376
- self.last_realtime_text = text
377
-
378
- if prob_sentence_end and FAST_SENTENCE_END:
379
- self.recorder.stop()
380
- elif prob_sentence_end:
381
- self.recorder.post_speech_silence_duration = SILENCE_THRESHS[0]
382
  else:
383
- self.recorder.post_speech_silence_duration = SILENCE_THRESHS[1]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
384
 
385
- def process_final_text(self, text):
386
- """Process final transcribed text with speaker embedding"""
387
- text = text.strip()
388
- if text:
389
- try:
390
- bytes_data = self.recorder.last_transcription_bytes
391
- self.sentence_queue.put((text, bytes_data))
392
- self.pending_sentences.append(text)
393
- except Exception as e:
394
- print(f"Error processing final text: {e}")
 
 
 
 
 
 
 
 
 
 
 
 
395
 
396
  def process_sentence_queue(self):
397
  """Process sentences in the queue for speaker detection"""
398
  while self.is_running:
399
  try:
400
- text, bytes_data = self.sentence_queue.get(timeout=1)
401
-
402
- # Convert audio data to int16
403
- audio_int16 = np.int16(bytes_data * 32767)
404
-
405
- # Extract speaker embedding
406
- speaker_embedding = self.audio_processor.extract_embedding(audio_int16)
407
 
408
  # Store sentence and embedding
409
  self.full_sentences.append((text, speaker_embedding))
@@ -416,10 +446,6 @@ class RealtimeSpeakerDiarization:
416
  speaker_id, similarity = self.speaker_detector.add_embedding(speaker_embedding)
417
  self.sentence_speakers.append(speaker_id)
418
 
419
- # Remove from pending
420
- if text in self.pending_sentences:
421
- self.pending_sentences.remove(text)
422
-
423
  except queue.Empty:
424
  continue
425
  except Exception as e:
@@ -431,57 +457,20 @@ class RealtimeSpeakerDiarization:
431
  return "Please initialize models first!"
432
 
433
  try:
434
- # Setup recorder configuration for WebRTC input
435
- recorder_config = {
436
- 'spinner': False,
437
- 'use_microphone': False, # We'll feed audio manually
438
- 'model': FINAL_TRANSCRIPTION_MODEL,
439
- 'language': TRANSCRIPTION_LANGUAGE,
440
- 'silero_sensitivity': SILERO_SENSITIVITY,
441
- 'webrtc_sensitivity': WEBRTC_SENSITIVITY,
442
- 'post_speech_silence_duration': SILENCE_THRESHS[1],
443
- 'min_length_of_recording': MIN_LENGTH_OF_RECORDING,
444
- 'pre_recording_buffer_duration': PRE_RECORDING_BUFFER_DURATION,
445
- 'min_gap_between_recordings': 0,
446
- 'enable_realtime_transcription': True,
447
- 'realtime_processing_pause': 0,
448
- 'realtime_model_type': REALTIME_TRANSCRIPTION_MODEL,
449
- 'on_realtime_transcription_update': self.live_text_detected,
450
- 'beam_size': FINAL_BEAM_SIZE,
451
- 'beam_size_realtime': REALTIME_BEAM_SIZE,
452
- 'buffer_size': BUFFER_SIZE,
453
- 'sample_rate': SAMPLE_RATE,
454
- }
455
-
456
- self.recorder = AudioToTextRecorder(**recorder_config)
457
-
458
  # Start sentence processing thread
459
  self.is_running = True
460
- self.sentence_thread = threading.Thread(target=self.process_sentence_queue, daemon=True)
461
- self.sentence_thread.start()
462
-
463
- # Start transcription thread
464
- self.transcription_thread = threading.Thread(target=self.run_transcription, daemon=True)
465
- self.transcription_thread.start()
466
 
467
- return "Recording started successfully! WebRTC audio input ready."
468
 
469
  except Exception as e:
470
  return f"Error starting recording: {e}"
471
 
472
- def run_transcription(self):
473
- """Run the transcription loop"""
474
- try:
475
- while self.is_running:
476
- self.recorder.text(self.process_final_text)
477
- except Exception as e:
478
- print(f"Transcription error: {e}")
479
-
480
  def stop_recording(self):
481
  """Stop the recording process"""
482
  self.is_running = False
483
- if self.recorder:
484
- self.recorder.stop()
485
  return "Recording stopped!"
486
 
487
  def clear_conversation(self):
@@ -490,7 +479,7 @@ class RealtimeSpeakerDiarization:
490
  self.sentence_speakers = []
491
  self.pending_sentences = []
492
  self.displayed_text = ""
493
- self.last_realtime_text = ""
494
 
495
  if self.speaker_detector:
496
  self.speaker_detector = SpeakerChangeDetector(
@@ -522,6 +511,7 @@ class RealtimeSpeakerDiarization:
522
  sentence_text, _ = sentence
523
  if i >= len(self.sentence_speakers):
524
  color = "#FFFFFF"
 
525
  else:
526
  speaker_id = self.sentence_speakers[i]
527
  color = self.speaker_detector.get_color_for_speaker(speaker_id)
@@ -530,11 +520,6 @@ class RealtimeSpeakerDiarization:
530
  sentences_with_style.append(
531
  f'<span style="color:{color};"><b>{speaker_name}:</b> {sentence_text}</span>')
532
 
533
- # Add pending sentences
534
- for pending_sentence in self.pending_sentences:
535
- sentences_with_style.append(
536
- f'<span style="color:#60FFFF;"><b>Processing:</b> {pending_sentence}</span>')
537
-
538
  if sentences_with_style:
539
  return "<br><br>".join(sentences_with_style)
540
  else:
@@ -557,6 +542,7 @@ class RealtimeSpeakerDiarization:
557
  f"**Last Similarity:** {status['last_similarity']:.3f}",
558
  f"**Change Threshold:** {status['threshold']:.2f}",
559
  f"**Total Sentences:** {len(self.full_sentences)}",
 
560
  "",
561
  "**Speaker Segment Counts:**"
562
  ]
@@ -614,27 +600,28 @@ def get_status():
614
  return diarization_system.get_status_info()
615
 
616
 
617
- def process_audio_stream(audio):
618
- """Process audio stream from WebRTC"""
619
- if diarization_system.webrtc_processor and diarization_system.is_running:
620
- diarization_system.webrtc_processor.process_audio(audio, SAMPLE_RATE)
621
- return None
 
622
 
623
 
624
  # Create Gradio interface
625
  def create_interface():
626
- with gr.Blocks(title="Real-time Speaker Diarization", theme=gr.themes.Monochrome()) as app:
627
  gr.Markdown("# 🎤 Real-time Speech Recognition with Speaker Diarization")
628
- gr.Markdown("This app performs real-time speech recognition with automatic speaker identification and color-coding using WebRTC.")
629
 
630
  with gr.Row():
631
  with gr.Column(scale=2):
632
- # WebRTC Audio Input
633
  audio_input = gr.Audio(
634
- sources=["microphone"],
 
635
  streaming=True,
636
- label="🎙️ Microphone Input",
637
- type="numpy"
638
  )
639
 
640
  # Main conversation display
@@ -654,7 +641,7 @@ def create_interface():
654
  status_output = gr.Textbox(
655
  label="System Status",
656
  value="System not initialized",
657
- lines=8,
658
  interactive=False
659
  )
660
 
@@ -681,17 +668,6 @@ def create_interface():
681
 
682
  update_settings_btn = gr.Button("Update Settings")
683
 
684
- # Instructions
685
- gr.Markdown("## 📝 Instructions")
686
- gr.Markdown("""
687
- 1. Click **Initialize System** to load models
688
- 2. Click **Start Recording** to begin processing
689
- 3. Allow microphone access when prompted
690
- 4. Speak into your microphone
691
- 5. Watch real-time transcription with speaker labels
692
- 6. Adjust settings as needed
693
- """)
694
-
695
  # Speaker color legend
696
  gr.Markdown("## 🎨 Speaker Colors")
697
  color_info = []
@@ -699,10 +675,18 @@ def create_interface():
699
  color_info.append(f'<span style="color:{color};">■</span> Speaker {i+1} ({name})')
700
 
701
  gr.HTML("<br>".join(color_info[:DEFAULT_MAX_SPEAKERS]))
702
-
703
- # Auto-refresh conversation and status
704
- def refresh_display():
705
- return get_conversation(), get_status()
 
 
 
 
 
 
 
 
706
 
707
  # Event handlers
708
  def on_initialize():
@@ -767,17 +751,19 @@ def create_interface():
767
  outputs=[status_output]
768
  )
769
 
770
- # Connect WebRTC audio stream to processing
771
  audio_input.stream(
772
- process_audio_stream,
773
  inputs=[audio_input],
774
- outputs=[]
 
 
775
  )
776
 
777
- # Auto-refresh every 2 seconds when recording
778
- refresh_timer = gr.Timer(2.0)
779
  refresh_timer.tick(
780
- refresh_display,
781
  outputs=[conversation_output, status_output]
782
  )
783
 
 
8
  import urllib.request
9
  import torchaudio
10
  from scipy.spatial.distance import cosine
 
11
  import json
12
  import io
13
  import wave
 
125
  def __init__(self, encoder):
126
  self.encoder = encoder
127
 
128
+ def extract_embedding(self, audio_float):
129
  try:
130
+ # Ensure audio is in the right format
131
+ if np.abs(audio_float).max() > 1.0:
132
+ audio_float = audio_float / np.abs(audio_float).max()
133
 
134
+ embedding = self.encoder.embed_utterance(audio_float)
 
 
 
135
 
136
  return embedding
137
  except Exception as e:
 
269
  }
270
 
271
 
272
+ class WhisperTranscriber:
273
+ """Simple Whisper transcriber for audio chunks"""
274
+ def __init__(self, model_name="distil-large-v3"):
275
+ self.model = None
276
+ self.processor = None
277
+ self.model_name = model_name
278
+ self.device = "cuda" if torch.cuda.is_available() else "cpu"
 
279
 
280
+ def load_model(self):
281
+ """Load Whisper model"""
282
  try:
283
+ from transformers import WhisperProcessor, WhisperForConditionalGeneration
 
 
 
 
 
 
 
 
 
 
 
 
284
 
285
+ self.processor = WhisperProcessor.from_pretrained(f"distil-whisper/{self.model_name}")
286
+ self.model = WhisperForConditionalGeneration.from_pretrained(f"distil-whisper/{self.model_name}")
287
+ self.model.to(self.device)
288
+
289
+ return True
290
+ except Exception as e:
291
+ print(f"Error loading Whisper model: {e}")
292
+ return False
293
+
294
+ def transcribe(self, audio_array, sample_rate=16000):
295
+ """Transcribe audio array"""
296
+ try:
297
+ if self.model is None:
298
+ return ""
299
+
300
+ # Ensure audio is the right sample rate
301
+ if sample_rate != 16000:
302
+ audio_array = torchaudio.functional.resample(
303
+ torch.tensor(audio_array).float(),
304
+ orig_freq=sample_rate,
305
+ new_freq=16000
306
+ ).numpy()
307
+
308
+ # Process audio
309
+ inputs = self.processor(audio_array, sampling_rate=16000, return_tensors="pt")
310
+ inputs = inputs.to(self.device)
311
+
312
+ # Generate transcription
313
+ with torch.no_grad():
314
+ predicted_ids = self.model.generate(inputs["input_features"])
315
+
316
+ # Decode transcription
317
+ transcription = self.processor.batch_decode(predicted_ids, skip_special_tokens=True)
318
+
319
+ return transcription[0] if transcription else ""
320
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
321
  except Exception as e:
322
+ print(f"Transcription error: {e}")
323
+ return ""
324
 
325
 
326
  class RealtimeSpeakerDiarization:
 
328
  self.encoder = None
329
  self.audio_processor = None
330
  self.speaker_detector = None
331
+ self.transcriber = None
332
+ self.audio_buffer = []
333
+ self.processing_thread = None
334
  self.sentence_queue = queue.Queue()
335
  self.full_sentences = []
336
  self.sentence_speakers = []
337
  self.pending_sentences = []
338
  self.displayed_text = ""
 
339
  self.is_running = False
340
  self.change_threshold = DEFAULT_CHANGE_THRESHOLD
341
  self.max_speakers = DEFAULT_MAX_SPEAKERS
342
+ self.audio_chunks = []
343
+ self.chunk_counter = 0
344
 
345
  def initialize_models(self):
346
+ """Initialize the speaker encoder and transcription models"""
347
  try:
348
  device_str = "cuda" if torch.cuda.is_available() else "cpu"
349
  print(f"Using device: {device_str}")
350
 
351
+ # Initialize speaker encoder
352
  self.encoder = SpeechBrainEncoder(device=device_str)
353
+ encoder_success = self.encoder.load_model()
354
+
355
+ # Initialize transcriber
356
+ self.transcriber = WhisperTranscriber(FINAL_TRANSCRIPTION_MODEL)
357
+ transcriber_success = self.transcriber.load_model()
358
 
359
+ if encoder_success and transcriber_success:
360
  self.audio_processor = AudioProcessor(self.encoder)
361
  self.speaker_detector = SpeakerChangeDetector(
362
  embedding_dim=self.encoder.embedding_dim,
363
  change_threshold=self.change_threshold,
364
  max_speakers=self.max_speakers
365
  )
366
+ print("Models loaded successfully!")
 
367
  return True
368
  else:
369
+ print("Failed to load models")
370
  return False
371
  except Exception as e:
372
  print(f"Model initialization error: {e}")
373
  return False
374
 
375
+ def process_audio_stream(self, audio_data, sample_rate):
376
+ """Process incoming audio stream data"""
377
+ if not self.is_running or self.encoder is None:
378
+ return
379
+
380
+ try:
381
+ # Convert audio data to numpy array if needed
382
+ if isinstance(audio_data, tuple):
383
+ sample_rate, audio_array = audio_data
 
 
 
 
 
 
 
 
384
  else:
385
+ audio_array = audio_data
386
+
387
+ # Ensure audio is float32 and normalized
388
+ if audio_array.dtype != np.float32:
389
+ if audio_array.dtype == np.int16:
390
+ audio_array = audio_array.astype(np.float32) / 32768.0
391
+ else:
392
+ audio_array = audio_array.astype(np.float32)
393
+
394
+ # Ensure mono audio
395
+ if len(audio_array.shape) > 1 and audio_array.shape[1] > 1:
396
+ audio_array = np.mean(audio_array, axis=1)
397
+
398
+ # Add to buffer
399
+ self.audio_buffer.extend(audio_array.flatten())
400
+
401
+ # Process when we have enough audio (about 2 seconds)
402
+ target_length = int(sample_rate * 2.0)
403
+ if len(self.audio_buffer) >= target_length:
404
+ self.process_audio_chunk()
405
+
406
+ except Exception as e:
407
+ print(f"Error processing audio stream: {e}")
408
 
409
+ def process_audio_chunk(self):
410
+ """Process accumulated audio chunk"""
411
+ try:
412
+ if len(self.audio_buffer) < SAMPLE_RATE: # Need at least 1 second
413
+ return
414
+
415
+ # Get audio chunk
416
+ audio_chunk = np.array(self.audio_buffer[:int(SAMPLE_RATE * 2)])
417
+ self.audio_buffer = self.audio_buffer[int(SAMPLE_RATE * 1.5):] # Keep some overlap
418
+
419
+ # Transcribe audio
420
+ transcription = self.transcriber.transcribe(audio_chunk, SAMPLE_RATE)
421
+
422
+ if transcription.strip():
423
+ # Extract speaker embedding
424
+ speaker_embedding = self.audio_processor.extract_embedding(audio_chunk)
425
+
426
+ # Add to queue for processing
427
+ self.sentence_queue.put((transcription.strip(), speaker_embedding))
428
+
429
+ except Exception as e:
430
+ print(f"Error processing audio chunk: {e}")
431
 
432
  def process_sentence_queue(self):
433
  """Process sentences in the queue for speaker detection"""
434
  while self.is_running:
435
  try:
436
+ text, speaker_embedding = self.sentence_queue.get(timeout=1)
 
 
 
 
 
 
437
 
438
  # Store sentence and embedding
439
  self.full_sentences.append((text, speaker_embedding))
 
446
  speaker_id, similarity = self.speaker_detector.add_embedding(speaker_embedding)
447
  self.sentence_speakers.append(speaker_id)
448
 
 
 
 
 
449
  except queue.Empty:
450
  continue
451
  except Exception as e:
 
457
  return "Please initialize models first!"
458
 
459
  try:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
460
  # Start sentence processing thread
461
  self.is_running = True
462
+ self.processing_thread = threading.Thread(target=self.process_sentence_queue, daemon=True)
463
+ self.processing_thread.start()
 
 
 
 
464
 
465
+ return "Recording started successfully! Start speaking into your microphone."
466
 
467
  except Exception as e:
468
  return f"Error starting recording: {e}"
469
 
 
 
 
 
 
 
 
 
470
  def stop_recording(self):
471
  """Stop the recording process"""
472
  self.is_running = False
473
+ self.audio_buffer = []
 
474
  return "Recording stopped!"
475
 
476
  def clear_conversation(self):
 
479
  self.sentence_speakers = []
480
  self.pending_sentences = []
481
  self.displayed_text = ""
482
+ self.audio_buffer = []
483
 
484
  if self.speaker_detector:
485
  self.speaker_detector = SpeakerChangeDetector(
 
511
  sentence_text, _ = sentence
512
  if i >= len(self.sentence_speakers):
513
  color = "#FFFFFF"
514
+ speaker_name = "Speaker ?"
515
  else:
516
  speaker_id = self.sentence_speakers[i]
517
  color = self.speaker_detector.get_color_for_speaker(speaker_id)
 
520
  sentences_with_style.append(
521
  f'<span style="color:{color};"><b>{speaker_name}:</b> {sentence_text}</span>')
522
 
 
 
 
 
 
523
  if sentences_with_style:
524
  return "<br><br>".join(sentences_with_style)
525
  else:
 
542
  f"**Last Similarity:** {status['last_similarity']:.3f}",
543
  f"**Change Threshold:** {status['threshold']:.2f}",
544
  f"**Total Sentences:** {len(self.full_sentences)}",
545
+ f"**Audio Buffer Size:** {len(self.audio_buffer)}",
546
  "",
547
  "**Speaker Segment Counts:**"
548
  ]
 
600
  return diarization_system.get_status_info()
601
 
602
 
603
+ def process_audio(audio_data):
604
+ """Process audio from Gradio audio input"""
605
+ if audio_data is not None:
606
+ sample_rate, audio_array = audio_data
607
+ diarization_system.process_audio_stream(audio_array, sample_rate)
608
+ return get_conversation(), get_status()
609
 
610
 
611
  # Create Gradio interface
612
  def create_interface():
613
+ with gr.Blocks(title="Real-time Speaker Diarization", theme=gr.themes.Dark()) as app:
614
  gr.Markdown("# 🎤 Real-time Speech Recognition with Speaker Diarization")
615
+ gr.Markdown("This app performs real-time speech recognition with automatic speaker identification and color-coding using your browser's microphone.")
616
 
617
  with gr.Row():
618
  with gr.Column(scale=2):
619
+ # Audio input
620
  audio_input = gr.Audio(
621
+ source="microphone",
622
+ type="numpy",
623
  streaming=True,
624
+ label="🎙️ Microphone Input"
 
625
  )
626
 
627
  # Main conversation display
 
641
  status_output = gr.Textbox(
642
  label="System Status",
643
  value="System not initialized",
644
+ lines=10,
645
  interactive=False
646
  )
647
 
 
668
 
669
  update_settings_btn = gr.Button("Update Settings")
670
 
 
 
 
 
 
 
 
 
 
 
 
671
  # Speaker color legend
672
  gr.Markdown("## 🎨 Speaker Colors")
673
  color_info = []
 
675
  color_info.append(f'<span style="color:{color};">■</span> Speaker {i+1} ({name})')
676
 
677
  gr.HTML("<br>".join(color_info[:DEFAULT_MAX_SPEAKERS]))
678
+
679
+ # Instructions
680
+ gr.Markdown("""
681
+ ## 📋 Instructions
682
+ 1. **Initialize System** - Load AI models
683
+ 2. **Allow microphone access** when prompted
684
+ 3. **Start Recording** - Begin real-time processing
685
+ 4. **Speak naturally** - The system will detect different speakers
686
+ 5. **Stop Recording** when done
687
+
688
+ **Note:** Processing happens in real-time with ~2 second chunks for better accuracy.
689
+ """)
690
 
691
  # Event handlers
692
  def on_initialize():
 
751
  outputs=[status_output]
752
  )
753
 
754
+ # Process streaming audio
755
  audio_input.stream(
756
+ process_audio,
757
  inputs=[audio_input],
758
+ outputs=[conversation_output, status_output],
759
+ time_limit=60,
760
+ stream_every=0.5
761
  )
762
 
763
+ # Auto-refresh every 3 seconds
764
+ refresh_timer = gr.Timer(3.0)
765
  refresh_timer.tick(
766
+ lambda: (get_conversation(), get_status()),
767
  outputs=[conversation_output, status_output]
768
  )
769