Spaces:
Sleeping
Sleeping
Commit
·
3466e71
1
Parent(s):
7662a6a
Revert portg
Browse files
app.py
CHANGED
@@ -283,7 +283,7 @@ class RealtimeSpeakerDiarization:
|
|
283 |
self.audio_processor = None
|
284 |
self.speaker_detector = None
|
285 |
self.recorder = None
|
286 |
-
self.sentence_queue = queue.Queue()
|
287 |
self.full_sentences = []
|
288 |
self.sentence_speakers = []
|
289 |
self.pending_sentences = []
|
@@ -294,6 +294,9 @@ class RealtimeSpeakerDiarization:
|
|
294 |
self.max_speakers = DEFAULT_MAX_SPEAKERS
|
295 |
self.current_conversation = ""
|
296 |
self.audio_buffer = []
|
|
|
|
|
|
|
297 |
|
298 |
def initialize_models(self):
|
299 |
"""Initialize the speaker encoder model"""
|
@@ -302,9 +305,25 @@ class RealtimeSpeakerDiarization:
|
|
302 |
print(f"Using device: {device_str}")
|
303 |
|
304 |
self.encoder = SpeechBrainEncoder(device=device_str)
|
305 |
-
success = self.encoder.load_model()
|
306 |
|
307 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
308 |
self.audio_processor = AudioProcessor(self.encoder)
|
309 |
self.speaker_detector = SpeakerChangeDetector(
|
310 |
embedding_dim=self.encoder.embedding_dim,
|
@@ -314,10 +333,52 @@ class RealtimeSpeakerDiarization:
|
|
314 |
print("ECAPA-TDNN model loaded successfully!")
|
315 |
return True
|
316 |
else:
|
317 |
-
print("Failed to load ECAPA-TDNN model")
|
318 |
-
return
|
|
|
319 |
except Exception as e:
|
320 |
print(f"Model initialization error: {e}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
321 |
return False
|
322 |
|
323 |
def live_text_detected(self, text):
|
@@ -346,8 +407,9 @@ class RealtimeSpeakerDiarization:
|
|
346 |
if text:
|
347 |
try:
|
348 |
bytes_data = self.recorder.last_transcription_bytes
|
349 |
-
self.sentence_queue.put((text, bytes_data))
|
350 |
-
self.
|
|
|
351 |
except Exception as e:
|
352 |
print(f"Error processing final text: {e}")
|
353 |
|
@@ -363,28 +425,31 @@ class RealtimeSpeakerDiarization:
|
|
363 |
# Extract speaker embedding
|
364 |
speaker_embedding = self.audio_processor.extract_embedding(audio_int16)
|
365 |
|
366 |
-
|
367 |
-
|
368 |
-
|
369 |
-
|
370 |
-
|
371 |
-
self.sentence_speakers.
|
372 |
-
|
373 |
-
|
374 |
-
|
375 |
-
|
376 |
-
|
377 |
-
|
378 |
-
|
379 |
-
self.pending_sentences
|
380 |
-
|
381 |
-
|
382 |
-
|
|
|
383 |
|
384 |
except queue.Empty:
|
385 |
continue
|
386 |
except Exception as e:
|
387 |
print(f"Error processing sentence: {e}")
|
|
|
|
|
388 |
|
389 |
def start_recording(self):
|
390 |
"""Start the recording and transcription process"""
|
@@ -412,10 +477,22 @@ class RealtimeSpeakerDiarization:
|
|
412 |
'beam_size_realtime': REALTIME_BEAM_SIZE,
|
413 |
'buffer_size': BUFFER_SIZE,
|
414 |
'sample_rate': SAMPLE_RATE,
|
|
|
415 |
}
|
416 |
|
|
|
|
|
|
|
|
|
|
|
|
|
417 |
self.recorder = AudioToTextRecorder(**recorder_config)
|
418 |
|
|
|
|
|
|
|
|
|
|
|
419 |
# Start sentence processing thread
|
420 |
self.is_running = True
|
421 |
self.sentence_thread = threading.Thread(target=self.process_sentence_queue, daemon=True)
|
@@ -428,7 +505,10 @@ class RealtimeSpeakerDiarization:
|
|
428 |
return "Recording started successfully! FastRTC audio input ready."
|
429 |
|
430 |
except Exception as e:
|
431 |
-
|
|
|
|
|
|
|
432 |
|
433 |
def run_transcription(self):
|
434 |
"""Run the transcription loop"""
|
@@ -443,8 +523,48 @@ class RealtimeSpeakerDiarization:
|
|
443 |
self.is_running = False
|
444 |
if self.recorder:
|
445 |
self.recorder.stop()
|
|
|
|
|
|
|
|
|
446 |
return "Recording stopped!"
|
447 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
448 |
def clear_conversation(self):
|
449 |
"""Clear all conversation data"""
|
450 |
self.full_sentences = []
|
@@ -553,11 +673,23 @@ class RealtimeSpeakerDiarization:
|
|
553 |
else:
|
554 |
audio_bytes = audio_data
|
555 |
|
556 |
-
#
|
557 |
-
self.recorder.feed_audio
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
558 |
|
559 |
except Exception as e:
|
560 |
-
print(f"Error feeding audio data: {e}")
|
|
|
|
|
561 |
|
562 |
def process_audio_chunk(self, audio_data, sample_rate=16000):
|
563 |
"""Process audio chunk from FastRTC input"""
|
@@ -565,34 +697,30 @@ class RealtimeSpeakerDiarization:
|
|
565 |
return
|
566 |
|
567 |
try:
|
568 |
-
|
569 |
-
|
570 |
-
|
571 |
-
# Float audio is normalized to [-1, 1], convert to int16
|
572 |
-
audio_int16 = (audio_data * 32767).astype(np.int16)
|
573 |
-
else:
|
574 |
-
# Audio is already in higher range
|
575 |
-
audio_int16 = audio_data.astype(np.int16)
|
576 |
-
else:
|
577 |
-
audio_int16 = audio_data
|
578 |
|
579 |
-
|
580 |
-
|
581 |
-
|
|
|
582 |
|
583 |
-
|
584 |
-
|
585 |
-
|
586 |
|
587 |
-
|
588 |
-
|
589 |
-
|
590 |
-
|
591 |
-
|
592 |
|
593 |
except Exception as e:
|
594 |
-
print(f"Error processing audio chunk: {e}")
|
595 |
-
|
|
|
|
|
596 |
def _resample_audio(self, audio, orig_sr, target_sr):
|
597 |
"""Resample audio to target sample rate"""
|
598 |
try:
|
@@ -613,6 +741,60 @@ class RealtimeSpeakerDiarization:
|
|
613 |
print(f"Error resampling audio: {e}")
|
614 |
return audio
|
615 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
616 |
|
617 |
# FastRTC Audio Handler for Real-time Diarization
|
618 |
|
@@ -620,9 +802,10 @@ class DiarizationHandler(AsyncStreamHandler):
|
|
620 |
def __init__(self, diarization_system):
|
621 |
super().__init__()
|
622 |
self.diarization_system = diarization_system
|
623 |
-
self.audio_queue = Queue()
|
624 |
self.is_processing = False
|
625 |
self.sample_rate = 16000 # Default sample rate
|
|
|
626 |
|
627 |
def copy(self):
|
628 |
"""Return a fresh handler for each new stream connection"""
|
@@ -646,39 +829,75 @@ class DiarizationHandler(AsyncStreamHandler):
|
|
646 |
else:
|
647 |
audio_data = frame
|
648 |
|
649 |
-
# Convert to numpy array if needed
|
650 |
-
if isinstance(audio_data, bytes):
|
651 |
-
# Convert bytes to numpy array (assuming 16-bit PCM)
|
652 |
-
audio_array = np.frombuffer(audio_data, dtype=np.int16)
|
653 |
-
# Normalize to float32 range [-1, 1]
|
654 |
-
audio_array = audio_array.astype(np.float32) / 32768.0
|
655 |
-
elif isinstance(audio_data, (list, tuple)):
|
656 |
-
audio_array = np.array(audio_data, dtype=np.float32)
|
657 |
-
elif isinstance(audio_data, np.ndarray):
|
658 |
-
audio_array = audio_data.astype(np.float32)
|
659 |
-
else:
|
660 |
-
print(f"Unknown audio data type: {type(audio_data)}")
|
661 |
-
return
|
662 |
-
|
663 |
-
# Ensure mono audio
|
664 |
-
if len(audio_array.shape) > 1 and audio_array.shape[1] > 1:
|
665 |
-
audio_array = np.mean(audio_array, axis=1)
|
666 |
-
|
667 |
-
# Ensure 1D array
|
668 |
-
if len(audio_array.shape) > 1:
|
669 |
-
audio_array = audio_array.flatten()
|
670 |
-
|
671 |
# Get sample rate from frame if available
|
672 |
sample_rate = getattr(frame, 'sample_rate', self.sample_rate)
|
673 |
|
674 |
-
#
|
675 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
676 |
|
677 |
except Exception as e:
|
678 |
print(f"Error in FastRTC audio receive: {e}")
|
679 |
import traceback
|
680 |
traceback.print_exc()
|
681 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
682 |
async def process_audio_async(self, audio_data, sample_rate=16000):
|
683 |
"""Process audio data asynchronously"""
|
684 |
try:
|
@@ -698,10 +917,30 @@ class DiarizationHandler(AsyncStreamHandler):
|
|
698 |
print("FastRTC stream started")
|
699 |
self.is_processing = True
|
700 |
|
|
|
|
|
|
|
701 |
async def shutdown(self) -> None:
|
702 |
"""Clean up any resources when the stream ends"""
|
703 |
print("FastRTC stream shutting down")
|
704 |
self.is_processing = False
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
705 |
|
706 |
|
707 |
# Global instances
|
|
|
283 |
self.audio_processor = None
|
284 |
self.speaker_detector = None
|
285 |
self.recorder = None
|
286 |
+
self.sentence_queue = queue.Queue(maxsize=100) # Add maxsize to prevent unlimited growth
|
287 |
self.full_sentences = []
|
288 |
self.sentence_speakers = []
|
289 |
self.pending_sentences = []
|
|
|
294 |
self.max_speakers = DEFAULT_MAX_SPEAKERS
|
295 |
self.current_conversation = ""
|
296 |
self.audio_buffer = []
|
297 |
+
# Add locks for thread safety
|
298 |
+
self._state_lock = threading.RLock() # Reentrant lock for shared state
|
299 |
+
self._audio_lock = threading.Lock() # Lock for audio processing
|
300 |
|
301 |
def initialize_models(self):
|
302 |
"""Initialize the speaker encoder model"""
|
|
|
305 |
print(f"Using device: {device_str}")
|
306 |
|
307 |
self.encoder = SpeechBrainEncoder(device=device_str)
|
|
|
308 |
|
309 |
+
# Try to load model with timeout
|
310 |
+
import threading
|
311 |
+
load_success = [False]
|
312 |
+
|
313 |
+
def load_model_thread():
|
314 |
+
try:
|
315 |
+
success = self.encoder.load_model()
|
316 |
+
load_success[0] = success
|
317 |
+
except Exception as e:
|
318 |
+
print(f"Error in model loading thread: {e}")
|
319 |
+
|
320 |
+
# Start loading in a thread with timeout
|
321 |
+
load_thread = threading.Thread(target=load_model_thread)
|
322 |
+
load_thread.daemon = True
|
323 |
+
load_thread.start()
|
324 |
+
load_thread.join(timeout=60) # 60 second timeout for model loading
|
325 |
+
|
326 |
+
if load_success[0]:
|
327 |
self.audio_processor = AudioProcessor(self.encoder)
|
328 |
self.speaker_detector = SpeakerChangeDetector(
|
329 |
embedding_dim=self.encoder.embedding_dim,
|
|
|
333 |
print("ECAPA-TDNN model loaded successfully!")
|
334 |
return True
|
335 |
else:
|
336 |
+
print("Failed to load ECAPA-TDNN model or timeout occurred")
|
337 |
+
return self._initialize_fallback()
|
338 |
+
|
339 |
except Exception as e:
|
340 |
print(f"Model initialization error: {e}")
|
341 |
+
import traceback
|
342 |
+
traceback.print_exc()
|
343 |
+
return self._initialize_fallback()
|
344 |
+
|
345 |
+
def _initialize_fallback(self):
|
346 |
+
"""Initialize fallback mode when model loading fails"""
|
347 |
+
try:
|
348 |
+
print("Initializing fallback mode with simple speaker detection...")
|
349 |
+
# Create a simple embedding dimension
|
350 |
+
embedding_dim = 64
|
351 |
+
|
352 |
+
# Create a dummy encoder that produces random embeddings
|
353 |
+
class DummyEncoder:
|
354 |
+
def __init__(self):
|
355 |
+
self.embedding_dim = embedding_dim
|
356 |
+
self.model_loaded = True
|
357 |
+
|
358 |
+
def embed_utterance(self, audio, sr=16000):
|
359 |
+
# Simple energy-based pseudo-embedding
|
360 |
+
if isinstance(audio, np.ndarray):
|
361 |
+
# Create a simple feature vector (not a real embedding)
|
362 |
+
energy = np.mean(np.abs(audio))
|
363 |
+
# Create a pseudo-random but consistent embedding based on audio energy
|
364 |
+
np.random.seed(int(energy * 1000))
|
365 |
+
return np.random.rand(embedding_dim)
|
366 |
+
return np.random.rand(embedding_dim)
|
367 |
+
|
368 |
+
# Set up system with fallback components
|
369 |
+
self.encoder = DummyEncoder()
|
370 |
+
self.audio_processor = AudioProcessor(self.encoder)
|
371 |
+
self.speaker_detector = SpeakerChangeDetector(
|
372 |
+
embedding_dim=embedding_dim,
|
373 |
+
change_threshold=self.change_threshold,
|
374 |
+
max_speakers=2 # Limit speakers in fallback mode
|
375 |
+
)
|
376 |
+
|
377 |
+
print("Fallback mode initialized - limited functionality!")
|
378 |
+
return True
|
379 |
+
|
380 |
+
except Exception as e:
|
381 |
+
print(f"Even fallback initialization failed: {e}")
|
382 |
return False
|
383 |
|
384 |
def live_text_detected(self, text):
|
|
|
407 |
if text:
|
408 |
try:
|
409 |
bytes_data = self.recorder.last_transcription_bytes
|
410 |
+
self.sentence_queue.put((text, bytes_data), timeout=1.0) # Added timeout
|
411 |
+
with self._state_lock:
|
412 |
+
self.pending_sentences.append(text)
|
413 |
except Exception as e:
|
414 |
print(f"Error processing final text: {e}")
|
415 |
|
|
|
425 |
# Extract speaker embedding
|
426 |
speaker_embedding = self.audio_processor.extract_embedding(audio_int16)
|
427 |
|
428 |
+
with self._state_lock:
|
429 |
+
# Store sentence and embedding
|
430 |
+
self.full_sentences.append((text, speaker_embedding))
|
431 |
+
|
432 |
+
# Fill in missing speaker assignments
|
433 |
+
while len(self.sentence_speakers) < len(self.full_sentences) - 1:
|
434 |
+
self.sentence_speakers.append(0)
|
435 |
+
|
436 |
+
# Detect speaker changes
|
437 |
+
speaker_id, similarity = self.speaker_detector.add_embedding(speaker_embedding)
|
438 |
+
self.sentence_speakers.append(speaker_id)
|
439 |
+
|
440 |
+
# Remove from pending
|
441 |
+
if text in self.pending_sentences:
|
442 |
+
self.pending_sentences.remove(text)
|
443 |
+
|
444 |
+
# Update conversation display
|
445 |
+
self.current_conversation = self.get_formatted_conversation()
|
446 |
|
447 |
except queue.Empty:
|
448 |
continue
|
449 |
except Exception as e:
|
450 |
print(f"Error processing sentence: {e}")
|
451 |
+
import traceback
|
452 |
+
traceback.print_exc()
|
453 |
|
454 |
def start_recording(self):
|
455 |
"""Start the recording and transcription process"""
|
|
|
477 |
'beam_size_realtime': REALTIME_BEAM_SIZE,
|
478 |
'buffer_size': BUFFER_SIZE,
|
479 |
'sample_rate': SAMPLE_RATE,
|
480 |
+
'external_audio': True, # Signal that we'll provide audio
|
481 |
}
|
482 |
|
483 |
+
# Make sure we're not running already
|
484 |
+
if hasattr(self, 'is_running') and self.is_running:
|
485 |
+
self.stop_recording()
|
486 |
+
# Short pause to ensure cleanup completes
|
487 |
+
time.sleep(0.5)
|
488 |
+
|
489 |
self.recorder = AudioToTextRecorder(**recorder_config)
|
490 |
|
491 |
+
# Reset state
|
492 |
+
with self._state_lock:
|
493 |
+
self.pending_sentences = []
|
494 |
+
self.last_realtime_text = ""
|
495 |
+
|
496 |
# Start sentence processing thread
|
497 |
self.is_running = True
|
498 |
self.sentence_thread = threading.Thread(target=self.process_sentence_queue, daemon=True)
|
|
|
505 |
return "Recording started successfully! FastRTC audio input ready."
|
506 |
|
507 |
except Exception as e:
|
508 |
+
self.is_running = False
|
509 |
+
import traceback
|
510 |
+
traceback.print_exc()
|
511 |
+
return f"Error starting recording: {str(e)}"
|
512 |
|
513 |
def run_transcription(self):
|
514 |
"""Run the transcription loop"""
|
|
|
523 |
self.is_running = False
|
524 |
if self.recorder:
|
525 |
self.recorder.stop()
|
526 |
+
|
527 |
+
# Wait for threads to finish
|
528 |
+
self._cleanup_resources()
|
529 |
+
|
530 |
return "Recording stopped!"
|
531 |
|
532 |
+
def _cleanup_resources(self):
|
533 |
+
"""Clean up resources and threads"""
|
534 |
+
try:
|
535 |
+
# Wait for threads to stop gracefully
|
536 |
+
if hasattr(self, 'sentence_thread') and self.sentence_thread is not None:
|
537 |
+
if self.sentence_thread.is_alive():
|
538 |
+
self.sentence_thread.join(timeout=3.0)
|
539 |
+
|
540 |
+
if hasattr(self, 'transcription_thread') and self.transcription_thread is not None:
|
541 |
+
if self.transcription_thread.is_alive():
|
542 |
+
self.transcription_thread.join(timeout=3.0)
|
543 |
+
|
544 |
+
# Clean up memory
|
545 |
+
with self._state_lock:
|
546 |
+
# Limit history size to prevent memory leaks
|
547 |
+
if len(self.full_sentences) > 1000:
|
548 |
+
self.full_sentences = self.full_sentences[-1000:]
|
549 |
+
if len(self.sentence_speakers) > 1000:
|
550 |
+
self.sentence_speakers = self.sentence_speakers[-1000:]
|
551 |
+
|
552 |
+
# Clear audio buffer
|
553 |
+
with self._audio_lock:
|
554 |
+
self.audio_buffer = []
|
555 |
+
|
556 |
+
# Clear queue
|
557 |
+
while not self.sentence_queue.empty():
|
558 |
+
try:
|
559 |
+
self.sentence_queue.get_nowait()
|
560 |
+
except:
|
561 |
+
pass
|
562 |
+
|
563 |
+
except Exception as e:
|
564 |
+
print(f"Error during resource cleanup: {e}")
|
565 |
+
import traceback
|
566 |
+
traceback.print_exc()
|
567 |
+
|
568 |
def clear_conversation(self):
|
569 |
"""Clear all conversation data"""
|
570 |
self.full_sentences = []
|
|
|
673 |
else:
|
674 |
audio_bytes = audio_data
|
675 |
|
676 |
+
# Use the recorder's internal buffer mechanism
|
677 |
+
if hasattr(self.recorder, 'feed_audio') and callable(self.recorder.feed_audio):
|
678 |
+
self.recorder.feed_audio(audio_bytes)
|
679 |
+
else:
|
680 |
+
# Fallback: Direct access to the underlying buffer if the method doesn't exist
|
681 |
+
self.audio_buffer.append(audio_bytes)
|
682 |
+
# Process buffered audio when enough is accumulated
|
683 |
+
if len(self.audio_buffer) > 5: # Process in small batches
|
684 |
+
combined = b''.join(self.audio_buffer)
|
685 |
+
if hasattr(self.recorder, '_process_audio'):
|
686 |
+
self.recorder._process_audio(combined)
|
687 |
+
self.audio_buffer = []
|
688 |
|
689 |
except Exception as e:
|
690 |
+
print(f"Error feeding audio data: {str(e)}")
|
691 |
+
import traceback
|
692 |
+
traceback.print_exc()
|
693 |
|
694 |
def process_audio_chunk(self, audio_data, sample_rate=16000):
|
695 |
"""Process audio chunk from FastRTC input"""
|
|
|
697 |
return
|
698 |
|
699 |
try:
|
700 |
+
with self._audio_lock:
|
701 |
+
# Use the normalized audio function
|
702 |
+
audio_int16 = self._normalize_audio_format(audio_data, target_dtype=np.int16, target_sample_rate=SAMPLE_RATE)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
703 |
|
704 |
+
# Check if we got valid audio
|
705 |
+
if audio_int16.size == 0:
|
706 |
+
print("Warning: Empty audio chunk received")
|
707 |
+
return
|
708 |
|
709 |
+
# Resample if needed
|
710 |
+
if sample_rate != SAMPLE_RATE:
|
711 |
+
audio_int16 = self._resample_audio(audio_int16, sample_rate, SAMPLE_RATE)
|
712 |
|
713 |
+
# Convert to bytes for feeding to recorder
|
714 |
+
audio_bytes = audio_int16.tobytes()
|
715 |
+
|
716 |
+
# Feed to recorder
|
717 |
+
self.feed_audio_data(audio_bytes)
|
718 |
|
719 |
except Exception as e:
|
720 |
+
print(f"Error processing audio chunk: {str(e)}")
|
721 |
+
import traceback
|
722 |
+
traceback.print_exc()
|
723 |
+
|
724 |
def _resample_audio(self, audio, orig_sr, target_sr):
|
725 |
"""Resample audio to target sample rate"""
|
726 |
try:
|
|
|
741 |
print(f"Error resampling audio: {e}")
|
742 |
return audio
|
743 |
|
744 |
+
def _normalize_audio_format(self, audio_data, target_dtype=np.int16, target_sample_rate=SAMPLE_RATE):
|
745 |
+
"""Normalize audio data to consistent format
|
746 |
+
|
747 |
+
Args:
|
748 |
+
audio_data: Input audio as numpy array or bytes
|
749 |
+
target_dtype: Target data type (np.int16 or np.float32)
|
750 |
+
target_sample_rate: Target sample rate
|
751 |
+
|
752 |
+
Returns:
|
753 |
+
Normalized audio as numpy array in requested format
|
754 |
+
"""
|
755 |
+
try:
|
756 |
+
# Convert bytes to numpy if needed
|
757 |
+
if isinstance(audio_data, bytes):
|
758 |
+
audio_array = np.frombuffer(audio_data, dtype=np.int16)
|
759 |
+
elif isinstance(audio_data, (list, tuple)):
|
760 |
+
audio_array = np.array(audio_data)
|
761 |
+
else:
|
762 |
+
audio_array = audio_data
|
763 |
+
|
764 |
+
# Convert data type as needed
|
765 |
+
if target_dtype == np.int16 and audio_array.dtype != np.int16:
|
766 |
+
if audio_array.dtype == np.float32 or audio_array.dtype == np.float64:
|
767 |
+
# Check if normalized to [-1, 1] range
|
768 |
+
if np.max(np.abs(audio_array)) <= 1.0:
|
769 |
+
audio_array = (audio_array * 32767).astype(np.int16)
|
770 |
+
else:
|
771 |
+
audio_array = audio_array.astype(np.int16)
|
772 |
+
else:
|
773 |
+
audio_array = audio_array.astype(np.int16)
|
774 |
+
elif target_dtype == np.float32 and audio_array.dtype != np.float32:
|
775 |
+
if audio_array.dtype == np.int16:
|
776 |
+
audio_array = audio_array.astype(np.float32) / 32768.0
|
777 |
+
else:
|
778 |
+
audio_array = audio_array.astype(np.float32)
|
779 |
+
|
780 |
+
# Ensure mono audio
|
781 |
+
if len(audio_array.shape) > 1 and audio_array.shape[1] > 1:
|
782 |
+
audio_array = np.mean(audio_array, axis=1)
|
783 |
+
|
784 |
+
# Reshape if needed
|
785 |
+
if len(audio_array.shape) == 1:
|
786 |
+
if target_dtype == np.int16:
|
787 |
+
audio_array = np.expand_dims(audio_array, 0)
|
788 |
+
|
789 |
+
return audio_array
|
790 |
+
|
791 |
+
except Exception as e:
|
792 |
+
print(f"Error normalizing audio format: {e}")
|
793 |
+
import traceback
|
794 |
+
traceback.print_exc()
|
795 |
+
# Return empty array of correct type as fallback
|
796 |
+
return np.array([], dtype=target_dtype)
|
797 |
+
|
798 |
|
799 |
# FastRTC Audio Handler for Real-time Diarization
|
800 |
|
|
|
802 |
def __init__(self, diarization_system):
|
803 |
super().__init__()
|
804 |
self.diarization_system = diarization_system
|
805 |
+
self.audio_queue = asyncio.Queue(maxsize=100) # Use asyncio queue
|
806 |
self.is_processing = False
|
807 |
self.sample_rate = 16000 # Default sample rate
|
808 |
+
self.processing_task = None
|
809 |
|
810 |
def copy(self):
|
811 |
"""Return a fresh handler for each new stream connection"""
|
|
|
829 |
else:
|
830 |
audio_data = frame
|
831 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
832 |
# Get sample rate from frame if available
|
833 |
sample_rate = getattr(frame, 'sample_rate', self.sample_rate)
|
834 |
|
835 |
+
# Add to queue - non-blocking with timeout
|
836 |
+
try:
|
837 |
+
# Use put_nowait with try/except to avoid blocking
|
838 |
+
await asyncio.wait_for(
|
839 |
+
self.audio_queue.put((audio_data, sample_rate)),
|
840 |
+
timeout=0.1
|
841 |
+
)
|
842 |
+
except asyncio.TimeoutError:
|
843 |
+
# Queue is full, drop this chunk
|
844 |
+
print("Warning: Audio queue full, dropping frame")
|
845 |
+
return
|
846 |
|
847 |
except Exception as e:
|
848 |
print(f"Error in FastRTC audio receive: {e}")
|
849 |
import traceback
|
850 |
traceback.print_exc()
|
851 |
|
852 |
+
async def _process_audio_loop(self):
|
853 |
+
"""Background task to process audio from queue"""
|
854 |
+
while self.is_processing:
|
855 |
+
try:
|
856 |
+
# Get from queue with timeout to allow checking is_processing flag
|
857 |
+
try:
|
858 |
+
audio_data, sample_rate = await asyncio.wait_for(
|
859 |
+
self.audio_queue.get(),
|
860 |
+
timeout=0.5
|
861 |
+
)
|
862 |
+
except asyncio.TimeoutError:
|
863 |
+
# No audio available, check if we should keep running
|
864 |
+
continue
|
865 |
+
|
866 |
+
# Convert to numpy array if needed
|
867 |
+
if isinstance(audio_data, bytes):
|
868 |
+
# Convert bytes to numpy array (assuming 16-bit PCM)
|
869 |
+
audio_array = np.frombuffer(audio_data, dtype=np.int16)
|
870 |
+
# Normalize to float32 range [-1, 1]
|
871 |
+
audio_array = audio_array.astype(np.float32) / 32768.0
|
872 |
+
elif isinstance(audio_data, (list, tuple)):
|
873 |
+
audio_array = np.array(audio_data, dtype=np.float32)
|
874 |
+
elif isinstance(audio_data, np.ndarray):
|
875 |
+
audio_array = audio_array.astype(np.float32)
|
876 |
+
else:
|
877 |
+
print(f"Unknown audio data type: {type(audio_data)}")
|
878 |
+
continue
|
879 |
+
|
880 |
+
# Ensure mono audio
|
881 |
+
if len(audio_array.shape) > 1 and audio_array.shape[1] > 1:
|
882 |
+
audio_array = np.mean(audio_array, axis=1)
|
883 |
+
|
884 |
+
# Ensure 1D array
|
885 |
+
if len(audio_array.shape) > 1:
|
886 |
+
audio_array = audio_array.flatten()
|
887 |
+
|
888 |
+
# Process audio through thread pool to avoid blocking event loop
|
889 |
+
await self.process_audio_async(audio_array, sample_rate)
|
890 |
+
|
891 |
+
# Mark as done
|
892 |
+
self.audio_queue.task_done()
|
893 |
+
|
894 |
+
except Exception as e:
|
895 |
+
print(f"Error in audio processing loop: {e}")
|
896 |
+
import traceback
|
897 |
+
traceback.print_exc()
|
898 |
+
# Short sleep to avoid tight loop
|
899 |
+
await asyncio.sleep(0.1)
|
900 |
+
|
901 |
async def process_audio_async(self, audio_data, sample_rate=16000):
|
902 |
"""Process audio data asynchronously"""
|
903 |
try:
|
|
|
917 |
print("FastRTC stream started")
|
918 |
self.is_processing = True
|
919 |
|
920 |
+
# Start background processing task
|
921 |
+
self.processing_task = asyncio.create_task(self._process_audio_loop())
|
922 |
+
|
923 |
async def shutdown(self) -> None:
|
924 |
"""Clean up any resources when the stream ends"""
|
925 |
print("FastRTC stream shutting down")
|
926 |
self.is_processing = False
|
927 |
+
|
928 |
+
# Wait for processing task to finish
|
929 |
+
if self.processing_task:
|
930 |
+
try:
|
931 |
+
# Cancel and wait for task
|
932 |
+
self.processing_task.cancel()
|
933 |
+
await asyncio.wait([self.processing_task], timeout=2.0)
|
934 |
+
except (asyncio.CancelledError, Exception) as e:
|
935 |
+
print(f"Error cancelling audio processing task: {e}")
|
936 |
+
|
937 |
+
# Clear queue
|
938 |
+
while not self.audio_queue.empty():
|
939 |
+
try:
|
940 |
+
self.audio_queue.get_nowait()
|
941 |
+
self.audio_queue.task_done()
|
942 |
+
except:
|
943 |
+
pass
|
944 |
|
945 |
|
946 |
# Global instances
|