Spaces:
Sleeping
Sleeping
Commit
·
42eafc4
1
Parent(s):
b37c0fc
Code fixing
Browse files
app.py
CHANGED
@@ -8,14 +8,20 @@ import os
|
|
8 |
import urllib.request
|
9 |
import torchaudio
|
10 |
from scipy.spatial.distance import cosine
|
|
|
|
|
11 |
import json
|
12 |
import io
|
13 |
import wave
|
14 |
-
|
15 |
|
16 |
# Simplified configuration parameters
|
17 |
SILENCE_THRESHS = [0, 0.4]
|
18 |
-
FINAL_TRANSCRIPTION_MODEL = "
|
|
|
|
|
|
|
|
|
19 |
SILERO_SENSITIVITY = 0.4
|
20 |
WEBRTC_SENSITIVITY = 3
|
21 |
MIN_LENGTH_OF_RECORDING = 0.7
|
@@ -267,65 +273,12 @@ class SpeakerChangeDetector:
|
|
267 |
}
|
268 |
|
269 |
|
270 |
-
class DiarizationStreamHandler(AsyncStreamHandler):
|
271 |
-
"""FastRTC stream handler for real-time diarization"""
|
272 |
-
def __init__(self, diarization_system):
|
273 |
-
super().__init__(input_sample_rate=16000)
|
274 |
-
self.diarization_system = diarization_system
|
275 |
-
self.stt_model = get_stt_model(model=FINAL_TRANSCRIPTION_MODEL)
|
276 |
-
self.current_text = ""
|
277 |
-
self.current_audio_buffer = []
|
278 |
-
self.transcript_queue = queue.Queue()
|
279 |
-
|
280 |
-
def copy(self):
|
281 |
-
return DiarizationStreamHandler(self.diarization_system)
|
282 |
-
|
283 |
-
async def start_up(self):
|
284 |
-
"""Initialize the stream handler"""
|
285 |
-
pass
|
286 |
-
|
287 |
-
async def receive(self, frame):
|
288 |
-
"""Process incoming audio frame"""
|
289 |
-
# Extract audio data
|
290 |
-
sample_rate, audio_data = frame
|
291 |
-
|
292 |
-
# Convert to numpy array if needed
|
293 |
-
if isinstance(audio_data, torch.Tensor):
|
294 |
-
audio_data = audio_data.numpy()
|
295 |
-
|
296 |
-
# Add to buffer
|
297 |
-
self.current_audio_buffer.append(audio_data)
|
298 |
-
|
299 |
-
# If buffer is large enough, process it
|
300 |
-
if len(self.current_audio_buffer) > 3: # Process ~1.5 seconds of audio
|
301 |
-
# Concatenate audio data
|
302 |
-
combined_audio = np.concatenate(self.current_audio_buffer)
|
303 |
-
|
304 |
-
# Run speech-to-text
|
305 |
-
text = self.stt_model.stt((16000, combined_audio))
|
306 |
-
|
307 |
-
if text and text.strip():
|
308 |
-
# Save text and audio for processing
|
309 |
-
self.transcript_queue.put((text, combined_audio))
|
310 |
-
self.current_text = text
|
311 |
-
|
312 |
-
# Reset buffer but keep some overlap
|
313 |
-
if len(self.current_audio_buffer) > 5:
|
314 |
-
self.current_audio_buffer = self.current_audio_buffer[-2:]
|
315 |
-
|
316 |
-
async def emit(self):
|
317 |
-
"""Emit processed data"""
|
318 |
-
# Return current text as dummy; actual processing is done in background
|
319 |
-
return self.current_text
|
320 |
-
|
321 |
-
|
322 |
class RealtimeSpeakerDiarization:
|
323 |
def __init__(self):
|
324 |
self.encoder = None
|
325 |
self.audio_processor = None
|
326 |
self.speaker_detector = None
|
327 |
-
self.
|
328 |
-
self.stream_handler = None
|
329 |
self.sentence_queue = queue.Queue()
|
330 |
self.full_sentences = []
|
331 |
self.sentence_speakers = []
|
@@ -335,6 +288,7 @@ class RealtimeSpeakerDiarization:
|
|
335 |
self.is_running = False
|
336 |
self.change_threshold = DEFAULT_CHANGE_THRESHOLD
|
337 |
self.max_speakers = DEFAULT_MAX_SPEAKERS
|
|
|
338 |
|
339 |
def initialize_models(self):
|
340 |
"""Initialize the speaker encoder model"""
|
@@ -361,69 +315,45 @@ class RealtimeSpeakerDiarization:
|
|
361 |
print(f"Model initialization error: {e}")
|
362 |
return False
|
363 |
|
364 |
-
def
|
365 |
-
"""
|
366 |
-
|
367 |
-
|
368 |
-
|
369 |
-
|
370 |
-
|
371 |
-
|
372 |
-
|
373 |
-
# Create FastRTC stream
|
374 |
-
self.stream = Stream(
|
375 |
-
handler=self.stream_handler,
|
376 |
-
modality="audio",
|
377 |
-
mode="send-receive"
|
378 |
)
|
379 |
-
|
380 |
-
|
381 |
-
|
382 |
-
|
383 |
-
|
384 |
-
|
385 |
-
|
386 |
-
|
387 |
-
|
388 |
-
# Start diarization processor thread
|
389 |
-
self.diarization_thread = threading.Thread(target=self.process_transcript_queue, daemon=True)
|
390 |
-
self.diarization_thread.start()
|
391 |
-
|
392 |
-
return "Stream started successfully! Ready for audio input."
|
393 |
-
|
394 |
-
except Exception as e:
|
395 |
-
return f"Error starting stream: {e}"
|
396 |
|
397 |
-
def
|
398 |
-
"""Process
|
399 |
-
|
|
|
400 |
try:
|
401 |
-
|
402 |
-
|
403 |
-
|
404 |
-
# Add to sentence queue for diarization
|
405 |
-
self.pending_sentences.append(text)
|
406 |
-
self.sentence_queue.put((text, audio_data))
|
407 |
-
except queue.Empty:
|
408 |
-
time.sleep(0.1) # Short sleep to prevent CPU hogging
|
409 |
except Exception as e:
|
410 |
-
print(f"Error processing
|
411 |
-
time.sleep(0.5) # Slightly longer sleep on error
|
412 |
|
413 |
def process_sentence_queue(self):
|
414 |
"""Process sentences in the queue for speaker detection"""
|
415 |
while self.is_running:
|
416 |
try:
|
417 |
-
text,
|
418 |
|
419 |
# Convert audio data to int16
|
420 |
-
|
421 |
-
if audio_data.dtype != np.int16:
|
422 |
-
audio_int16 = (audio_data * 32767).astype(np.int16)
|
423 |
-
else:
|
424 |
-
audio_int16 = audio_data
|
425 |
-
else:
|
426 |
-
audio_int16 = np.int16(audio_data * 32767)
|
427 |
|
428 |
# Extract speaker embedding
|
429 |
speaker_embedding = self.audio_processor.extract_embedding(audio_int16)
|
@@ -442,16 +372,73 @@ class RealtimeSpeakerDiarization:
|
|
442 |
# Remove from pending
|
443 |
if text in self.pending_sentences:
|
444 |
self.pending_sentences.remove(text)
|
|
|
|
|
|
|
445 |
|
446 |
except queue.Empty:
|
447 |
continue
|
448 |
except Exception as e:
|
449 |
print(f"Error processing sentence: {e}")
|
450 |
|
451 |
-
def
|
452 |
-
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
453 |
self.is_running = False
|
454 |
-
|
|
|
|
|
455 |
|
456 |
def clear_conversation(self):
|
457 |
"""Clear all conversation data"""
|
@@ -460,6 +447,7 @@ class RealtimeSpeakerDiarization:
|
|
460 |
self.pending_sentences = []
|
461 |
self.displayed_text = ""
|
462 |
self.last_realtime_text = ""
|
|
|
463 |
|
464 |
if self.speaker_detector:
|
465 |
self.speaker_detector = SpeakerChangeDetector(
|
@@ -491,6 +479,7 @@ class RealtimeSpeakerDiarization:
|
|
491 |
sentence_text, _ = sentence
|
492 |
if i >= len(self.sentence_speakers):
|
493 |
color = "#FFFFFF"
|
|
|
494 |
else:
|
495 |
speaker_id = self.sentence_speakers[i]
|
496 |
color = self.speaker_detector.get_color_for_speaker(speaker_id)
|
@@ -539,38 +528,130 @@ class RealtimeSpeakerDiarization:
|
|
539 |
except Exception as e:
|
540 |
return f"Error getting status: {e}"
|
541 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
542 |
|
543 |
# Global instance
|
544 |
diarization_system = RealtimeSpeakerDiarization()
|
545 |
|
546 |
|
547 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
548 |
def create_interface():
|
549 |
-
|
550 |
-
|
551 |
-
with app:
|
552 |
gr.Markdown("# 🎤 Real-time Speech Recognition with Speaker Diarization")
|
553 |
-
gr.Markdown("This app performs real-time speech recognition with automatic speaker identification and color-coding
|
554 |
|
555 |
with gr.Row():
|
556 |
with gr.Column(scale=2):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
557 |
# Main conversation display
|
558 |
conversation_output = gr.HTML(
|
559 |
-
value="<i>Click 'Initialize System'
|
560 |
label="Live Conversation"
|
561 |
)
|
562 |
|
563 |
-
# FastRTC microphone widget for visualization only (the real audio comes through FastRTC stream)
|
564 |
-
audio_widget = gr.Audio(
|
565 |
-
label="🎙️ Microphone Input (Click Start Stream to enable)",
|
566 |
-
type="microphone"
|
567 |
-
)
|
568 |
-
|
569 |
# Control buttons
|
570 |
with gr.Row():
|
571 |
init_btn = gr.Button("🔧 Initialize System", variant="secondary")
|
572 |
-
start_btn = gr.Button("🎙️ Start
|
573 |
-
stop_btn = gr.Button("⏹️ Stop
|
574 |
clear_btn = gr.Button("🗑️ Clear Conversation", interactive=False)
|
575 |
|
576 |
# Status display
|
@@ -608,28 +689,12 @@ def create_interface():
|
|
608 |
gr.Markdown("## 📝 Instructions")
|
609 |
gr.Markdown("""
|
610 |
1. Click **Initialize System** to load models
|
611 |
-
2. Click **Start
|
612 |
-
3.
|
613 |
-
4.
|
614 |
-
5.
|
615 |
-
6.
|
616 |
-
|
617 |
-
|
618 |
-
# QR code for mobile access
|
619 |
-
gr.Markdown("## 📱 Mobile Access")
|
620 |
-
gr.Markdown("Scan this QR code to access from mobile device:")
|
621 |
-
qr_code = gr.HTML("""
|
622 |
-
<div id="qrcode" style="text-align: center;"></div>
|
623 |
-
<script src="https://cdn.jsdelivr.net/npm/qrcode-generator@1.4.4/qrcode.min.js"></script>
|
624 |
-
<script>
|
625 |
-
setTimeout(function() {
|
626 |
-
var currentUrl = window.location.href;
|
627 |
-
var qr = qrcode(0, 'M');
|
628 |
-
qr.addData(currentUrl);
|
629 |
-
qr.make();
|
630 |
-
document.getElementById('qrcode').innerHTML = qr.createImgTag(5);
|
631 |
-
}, 1000);
|
632 |
-
</script>
|
633 |
""")
|
634 |
|
635 |
# Speaker color legend
|
@@ -639,10 +704,17 @@ def create_interface():
|
|
639 |
color_info.append(f'<span style="color:{color};">■</span> Speaker {i+1} ({name})')
|
640 |
|
641 |
gr.HTML("<br>".join(color_info[:DEFAULT_MAX_SPEAKERS]))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
642 |
|
643 |
# Auto-refresh conversation and status
|
644 |
def refresh_display():
|
645 |
-
return get_formatted_conversation(),
|
646 |
|
647 |
# Event handlers
|
648 |
def on_initialize():
|
@@ -652,7 +724,7 @@ def create_interface():
|
|
652 |
result,
|
653 |
gr.update(interactive=True), # start_btn
|
654 |
gr.update(interactive=True), # clear_btn
|
655 |
-
|
656 |
get_status()
|
657 |
)
|
658 |
else:
|
@@ -660,58 +732,26 @@ def create_interface():
|
|
660 |
result,
|
661 |
gr.update(interactive=False), # start_btn
|
662 |
gr.update(interactive=False), # clear_btn
|
663 |
-
|
664 |
get_status()
|
665 |
)
|
666 |
|
667 |
-
def
|
668 |
-
result =
|
669 |
return (
|
670 |
result,
|
671 |
gr.update(interactive=False), # start_btn
|
672 |
gr.update(interactive=True), # stop_btn
|
673 |
)
|
674 |
|
675 |
-
def
|
676 |
-
result =
|
677 |
return (
|
678 |
result,
|
679 |
gr.update(interactive=True), # start_btn
|
680 |
gr.update(interactive=False), # stop_btn
|
681 |
)
|
682 |
|
683 |
-
def initialize_system():
|
684 |
-
"""Initialize the diarization system"""
|
685 |
-
success = diarization_system.initialize_models()
|
686 |
-
if success:
|
687 |
-
return "✅ System initialized successfully! Models loaded."
|
688 |
-
else:
|
689 |
-
return "❌ Failed to initialize system. Please check the logs."
|
690 |
-
|
691 |
-
def start_stream(app):
|
692 |
-
"""Start the FastRTC stream"""
|
693 |
-
return diarization_system.start_stream(app)
|
694 |
-
|
695 |
-
def stop_stream():
|
696 |
-
"""Stop the FastRTC stream"""
|
697 |
-
return diarization_system.stop_stream()
|
698 |
-
|
699 |
-
def clear_conversation():
|
700 |
-
"""Clear the conversation"""
|
701 |
-
return diarization_system.clear_conversation()
|
702 |
-
|
703 |
-
def update_settings(threshold, max_speakers):
|
704 |
-
"""Update system settings"""
|
705 |
-
return diarization_system.update_settings(threshold, max_speakers)
|
706 |
-
|
707 |
-
def get_formatted_conversation():
|
708 |
-
"""Get the current conversation"""
|
709 |
-
return diarization_system.get_formatted_conversation()
|
710 |
-
|
711 |
-
def get_status():
|
712 |
-
"""Get system status"""
|
713 |
-
return diarization_system.get_status_info()
|
714 |
-
|
715 |
# Connect event handlers
|
716 |
init_btn.click(
|
717 |
on_initialize,
|
@@ -719,12 +759,12 @@ def create_interface():
|
|
719 |
)
|
720 |
|
721 |
start_btn.click(
|
722 |
-
|
723 |
outputs=[status_output, start_btn, stop_btn]
|
724 |
)
|
725 |
|
726 |
stop_btn.click(
|
727 |
-
|
728 |
outputs=[status_output, start_btn, stop_btn]
|
729 |
)
|
730 |
|
@@ -739,7 +779,7 @@ def create_interface():
|
|
739 |
outputs=[status_output]
|
740 |
)
|
741 |
|
742 |
-
# Auto-refresh every 2 seconds when
|
743 |
refresh_timer = gr.Timer(2.0)
|
744 |
refresh_timer.tick(
|
745 |
refresh_display,
|
@@ -749,10 +789,24 @@ def create_interface():
|
|
749 |
return app
|
750 |
|
751 |
|
752 |
-
|
|
|
|
|
|
|
|
|
753 |
app = create_interface()
|
|
|
|
|
|
|
|
|
|
|
754 |
app.launch(
|
755 |
server_name="0.0.0.0",
|
756 |
server_port=7860,
|
757 |
share=True
|
758 |
)
|
|
|
|
|
|
|
|
|
|
|
|
8 |
import urllib.request
|
9 |
import torchaudio
|
10 |
from scipy.spatial.distance import cosine
|
11 |
+
from RealtimeSTT import AudioToTextRecorder
|
12 |
+
from fastrtc import Stream, AsyncStreamHandler, ReplyOnPause
|
13 |
import json
|
14 |
import io
|
15 |
import wave
|
16 |
+
import asyncio
|
17 |
|
18 |
# Simplified configuration parameters
|
19 |
SILENCE_THRESHS = [0, 0.4]
|
20 |
+
FINAL_TRANSCRIPTION_MODEL = "distil-large-v3"
|
21 |
+
FINAL_BEAM_SIZE = 5
|
22 |
+
REALTIME_TRANSCRIPTION_MODEL = "distil-small.en"
|
23 |
+
REALTIME_BEAM_SIZE = 5
|
24 |
+
TRANSCRIPTION_LANGUAGE = "en"
|
25 |
SILERO_SENSITIVITY = 0.4
|
26 |
WEBRTC_SENSITIVITY = 3
|
27 |
MIN_LENGTH_OF_RECORDING = 0.7
|
|
|
273 |
}
|
274 |
|
275 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
276 |
class RealtimeSpeakerDiarization:
|
277 |
def __init__(self):
|
278 |
self.encoder = None
|
279 |
self.audio_processor = None
|
280 |
self.speaker_detector = None
|
281 |
+
self.recorder = None
|
|
|
282 |
self.sentence_queue = queue.Queue()
|
283 |
self.full_sentences = []
|
284 |
self.sentence_speakers = []
|
|
|
288 |
self.is_running = False
|
289 |
self.change_threshold = DEFAULT_CHANGE_THRESHOLD
|
290 |
self.max_speakers = DEFAULT_MAX_SPEAKERS
|
291 |
+
self.current_conversation = ""
|
292 |
|
293 |
def initialize_models(self):
|
294 |
"""Initialize the speaker encoder model"""
|
|
|
315 |
print(f"Model initialization error: {e}")
|
316 |
return False
|
317 |
|
318 |
+
def live_text_detected(self, text):
|
319 |
+
"""Callback for real-time transcription updates"""
|
320 |
+
text = text.strip()
|
321 |
+
if text:
|
322 |
+
sentence_delimiters = '.?!。'
|
323 |
+
prob_sentence_end = (
|
324 |
+
len(self.last_realtime_text) > 0
|
325 |
+
and text[-1] in sentence_delimiters
|
326 |
+
and self.last_realtime_text[-1] in sentence_delimiters
|
|
|
|
|
|
|
|
|
|
|
327 |
)
|
328 |
+
|
329 |
+
self.last_realtime_text = text
|
330 |
+
|
331 |
+
if prob_sentence_end and FAST_SENTENCE_END:
|
332 |
+
self.recorder.stop()
|
333 |
+
elif prob_sentence_end:
|
334 |
+
self.recorder.post_speech_silence_duration = SILENCE_THRESHS[0]
|
335 |
+
else:
|
336 |
+
self.recorder.post_speech_silence_duration = SILENCE_THRESHS[1]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
337 |
|
338 |
+
def process_final_text(self, text):
|
339 |
+
"""Process final transcribed text with speaker embedding"""
|
340 |
+
text = text.strip()
|
341 |
+
if text:
|
342 |
try:
|
343 |
+
bytes_data = self.recorder.last_transcription_bytes
|
344 |
+
self.sentence_queue.put((text, bytes_data))
|
345 |
+
self.pending_sentences.append(text)
|
|
|
|
|
|
|
|
|
|
|
346 |
except Exception as e:
|
347 |
+
print(f"Error processing final text: {e}")
|
|
|
348 |
|
349 |
def process_sentence_queue(self):
|
350 |
"""Process sentences in the queue for speaker detection"""
|
351 |
while self.is_running:
|
352 |
try:
|
353 |
+
text, bytes_data = self.sentence_queue.get(timeout=1)
|
354 |
|
355 |
# Convert audio data to int16
|
356 |
+
audio_int16 = np.frombuffer(bytes_data, dtype=np.int16)
|
|
|
|
|
|
|
|
|
|
|
|
|
357 |
|
358 |
# Extract speaker embedding
|
359 |
speaker_embedding = self.audio_processor.extract_embedding(audio_int16)
|
|
|
372 |
# Remove from pending
|
373 |
if text in self.pending_sentences:
|
374 |
self.pending_sentences.remove(text)
|
375 |
+
|
376 |
+
# Update conversation display
|
377 |
+
self.current_conversation = self.get_formatted_conversation()
|
378 |
|
379 |
except queue.Empty:
|
380 |
continue
|
381 |
except Exception as e:
|
382 |
print(f"Error processing sentence: {e}")
|
383 |
|
384 |
+
def start_recording(self):
|
385 |
+
"""Start the recording and transcription process"""
|
386 |
+
if self.encoder is None:
|
387 |
+
return "Please initialize models first!"
|
388 |
+
|
389 |
+
try:
|
390 |
+
# Setup recorder configuration for WebRTC input
|
391 |
+
recorder_config = {
|
392 |
+
'spinner': False,
|
393 |
+
'use_microphone': False, # We'll feed audio manually
|
394 |
+
'model': FINAL_TRANSCRIPTION_MODEL,
|
395 |
+
'language': TRANSCRIPTION_LANGUAGE,
|
396 |
+
'silero_sensitivity': SILERO_SENSITIVITY,
|
397 |
+
'webrtc_sensitivity': WEBRTC_SENSITIVITY,
|
398 |
+
'post_speech_silence_duration': SILENCE_THRESHS[1],
|
399 |
+
'min_length_of_recording': MIN_LENGTH_OF_RECORDING,
|
400 |
+
'pre_recording_buffer_duration': PRE_RECORDING_BUFFER_DURATION,
|
401 |
+
'min_gap_between_recordings': 0,
|
402 |
+
'enable_realtime_transcription': True,
|
403 |
+
'realtime_processing_pause': 0,
|
404 |
+
'realtime_model_type': REALTIME_TRANSCRIPTION_MODEL,
|
405 |
+
'on_realtime_transcription_update': self.live_text_detected,
|
406 |
+
'beam_size': FINAL_BEAM_SIZE,
|
407 |
+
'beam_size_realtime': REALTIME_BEAM_SIZE,
|
408 |
+
'buffer_size': BUFFER_SIZE,
|
409 |
+
'sample_rate': SAMPLE_RATE,
|
410 |
+
}
|
411 |
+
|
412 |
+
self.recorder = AudioToTextRecorder(**recorder_config)
|
413 |
+
|
414 |
+
# Start sentence processing thread
|
415 |
+
self.is_running = True
|
416 |
+
self.sentence_thread = threading.Thread(target=self.process_sentence_queue, daemon=True)
|
417 |
+
self.sentence_thread.start()
|
418 |
+
|
419 |
+
# Start transcription thread
|
420 |
+
self.transcription_thread = threading.Thread(target=self.run_transcription, daemon=True)
|
421 |
+
self.transcription_thread.start()
|
422 |
+
|
423 |
+
return "Recording started successfully! FastRTC audio input ready."
|
424 |
+
|
425 |
+
except Exception as e:
|
426 |
+
return f"Error starting recording: {e}"
|
427 |
+
|
428 |
+
def run_transcription(self):
|
429 |
+
"""Run the transcription loop"""
|
430 |
+
try:
|
431 |
+
while self.is_running:
|
432 |
+
self.recorder.text(self.process_final_text)
|
433 |
+
except Exception as e:
|
434 |
+
print(f"Transcription error: {e}")
|
435 |
+
|
436 |
+
def stop_recording(self):
|
437 |
+
"""Stop the recording process"""
|
438 |
self.is_running = False
|
439 |
+
if self.recorder:
|
440 |
+
self.recorder.stop()
|
441 |
+
return "Recording stopped!"
|
442 |
|
443 |
def clear_conversation(self):
|
444 |
"""Clear all conversation data"""
|
|
|
447 |
self.pending_sentences = []
|
448 |
self.displayed_text = ""
|
449 |
self.last_realtime_text = ""
|
450 |
+
self.current_conversation = "Conversation cleared!"
|
451 |
|
452 |
if self.speaker_detector:
|
453 |
self.speaker_detector = SpeakerChangeDetector(
|
|
|
479 |
sentence_text, _ = sentence
|
480 |
if i >= len(self.sentence_speakers):
|
481 |
color = "#FFFFFF"
|
482 |
+
speaker_name = "Unknown"
|
483 |
else:
|
484 |
speaker_id = self.sentence_speakers[i]
|
485 |
color = self.speaker_detector.get_color_for_speaker(speaker_id)
|
|
|
528 |
except Exception as e:
|
529 |
return f"Error getting status: {e}"
|
530 |
|
531 |
+
def process_audio(self, audio_data):
|
532 |
+
"""Process audio data from FastRTC"""
|
533 |
+
if not self.is_running or not self.recorder:
|
534 |
+
return
|
535 |
+
|
536 |
+
try:
|
537 |
+
# Extract audio data from FastRTC format (sample_rate, numpy_array)
|
538 |
+
sample_rate, audio_array = audio_data
|
539 |
+
|
540 |
+
# Convert to int16 format
|
541 |
+
if audio_array.dtype != np.int16:
|
542 |
+
audio_array = (audio_array * 32767).astype(np.int16)
|
543 |
+
|
544 |
+
# Convert to bytes and feed to recorder
|
545 |
+
audio_bytes = audio_array.tobytes()
|
546 |
+
self.recorder.feed_audio(audio_bytes)
|
547 |
+
except Exception as e:
|
548 |
+
print(f"Error processing FastRTC audio: {e}")
|
549 |
+
|
550 |
+
|
551 |
+
# FastRTC Audio Handler
|
552 |
+
class DiarizationHandler(AsyncStreamHandler):
|
553 |
+
def __init__(self, diarization_system):
|
554 |
+
super().__init__()
|
555 |
+
self.diarization_system = diarization_system
|
556 |
+
|
557 |
+
async def emit(self):
|
558 |
+
"""Not used in this implementation"""
|
559 |
+
return None
|
560 |
+
|
561 |
+
async def receive(self, data):
|
562 |
+
"""Receive audio data from FastRTC and process it"""
|
563 |
+
if self.diarization_system.is_running:
|
564 |
+
self.diarization_system.process_audio(data)
|
565 |
+
|
566 |
|
567 |
# Global instance
|
568 |
diarization_system = RealtimeSpeakerDiarization()
|
569 |
|
570 |
|
571 |
+
def initialize_system():
|
572 |
+
"""Initialize the diarization system"""
|
573 |
+
success = diarization_system.initialize_models()
|
574 |
+
if success:
|
575 |
+
return "✅ System initialized successfully! Models loaded."
|
576 |
+
else:
|
577 |
+
return "❌ Failed to initialize system. Please check the logs."
|
578 |
+
|
579 |
+
|
580 |
+
def start_recording():
|
581 |
+
"""Start recording and transcription"""
|
582 |
+
return diarization_system.start_recording()
|
583 |
+
|
584 |
+
|
585 |
+
def stop_recording():
|
586 |
+
"""Stop recording and transcription"""
|
587 |
+
return diarization_system.stop_recording()
|
588 |
+
|
589 |
+
|
590 |
+
def clear_conversation():
|
591 |
+
"""Clear the conversation"""
|
592 |
+
return diarization_system.clear_conversation()
|
593 |
+
|
594 |
+
|
595 |
+
def update_settings(threshold, max_speakers):
|
596 |
+
"""Update system settings"""
|
597 |
+
return diarization_system.update_settings(threshold, max_speakers)
|
598 |
+
|
599 |
+
|
600 |
+
def get_conversation():
|
601 |
+
"""Get the current conversation"""
|
602 |
+
return diarization_system.get_formatted_conversation()
|
603 |
+
|
604 |
+
|
605 |
+
def get_status():
|
606 |
+
"""Get system status"""
|
607 |
+
return diarization_system.get_status_info()
|
608 |
+
|
609 |
+
|
610 |
+
# Setup FastRTC stream handler
|
611 |
+
def setup_fastrtc_handler():
|
612 |
+
"""Set up FastRTC audio stream handler"""
|
613 |
+
handler = DiarizationHandler(diarization_system)
|
614 |
+
stream = Stream(handler=handler, modality="audio", mode="receive")
|
615 |
+
return stream
|
616 |
+
|
617 |
+
|
618 |
+
# Create Gradio interface
|
619 |
def create_interface():
|
620 |
+
with gr.Blocks(title="Real-time Speaker Diarization", theme=gr.themes.Monochrome()) as app:
|
|
|
|
|
621 |
gr.Markdown("# 🎤 Real-time Speech Recognition with Speaker Diarization")
|
622 |
+
gr.Markdown("This app performs real-time speech recognition with automatic speaker identification and color-coding.")
|
623 |
|
624 |
with gr.Row():
|
625 |
with gr.Column(scale=2):
|
626 |
+
# FastRTC Audio Component
|
627 |
+
fastrtc_html = gr.HTML("""
|
628 |
+
<div class="fastrtc-container" style="margin-bottom: 20px;">
|
629 |
+
<h3>🎙️ FastRTC Audio Input</h3>
|
630 |
+
<p>Click the button below to start the audio stream:</p>
|
631 |
+
<button id="start-fastrtc" style="background: #3498db; color: white; padding: 10px 20px; border: none; border-radius: 5px; cursor: pointer;">
|
632 |
+
Start FastRTC Audio
|
633 |
+
</button>
|
634 |
+
<div id="fastrtc-status" style="margin-top: 10px; font-style: italic;">Not connected</div>
|
635 |
+
<script>
|
636 |
+
document.getElementById('start-fastrtc').addEventListener('click', function() {
|
637 |
+
document.getElementById('fastrtc-status').textContent = 'Connecting...';
|
638 |
+
// FastRTC will be initialized here by the middleware
|
639 |
+
});
|
640 |
+
</script>
|
641 |
+
</div>
|
642 |
+
""")
|
643 |
+
|
644 |
# Main conversation display
|
645 |
conversation_output = gr.HTML(
|
646 |
+
value="<i>Click 'Initialize System' to start...</i>",
|
647 |
label="Live Conversation"
|
648 |
)
|
649 |
|
|
|
|
|
|
|
|
|
|
|
|
|
650 |
# Control buttons
|
651 |
with gr.Row():
|
652 |
init_btn = gr.Button("🔧 Initialize System", variant="secondary")
|
653 |
+
start_btn = gr.Button("🎙️ Start Recording", variant="primary", interactive=False)
|
654 |
+
stop_btn = gr.Button("⏹️ Stop Recording", variant="stop", interactive=False)
|
655 |
clear_btn = gr.Button("🗑️ Clear Conversation", interactive=False)
|
656 |
|
657 |
# Status display
|
|
|
689 |
gr.Markdown("## 📝 Instructions")
|
690 |
gr.Markdown("""
|
691 |
1. Click **Initialize System** to load models
|
692 |
+
2. Click **Start Recording** to begin processing
|
693 |
+
3. Click **Start FastRTC Audio** to connect your microphone
|
694 |
+
4. Allow microphone access when prompted
|
695 |
+
5. Speak into your microphone
|
696 |
+
6. Watch real-time transcription with speaker labels
|
697 |
+
7. Adjust settings as needed
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
698 |
""")
|
699 |
|
700 |
# Speaker color legend
|
|
|
704 |
color_info.append(f'<span style="color:{color};">■</span> Speaker {i+1} ({name})')
|
705 |
|
706 |
gr.HTML("<br>".join(color_info[:DEFAULT_MAX_SPEAKERS]))
|
707 |
+
|
708 |
+
# FastRTC Integration Notice
|
709 |
+
gr.Markdown("""
|
710 |
+
## ℹ️ About FastRTC
|
711 |
+
This app uses FastRTC for low-latency audio streaming.
|
712 |
+
For optimal performance, use a modern browser and allow microphone access when prompted.
|
713 |
+
""")
|
714 |
|
715 |
# Auto-refresh conversation and status
|
716 |
def refresh_display():
|
717 |
+
return diarization_system.get_formatted_conversation(), diarization_system.get_status_info()
|
718 |
|
719 |
# Event handlers
|
720 |
def on_initialize():
|
|
|
724 |
result,
|
725 |
gr.update(interactive=True), # start_btn
|
726 |
gr.update(interactive=True), # clear_btn
|
727 |
+
get_conversation(),
|
728 |
get_status()
|
729 |
)
|
730 |
else:
|
|
|
732 |
result,
|
733 |
gr.update(interactive=False), # start_btn
|
734 |
gr.update(interactive=False), # clear_btn
|
735 |
+
get_conversation(),
|
736 |
get_status()
|
737 |
)
|
738 |
|
739 |
+
def on_start():
|
740 |
+
result = start_recording()
|
741 |
return (
|
742 |
result,
|
743 |
gr.update(interactive=False), # start_btn
|
744 |
gr.update(interactive=True), # stop_btn
|
745 |
)
|
746 |
|
747 |
+
def on_stop():
|
748 |
+
result = stop_recording()
|
749 |
return (
|
750 |
result,
|
751 |
gr.update(interactive=True), # start_btn
|
752 |
gr.update(interactive=False), # stop_btn
|
753 |
)
|
754 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
755 |
# Connect event handlers
|
756 |
init_btn.click(
|
757 |
on_initialize,
|
|
|
759 |
)
|
760 |
|
761 |
start_btn.click(
|
762 |
+
on_start,
|
763 |
outputs=[status_output, start_btn, stop_btn]
|
764 |
)
|
765 |
|
766 |
stop_btn.click(
|
767 |
+
on_stop,
|
768 |
outputs=[status_output, start_btn, stop_btn]
|
769 |
)
|
770 |
|
|
|
779 |
outputs=[status_output]
|
780 |
)
|
781 |
|
782 |
+
# Auto-refresh every 2 seconds when recording
|
783 |
refresh_timer = gr.Timer(2.0)
|
784 |
refresh_timer.tick(
|
785 |
refresh_display,
|
|
|
789 |
return app
|
790 |
|
791 |
|
792 |
+
async def main():
|
793 |
+
# Setup FastRTC stream
|
794 |
+
stream = setup_fastrtc_handler()
|
795 |
+
|
796 |
+
# Create Gradio app
|
797 |
app = create_interface()
|
798 |
+
|
799 |
+
# Mount FastRTC stream to the Gradio app
|
800 |
+
stream.mount(app)
|
801 |
+
|
802 |
+
# Launch the app
|
803 |
app.launch(
|
804 |
server_name="0.0.0.0",
|
805 |
server_port=7860,
|
806 |
share=True
|
807 |
)
|
808 |
+
|
809 |
+
|
810 |
+
if __name__ == "__main__":
|
811 |
+
# Run the async application
|
812 |
+
asyncio.run(main())
|