Spaces:
Sleeping
Sleeping
Commit
·
9a6051e
1
Parent(s):
3466e71
Check point 2
Browse files
app.py
CHANGED
@@ -10,15 +10,17 @@ import torchaudio
|
|
10 |
from scipy.spatial.distance import cosine
|
11 |
from RealtimeSTT import AudioToTextRecorder
|
12 |
from fastapi import FastAPI, APIRouter
|
13 |
-
from fastrtc import Stream, AsyncStreamHandler
|
14 |
import json
|
15 |
-
import io
|
16 |
-
import wave
|
17 |
import asyncio
|
18 |
import uvicorn
|
19 |
-
import socket
|
20 |
from queue import Queue
|
21 |
-
import
|
|
|
|
|
|
|
|
|
|
|
22 |
# Simplified configuration parameters
|
23 |
SILENCE_THRESHS = [0, 0.4]
|
24 |
FINAL_TRANSCRIPTION_MODEL = "distil-large-v3"
|
@@ -32,35 +34,31 @@ MIN_LENGTH_OF_RECORDING = 0.7
|
|
32 |
PRE_RECORDING_BUFFER_DURATION = 0.35
|
33 |
|
34 |
# Speaker change detection parameters
|
35 |
-
DEFAULT_CHANGE_THRESHOLD = 0.
|
36 |
EMBEDDING_HISTORY_SIZE = 5
|
37 |
-
MIN_SEGMENT_DURATION = 1.
|
38 |
DEFAULT_MAX_SPEAKERS = 4
|
39 |
-
ABSOLUTE_MAX_SPEAKERS =
|
40 |
|
41 |
# Global variables
|
42 |
-
FAST_SENTENCE_END = True
|
43 |
SAMPLE_RATE = 16000
|
44 |
-
BUFFER_SIZE =
|
45 |
CHANNELS = 1
|
46 |
|
47 |
-
# Speaker colors
|
48 |
SPEAKER_COLORS = [
|
49 |
-
"#
|
50 |
-
"#
|
51 |
-
"#
|
52 |
-
"#
|
53 |
-
"#
|
54 |
-
"#
|
55 |
-
"#
|
56 |
-
"#
|
57 |
-
"#8000FF", # Purple
|
58 |
-
"#FFFFFF", # White
|
59 |
]
|
60 |
|
61 |
SPEAKER_COLOR_NAMES = [
|
62 |
-
"
|
63 |
-
"Blue", "Orange", "Spring Green", "Purple", "White"
|
64 |
]
|
65 |
|
66 |
|
@@ -74,24 +72,11 @@ class SpeechBrainEncoder:
|
|
74 |
self.cache_dir = os.path.join(os.path.expanduser("~"), ".cache", "speechbrain")
|
75 |
os.makedirs(self.cache_dir, exist_ok=True)
|
76 |
|
77 |
-
def _download_model(self):
|
78 |
-
"""Download pre-trained SpeechBrain ECAPA-TDNN model if not present"""
|
79 |
-
model_url = "https://huggingface.co/speechbrain/spkrec-ecapa-voxceleb/resolve/main/embedding_model.ckpt"
|
80 |
-
model_path = os.path.join(self.cache_dir, "embedding_model.ckpt")
|
81 |
-
|
82 |
-
if not os.path.exists(model_path):
|
83 |
-
print(f"Downloading ECAPA-TDNN model to {model_path}...")
|
84 |
-
urllib.request.urlretrieve(model_url, model_path)
|
85 |
-
|
86 |
-
return model_path
|
87 |
-
|
88 |
def load_model(self):
|
89 |
"""Load the ECAPA-TDNN model"""
|
90 |
try:
|
91 |
from speechbrain.pretrained import EncoderClassifier
|
92 |
|
93 |
-
model_path = self._download_model()
|
94 |
-
|
95 |
self.model = EncoderClassifier.from_hparams(
|
96 |
source="speechbrain/spkrec-ecapa-voxceleb",
|
97 |
savedir=self.cache_dir,
|
@@ -99,9 +84,10 @@ class SpeechBrainEncoder:
|
|
99 |
)
|
100 |
|
101 |
self.model_loaded = True
|
|
|
102 |
return True
|
103 |
except Exception as e:
|
104 |
-
|
105 |
return False
|
106 |
|
107 |
def embed_utterance(self, audio, sr=16000):
|
@@ -111,10 +97,15 @@ class SpeechBrainEncoder:
|
|
111 |
|
112 |
try:
|
113 |
if isinstance(audio, np.ndarray):
|
114 |
-
|
|
|
|
|
|
|
|
|
115 |
else:
|
116 |
waveform = audio.unsqueeze(0)
|
117 |
|
|
|
118 |
if sr != 16000:
|
119 |
waveform = torchaudio.functional.resample(waveform, orig_freq=sr, new_freq=16000)
|
120 |
|
@@ -123,7 +114,7 @@ class SpeechBrainEncoder:
|
|
123 |
|
124 |
return embedding.squeeze().cpu().numpy()
|
125 |
except Exception as e:
|
126 |
-
|
127 |
return np.zeros(self.embedding_dim)
|
128 |
|
129 |
|
@@ -131,41 +122,60 @@ class AudioProcessor:
|
|
131 |
"""Processes audio data to extract speaker embeddings"""
|
132 |
def __init__(self, encoder):
|
133 |
self.encoder = encoder
|
|
|
|
|
134 |
|
135 |
-
def
|
136 |
-
|
137 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
138 |
|
139 |
-
|
140 |
-
|
|
|
141 |
|
142 |
-
|
|
|
|
|
|
|
|
|
143 |
|
|
|
144 |
return embedding
|
145 |
except Exception as e:
|
146 |
-
|
147 |
-
return
|
148 |
|
149 |
|
150 |
class SpeakerChangeDetector:
|
151 |
-
"""
|
152 |
def __init__(self, embedding_dim=192, change_threshold=DEFAULT_CHANGE_THRESHOLD, max_speakers=DEFAULT_MAX_SPEAKERS):
|
153 |
self.embedding_dim = embedding_dim
|
154 |
self.change_threshold = change_threshold
|
155 |
self.max_speakers = min(max_speakers, ABSOLUTE_MAX_SPEAKERS)
|
156 |
self.current_speaker = 0
|
157 |
-
self.previous_embeddings = []
|
158 |
-
self.last_change_time = time.time()
|
159 |
-
self.mean_embeddings = [None] * self.max_speakers
|
160 |
self.speaker_embeddings = [[] for _ in range(self.max_speakers)]
|
161 |
-
self.
|
|
|
|
|
162 |
self.active_speakers = set([0])
|
|
|
163 |
|
164 |
def set_max_speakers(self, max_speakers):
|
165 |
"""Update the maximum number of speakers"""
|
166 |
new_max = min(max_speakers, ABSOLUTE_MAX_SPEAKERS)
|
167 |
|
168 |
if new_max < self.max_speakers:
|
|
|
169 |
for speaker_id in list(self.active_speakers):
|
170 |
if speaker_id >= new_max:
|
171 |
self.active_speakers.discard(speaker_id)
|
@@ -173,85 +183,85 @@ class SpeakerChangeDetector:
|
|
173 |
if self.current_speaker >= new_max:
|
174 |
self.current_speaker = 0
|
175 |
|
|
|
176 |
if new_max > self.max_speakers:
|
177 |
-
self.mean_embeddings.extend([None] * (new_max - self.max_speakers))
|
178 |
self.speaker_embeddings.extend([[] for _ in range(new_max - self.max_speakers)])
|
|
|
179 |
else:
|
180 |
-
self.mean_embeddings = self.mean_embeddings[:new_max]
|
181 |
self.speaker_embeddings = self.speaker_embeddings[:new_max]
|
|
|
182 |
|
183 |
self.max_speakers = new_max
|
184 |
|
185 |
def set_change_threshold(self, threshold):
|
186 |
"""Update the threshold for detecting speaker changes"""
|
187 |
-
self.change_threshold = max(0.1, min(threshold, 0.
|
188 |
|
189 |
def add_embedding(self, embedding, timestamp=None):
|
190 |
-
"""Add a new embedding and
|
191 |
current_time = timestamp or time.time()
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
|
|
|
|
203 |
else:
|
204 |
-
similarity =
|
205 |
|
206 |
self.last_similarity = similarity
|
207 |
|
|
|
208 |
time_since_last_change = current_time - self.last_change_time
|
209 |
-
|
210 |
|
211 |
-
if time_since_last_change >= MIN_SEGMENT_DURATION:
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
speaker_mean = self.mean_embeddings[speaker_id]
|
221 |
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
self.previous_embeddings.append(embedding)
|
244 |
-
if len(self.previous_embeddings) > EMBEDDING_HISTORY_SIZE:
|
245 |
-
self.previous_embeddings.pop(0)
|
246 |
-
|
247 |
self.speaker_embeddings[self.current_speaker].append(embedding)
|
248 |
-
self.active_speakers.add(self.current_speaker)
|
249 |
|
250 |
-
|
251 |
-
|
252 |
-
|
|
|
|
|
|
|
253 |
if self.speaker_embeddings[self.current_speaker]:
|
254 |
-
self.
|
255 |
self.speaker_embeddings[self.current_speaker], axis=0
|
256 |
)
|
257 |
|
@@ -264,7 +274,7 @@ class SpeakerChangeDetector:
|
|
264 |
return "#FFFFFF"
|
265 |
|
266 |
def get_status_info(self):
|
267 |
-
"""Return status information
|
268 |
speaker_counts = [len(self.speaker_embeddings[i]) for i in range(self.max_speakers)]
|
269 |
|
270 |
return {
|
@@ -273,7 +283,8 @@ class SpeakerChangeDetector:
|
|
273 |
"active_speakers": len(self.active_speakers),
|
274 |
"max_speakers": self.max_speakers,
|
275 |
"last_similarity": self.last_similarity,
|
276 |
-
"threshold": self.change_threshold
|
|
|
277 |
}
|
278 |
|
279 |
|
@@ -283,173 +294,121 @@ class RealtimeSpeakerDiarization:
|
|
283 |
self.audio_processor = None
|
284 |
self.speaker_detector = None
|
285 |
self.recorder = None
|
286 |
-
self.sentence_queue = queue.Queue(
|
287 |
self.full_sentences = []
|
288 |
self.sentence_speakers = []
|
289 |
self.pending_sentences = []
|
290 |
-
self.
|
291 |
-
self.last_realtime_text = ""
|
292 |
self.is_running = False
|
293 |
self.change_threshold = DEFAULT_CHANGE_THRESHOLD
|
294 |
self.max_speakers = DEFAULT_MAX_SPEAKERS
|
295 |
-
self.
|
296 |
-
self.
|
297 |
-
# Add locks for thread safety
|
298 |
-
self._state_lock = threading.RLock() # Reentrant lock for shared state
|
299 |
-
self._audio_lock = threading.Lock() # Lock for audio processing
|
300 |
|
301 |
def initialize_models(self):
|
302 |
"""Initialize the speaker encoder model"""
|
303 |
try:
|
304 |
device_str = "cuda" if torch.cuda.is_available() else "cpu"
|
305 |
-
|
306 |
|
307 |
self.encoder = SpeechBrainEncoder(device=device_str)
|
|
|
308 |
|
309 |
-
|
310 |
-
import threading
|
311 |
-
load_success = [False]
|
312 |
-
|
313 |
-
def load_model_thread():
|
314 |
-
try:
|
315 |
-
success = self.encoder.load_model()
|
316 |
-
load_success[0] = success
|
317 |
-
except Exception as e:
|
318 |
-
print(f"Error in model loading thread: {e}")
|
319 |
-
|
320 |
-
# Start loading in a thread with timeout
|
321 |
-
load_thread = threading.Thread(target=load_model_thread)
|
322 |
-
load_thread.daemon = True
|
323 |
-
load_thread.start()
|
324 |
-
load_thread.join(timeout=60) # 60 second timeout for model loading
|
325 |
-
|
326 |
-
if load_success[0]:
|
327 |
self.audio_processor = AudioProcessor(self.encoder)
|
328 |
self.speaker_detector = SpeakerChangeDetector(
|
329 |
embedding_dim=self.encoder.embedding_dim,
|
330 |
change_threshold=self.change_threshold,
|
331 |
max_speakers=self.max_speakers
|
332 |
)
|
333 |
-
|
334 |
return True
|
335 |
else:
|
336 |
-
|
337 |
-
return
|
338 |
-
|
339 |
-
except Exception as e:
|
340 |
-
print(f"Model initialization error: {e}")
|
341 |
-
import traceback
|
342 |
-
traceback.print_exc()
|
343 |
-
return self._initialize_fallback()
|
344 |
-
|
345 |
-
def _initialize_fallback(self):
|
346 |
-
"""Initialize fallback mode when model loading fails"""
|
347 |
-
try:
|
348 |
-
print("Initializing fallback mode with simple speaker detection...")
|
349 |
-
# Create a simple embedding dimension
|
350 |
-
embedding_dim = 64
|
351 |
-
|
352 |
-
# Create a dummy encoder that produces random embeddings
|
353 |
-
class DummyEncoder:
|
354 |
-
def __init__(self):
|
355 |
-
self.embedding_dim = embedding_dim
|
356 |
-
self.model_loaded = True
|
357 |
-
|
358 |
-
def embed_utterance(self, audio, sr=16000):
|
359 |
-
# Simple energy-based pseudo-embedding
|
360 |
-
if isinstance(audio, np.ndarray):
|
361 |
-
# Create a simple feature vector (not a real embedding)
|
362 |
-
energy = np.mean(np.abs(audio))
|
363 |
-
# Create a pseudo-random but consistent embedding based on audio energy
|
364 |
-
np.random.seed(int(energy * 1000))
|
365 |
-
return np.random.rand(embedding_dim)
|
366 |
-
return np.random.rand(embedding_dim)
|
367 |
-
|
368 |
-
# Set up system with fallback components
|
369 |
-
self.encoder = DummyEncoder()
|
370 |
-
self.audio_processor = AudioProcessor(self.encoder)
|
371 |
-
self.speaker_detector = SpeakerChangeDetector(
|
372 |
-
embedding_dim=embedding_dim,
|
373 |
-
change_threshold=self.change_threshold,
|
374 |
-
max_speakers=2 # Limit speakers in fallback mode
|
375 |
-
)
|
376 |
-
|
377 |
-
print("Fallback mode initialized - limited functionality!")
|
378 |
-
return True
|
379 |
-
|
380 |
except Exception as e:
|
381 |
-
|
382 |
return False
|
383 |
|
384 |
def live_text_detected(self, text):
|
385 |
"""Callback for real-time transcription updates"""
|
386 |
-
|
387 |
-
|
388 |
-
sentence_delimiters = '.?!。'
|
389 |
-
prob_sentence_end = (
|
390 |
-
len(self.last_realtime_text) > 0
|
391 |
-
and text[-1] in sentence_delimiters
|
392 |
-
and self.last_realtime_text[-1] in sentence_delimiters
|
393 |
-
)
|
394 |
-
|
395 |
-
self.last_realtime_text = text
|
396 |
-
|
397 |
-
if prob_sentence_end and FAST_SENTENCE_END:
|
398 |
-
self.recorder.stop()
|
399 |
-
elif prob_sentence_end:
|
400 |
-
self.recorder.post_speech_silence_duration = SILENCE_THRESHS[0]
|
401 |
-
else:
|
402 |
-
self.recorder.post_speech_silence_duration = SILENCE_THRESHS[1]
|
403 |
|
404 |
def process_final_text(self, text):
|
405 |
"""Process final transcribed text with speaker embedding"""
|
406 |
text = text.strip()
|
407 |
if text:
|
408 |
try:
|
409 |
-
|
410 |
-
self.
|
411 |
-
|
412 |
-
self.
|
|
|
|
|
|
|
|
|
413 |
except Exception as e:
|
414 |
-
|
415 |
|
416 |
def process_sentence_queue(self):
|
417 |
"""Process sentences in the queue for speaker detection"""
|
418 |
while self.is_running:
|
419 |
try:
|
420 |
-
text,
|
421 |
|
422 |
-
|
423 |
-
audio_int16 = np.frombuffer(bytes_data, dtype=np.int16)
|
424 |
|
425 |
-
|
426 |
-
|
427 |
-
|
428 |
-
|
429 |
-
# Store sentence and embedding
|
430 |
-
self.full_sentences.append((text, speaker_embedding))
|
431 |
-
|
432 |
-
# Fill in missing speaker assignments
|
433 |
-
while len(self.sentence_speakers) < len(self.full_sentences) - 1:
|
434 |
-
self.sentence_speakers.append(0)
|
435 |
|
436 |
-
#
|
437 |
-
|
438 |
-
|
439 |
-
|
440 |
-
|
441 |
-
|
442 |
-
|
443 |
-
|
444 |
-
|
445 |
-
self.current_conversation = self.get_formatted_conversation()
|
446 |
|
447 |
except queue.Empty:
|
448 |
continue
|
449 |
except Exception as e:
|
450 |
-
|
451 |
-
|
452 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
453 |
|
454 |
def start_recording(self):
|
455 |
"""Start the recording and transcription process"""
|
@@ -457,10 +416,10 @@ class RealtimeSpeakerDiarization:
|
|
457 |
return "Please initialize models first!"
|
458 |
|
459 |
try:
|
460 |
-
# Setup recorder configuration
|
461 |
recorder_config = {
|
462 |
'spinner': False,
|
463 |
-
'use_microphone':
|
464 |
'model': FINAL_TRANSCRIPTION_MODEL,
|
465 |
'language': TRANSCRIPTION_LANGUAGE,
|
466 |
'silero_sensitivity': SILERO_SENSITIVITY,
|
@@ -470,45 +429,29 @@ class RealtimeSpeakerDiarization:
|
|
470 |
'pre_recording_buffer_duration': PRE_RECORDING_BUFFER_DURATION,
|
471 |
'min_gap_between_recordings': 0,
|
472 |
'enable_realtime_transcription': True,
|
473 |
-
'realtime_processing_pause': 0,
|
474 |
'realtime_model_type': REALTIME_TRANSCRIPTION_MODEL,
|
475 |
'on_realtime_transcription_update': self.live_text_detected,
|
476 |
'beam_size': FINAL_BEAM_SIZE,
|
477 |
'beam_size_realtime': REALTIME_BEAM_SIZE,
|
478 |
-
'buffer_size': BUFFER_SIZE,
|
479 |
'sample_rate': SAMPLE_RATE,
|
480 |
-
'external_audio': True, # Signal that we'll provide audio
|
481 |
}
|
482 |
|
483 |
-
# Make sure we're not running already
|
484 |
-
if hasattr(self, 'is_running') and self.is_running:
|
485 |
-
self.stop_recording()
|
486 |
-
# Short pause to ensure cleanup completes
|
487 |
-
time.sleep(0.5)
|
488 |
-
|
489 |
self.recorder = AudioToTextRecorder(**recorder_config)
|
490 |
|
491 |
-
#
|
492 |
-
with self._state_lock:
|
493 |
-
self.pending_sentences = []
|
494 |
-
self.last_realtime_text = ""
|
495 |
-
|
496 |
-
# Start sentence processing thread
|
497 |
self.is_running = True
|
498 |
self.sentence_thread = threading.Thread(target=self.process_sentence_queue, daemon=True)
|
499 |
self.sentence_thread.start()
|
500 |
|
501 |
-
# Start transcription thread
|
502 |
self.transcription_thread = threading.Thread(target=self.run_transcription, daemon=True)
|
503 |
self.transcription_thread.start()
|
504 |
|
505 |
-
return "Recording started successfully!
|
506 |
|
507 |
except Exception as e:
|
508 |
-
|
509 |
-
|
510 |
-
traceback.print_exc()
|
511 |
-
return f"Error starting recording: {str(e)}"
|
512 |
|
513 |
def run_transcription(self):
|
514 |
"""Run the transcription loop"""
|
@@ -516,63 +459,21 @@ class RealtimeSpeakerDiarization:
|
|
516 |
while self.is_running:
|
517 |
self.recorder.text(self.process_final_text)
|
518 |
except Exception as e:
|
519 |
-
|
520 |
|
521 |
def stop_recording(self):
|
522 |
"""Stop the recording process"""
|
523 |
self.is_running = False
|
524 |
if self.recorder:
|
525 |
self.recorder.stop()
|
526 |
-
|
527 |
-
# Wait for threads to finish
|
528 |
-
self._cleanup_resources()
|
529 |
-
|
530 |
return "Recording stopped!"
|
531 |
|
532 |
-
def _cleanup_resources(self):
|
533 |
-
"""Clean up resources and threads"""
|
534 |
-
try:
|
535 |
-
# Wait for threads to stop gracefully
|
536 |
-
if hasattr(self, 'sentence_thread') and self.sentence_thread is not None:
|
537 |
-
if self.sentence_thread.is_alive():
|
538 |
-
self.sentence_thread.join(timeout=3.0)
|
539 |
-
|
540 |
-
if hasattr(self, 'transcription_thread') and self.transcription_thread is not None:
|
541 |
-
if self.transcription_thread.is_alive():
|
542 |
-
self.transcription_thread.join(timeout=3.0)
|
543 |
-
|
544 |
-
# Clean up memory
|
545 |
-
with self._state_lock:
|
546 |
-
# Limit history size to prevent memory leaks
|
547 |
-
if len(self.full_sentences) > 1000:
|
548 |
-
self.full_sentences = self.full_sentences[-1000:]
|
549 |
-
if len(self.sentence_speakers) > 1000:
|
550 |
-
self.sentence_speakers = self.sentence_speakers[-1000:]
|
551 |
-
|
552 |
-
# Clear audio buffer
|
553 |
-
with self._audio_lock:
|
554 |
-
self.audio_buffer = []
|
555 |
-
|
556 |
-
# Clear queue
|
557 |
-
while not self.sentence_queue.empty():
|
558 |
-
try:
|
559 |
-
self.sentence_queue.get_nowait()
|
560 |
-
except:
|
561 |
-
pass
|
562 |
-
|
563 |
-
except Exception as e:
|
564 |
-
print(f"Error during resource cleanup: {e}")
|
565 |
-
import traceback
|
566 |
-
traceback.print_exc()
|
567 |
-
|
568 |
def clear_conversation(self):
|
569 |
"""Clear all conversation data"""
|
570 |
-
self.
|
571 |
-
|
572 |
-
|
573 |
-
|
574 |
-
self.last_realtime_text = ""
|
575 |
-
self.current_conversation = "Conversation cleared!"
|
576 |
|
577 |
if self.speaker_detector:
|
578 |
self.speaker_detector = SpeakerChangeDetector(
|
@@ -595,36 +496,8 @@ class RealtimeSpeakerDiarization:
|
|
595 |
return f"Settings updated: Threshold={threshold:.2f}, Max Speakers={max_speakers}"
|
596 |
|
597 |
def get_formatted_conversation(self):
|
598 |
-
"""Get the formatted conversation
|
599 |
-
|
600 |
-
sentences_with_style = []
|
601 |
-
|
602 |
-
# Process completed sentences
|
603 |
-
for i, sentence in enumerate(self.full_sentences):
|
604 |
-
sentence_text, _ = sentence
|
605 |
-
if i >= len(self.sentence_speakers):
|
606 |
-
color = "#FFFFFF"
|
607 |
-
speaker_name = "Unknown"
|
608 |
-
else:
|
609 |
-
speaker_id = self.sentence_speakers[i]
|
610 |
-
color = self.speaker_detector.get_color_for_speaker(speaker_id)
|
611 |
-
speaker_name = f"Speaker {speaker_id + 1}"
|
612 |
-
|
613 |
-
sentences_with_style.append(
|
614 |
-
f'<span style="color:{color};"><b>{speaker_name}:</b> {sentence_text}</span>')
|
615 |
-
|
616 |
-
# Add pending sentences
|
617 |
-
for pending_sentence in self.pending_sentences:
|
618 |
-
sentences_with_style.append(
|
619 |
-
f'<span style="color:#60FFFF;"><b>Processing:</b> {pending_sentence}</span>')
|
620 |
-
|
621 |
-
if sentences_with_style:
|
622 |
-
return "<br><br>".join(sentences_with_style)
|
623 |
-
else:
|
624 |
-
return "Waiting for speech input..."
|
625 |
-
|
626 |
-
except Exception as e:
|
627 |
-
return f"Error formatting conversation: {e}"
|
628 |
|
629 |
def get_status_info(self):
|
630 |
"""Get current status information"""
|
@@ -640,808 +513,473 @@ class RealtimeSpeakerDiarization:
|
|
640 |
f"**Last Similarity:** {status['last_similarity']:.3f}",
|
641 |
f"**Change Threshold:** {status['threshold']:.2f}",
|
642 |
f"**Total Sentences:** {len(self.full_sentences)}",
|
|
|
643 |
"",
|
644 |
-
"**Speaker
|
645 |
]
|
646 |
|
647 |
for i in range(status['max_speakers']):
|
648 |
color_name = SPEAKER_COLOR_NAMES[i] if i < len(SPEAKER_COLOR_NAMES) else f"Speaker {i+1}"
|
649 |
-
|
|
|
|
|
650 |
|
651 |
return "\n".join(status_lines)
|
652 |
|
653 |
except Exception as e:
|
654 |
return f"Error getting status: {e}"
|
655 |
|
656 |
-
def feed_audio_data(self, audio_data):
|
657 |
-
"""Feed audio data to the recorder"""
|
658 |
-
if not self.is_running or not self.recorder:
|
659 |
-
return
|
660 |
-
|
661 |
-
try:
|
662 |
-
# Ensure audio is in the correct format (16-bit PCM)
|
663 |
-
if isinstance(audio_data, np.ndarray):
|
664 |
-
if audio_data.dtype != np.int16:
|
665 |
-
# Convert float to int16
|
666 |
-
if audio_data.dtype == np.float32 or audio_data.dtype == np.float64:
|
667 |
-
audio_data = (audio_data * 32767).astype(np.int16)
|
668 |
-
else:
|
669 |
-
audio_data = audio_data.astype(np.int16)
|
670 |
-
|
671 |
-
# Convert to bytes
|
672 |
-
audio_bytes = audio_data.tobytes()
|
673 |
-
else:
|
674 |
-
audio_bytes = audio_data
|
675 |
-
|
676 |
-
# Use the recorder's internal buffer mechanism
|
677 |
-
if hasattr(self.recorder, 'feed_audio') and callable(self.recorder.feed_audio):
|
678 |
-
self.recorder.feed_audio(audio_bytes)
|
679 |
-
else:
|
680 |
-
# Fallback: Direct access to the underlying buffer if the method doesn't exist
|
681 |
-
self.audio_buffer.append(audio_bytes)
|
682 |
-
# Process buffered audio when enough is accumulated
|
683 |
-
if len(self.audio_buffer) > 5: # Process in small batches
|
684 |
-
combined = b''.join(self.audio_buffer)
|
685 |
-
if hasattr(self.recorder, '_process_audio'):
|
686 |
-
self.recorder._process_audio(combined)
|
687 |
-
self.audio_buffer = []
|
688 |
-
|
689 |
-
except Exception as e:
|
690 |
-
print(f"Error feeding audio data: {str(e)}")
|
691 |
-
import traceback
|
692 |
-
traceback.print_exc()
|
693 |
-
|
694 |
def process_audio_chunk(self, audio_data, sample_rate=16000):
|
695 |
"""Process audio chunk from FastRTC input"""
|
696 |
-
if not self.is_running or self.
|
697 |
return
|
698 |
|
699 |
try:
|
700 |
-
|
701 |
-
|
702 |
-
|
703 |
-
|
704 |
-
|
705 |
-
|
706 |
-
print("Warning: Empty audio chunk received")
|
707 |
-
return
|
708 |
-
|
709 |
-
# Resample if needed
|
710 |
-
if sample_rate != SAMPLE_RATE:
|
711 |
-
audio_int16 = self._resample_audio(audio_int16, sample_rate, SAMPLE_RATE)
|
712 |
-
|
713 |
-
# Convert to bytes for feeding to recorder
|
714 |
-
audio_bytes = audio_int16.tobytes()
|
715 |
-
|
716 |
-
# Feed to recorder
|
717 |
-
self.feed_audio_data(audio_bytes)
|
718 |
-
|
719 |
-
except Exception as e:
|
720 |
-
print(f"Error processing audio chunk: {str(e)}")
|
721 |
-
import traceback
|
722 |
-
traceback.print_exc()
|
723 |
-
|
724 |
-
def _resample_audio(self, audio, orig_sr, target_sr):
|
725 |
-
"""Resample audio to target sample rate"""
|
726 |
-
try:
|
727 |
-
import scipy.signal
|
728 |
-
|
729 |
-
# Get the resampling ratio
|
730 |
-
ratio = target_sr / orig_sr
|
731 |
|
732 |
-
#
|
733 |
-
|
|
|
734 |
|
735 |
-
#
|
736 |
-
|
|
|
737 |
|
738 |
-
#
|
739 |
-
|
740 |
-
except Exception as e:
|
741 |
-
print(f"Error resampling audio: {e}")
|
742 |
-
return audio
|
743 |
-
|
744 |
-
def _normalize_audio_format(self, audio_data, target_dtype=np.int16, target_sample_rate=SAMPLE_RATE):
|
745 |
-
"""Normalize audio data to consistent format
|
746 |
-
|
747 |
-
Args:
|
748 |
-
audio_data: Input audio as numpy array or bytes
|
749 |
-
target_dtype: Target data type (np.int16 or np.float32)
|
750 |
-
target_sample_rate: Target sample rate
|
751 |
|
752 |
-
|
753 |
-
|
754 |
-
|
755 |
-
|
756 |
-
|
757 |
-
if isinstance(audio_data, bytes):
|
758 |
-
audio_array = np.frombuffer(audio_data, dtype=np.int16)
|
759 |
-
elif isinstance(audio_data, (list, tuple)):
|
760 |
-
audio_array = np.array(audio_data)
|
761 |
-
else:
|
762 |
-
audio_array = audio_data
|
763 |
-
|
764 |
-
# Convert data type as needed
|
765 |
-
if target_dtype == np.int16 and audio_array.dtype != np.int16:
|
766 |
-
if audio_array.dtype == np.float32 or audio_array.dtype == np.float64:
|
767 |
-
# Check if normalized to [-1, 1] range
|
768 |
-
if np.max(np.abs(audio_array)) <= 1.0:
|
769 |
-
audio_array = (audio_array * 32767).astype(np.int16)
|
770 |
-
else:
|
771 |
-
audio_array = audio_array.astype(np.int16)
|
772 |
-
else:
|
773 |
-
audio_array = audio_array.astype(np.int16)
|
774 |
-
elif target_dtype == np.float32 and audio_array.dtype != np.float32:
|
775 |
-
if audio_array.dtype == np.int16:
|
776 |
-
audio_array = audio_array.astype(np.float32) / 32768.0
|
777 |
-
else:
|
778 |
-
audio_array = audio_array.astype(np.float32)
|
779 |
-
|
780 |
-
# Ensure mono audio
|
781 |
-
if len(audio_array.shape) > 1 and audio_array.shape[1] > 1:
|
782 |
-
audio_array = np.mean(audio_array, axis=1)
|
783 |
-
|
784 |
-
# Reshape if needed
|
785 |
-
if len(audio_array.shape) == 1:
|
786 |
-
if target_dtype == np.int16:
|
787 |
-
audio_array = np.expand_dims(audio_array, 0)
|
788 |
|
789 |
-
return audio_array
|
790 |
-
|
791 |
except Exception as e:
|
792 |
-
|
793 |
-
import traceback
|
794 |
-
traceback.print_exc()
|
795 |
-
# Return empty array of correct type as fallback
|
796 |
-
return np.array([], dtype=target_dtype)
|
797 |
-
|
798 |
|
799 |
-
# FastRTC Audio Handler for Real-time Diarization
|
800 |
|
|
|
801 |
class DiarizationHandler(AsyncStreamHandler):
|
802 |
def __init__(self, diarization_system):
|
803 |
super().__init__()
|
804 |
self.diarization_system = diarization_system
|
805 |
-
self.
|
806 |
-
self.
|
807 |
-
self.sample_rate = 16000 # Default sample rate
|
808 |
-
self.processing_task = None
|
809 |
|
810 |
def copy(self):
|
811 |
"""Return a fresh handler for each new stream connection"""
|
812 |
return DiarizationHandler(self.diarization_system)
|
813 |
|
814 |
async def emit(self):
|
815 |
-
"""Not used
|
816 |
return None
|
817 |
|
818 |
async def receive(self, frame):
|
819 |
-
"""Receive audio data from FastRTC
|
820 |
try:
|
821 |
if not self.diarization_system.is_running:
|
822 |
return
|
823 |
|
824 |
-
# Extract audio data
|
825 |
-
|
826 |
-
|
827 |
-
|
828 |
-
|
|
|
|
|
|
|
829 |
else:
|
830 |
-
audio_data =
|
831 |
|
832 |
-
#
|
833 |
-
|
|
|
834 |
|
835 |
-
#
|
836 |
-
|
837 |
-
|
838 |
-
|
839 |
-
|
840 |
-
|
841 |
-
|
842 |
-
|
843 |
-
#
|
844 |
-
|
845 |
-
return
|
846 |
|
847 |
except Exception as e:
|
848 |
-
|
849 |
-
import traceback
|
850 |
-
traceback.print_exc()
|
851 |
|
852 |
-
async def
|
853 |
-
"""Background task to process audio from queue"""
|
854 |
-
while self.is_processing:
|
855 |
-
try:
|
856 |
-
# Get from queue with timeout to allow checking is_processing flag
|
857 |
-
try:
|
858 |
-
audio_data, sample_rate = await asyncio.wait_for(
|
859 |
-
self.audio_queue.get(),
|
860 |
-
timeout=0.5
|
861 |
-
)
|
862 |
-
except asyncio.TimeoutError:
|
863 |
-
# No audio available, check if we should keep running
|
864 |
-
continue
|
865 |
-
|
866 |
-
# Convert to numpy array if needed
|
867 |
-
if isinstance(audio_data, bytes):
|
868 |
-
# Convert bytes to numpy array (assuming 16-bit PCM)
|
869 |
-
audio_array = np.frombuffer(audio_data, dtype=np.int16)
|
870 |
-
# Normalize to float32 range [-1, 1]
|
871 |
-
audio_array = audio_array.astype(np.float32) / 32768.0
|
872 |
-
elif isinstance(audio_data, (list, tuple)):
|
873 |
-
audio_array = np.array(audio_data, dtype=np.float32)
|
874 |
-
elif isinstance(audio_data, np.ndarray):
|
875 |
-
audio_array = audio_array.astype(np.float32)
|
876 |
-
else:
|
877 |
-
print(f"Unknown audio data type: {type(audio_data)}")
|
878 |
-
continue
|
879 |
-
|
880 |
-
# Ensure mono audio
|
881 |
-
if len(audio_array.shape) > 1 and audio_array.shape[1] > 1:
|
882 |
-
audio_array = np.mean(audio_array, axis=1)
|
883 |
-
|
884 |
-
# Ensure 1D array
|
885 |
-
if len(audio_array.shape) > 1:
|
886 |
-
audio_array = audio_array.flatten()
|
887 |
-
|
888 |
-
# Process audio through thread pool to avoid blocking event loop
|
889 |
-
await self.process_audio_async(audio_array, sample_rate)
|
890 |
-
|
891 |
-
# Mark as done
|
892 |
-
self.audio_queue.task_done()
|
893 |
-
|
894 |
-
except Exception as e:
|
895 |
-
print(f"Error in audio processing loop: {e}")
|
896 |
-
import traceback
|
897 |
-
traceback.print_exc()
|
898 |
-
# Short sleep to avoid tight loop
|
899 |
-
await asyncio.sleep(0.1)
|
900 |
-
|
901 |
-
async def process_audio_async(self, audio_data, sample_rate=16000):
|
902 |
"""Process audio data asynchronously"""
|
903 |
try:
|
904 |
-
# Run the audio processing in a thread pool to avoid blocking
|
905 |
loop = asyncio.get_event_loop()
|
906 |
await loop.run_in_executor(
|
907 |
None,
|
908 |
self.diarization_system.process_audio_chunk,
|
909 |
audio_data,
|
910 |
-
|
911 |
)
|
912 |
except Exception as e:
|
913 |
-
|
914 |
-
|
915 |
-
async def start_up(self) -> None:
|
916 |
-
"""Initialize any resources when the stream starts"""
|
917 |
-
print("FastRTC stream started")
|
918 |
-
self.is_processing = True
|
919 |
-
|
920 |
-
# Start background processing task
|
921 |
-
self.processing_task = asyncio.create_task(self._process_audio_loop())
|
922 |
-
|
923 |
-
async def shutdown(self) -> None:
|
924 |
-
"""Clean up any resources when the stream ends"""
|
925 |
-
print("FastRTC stream shutting down")
|
926 |
-
self.is_processing = False
|
927 |
-
|
928 |
-
# Wait for processing task to finish
|
929 |
-
if self.processing_task:
|
930 |
-
try:
|
931 |
-
# Cancel and wait for task
|
932 |
-
self.processing_task.cancel()
|
933 |
-
await asyncio.wait([self.processing_task], timeout=2.0)
|
934 |
-
except (asyncio.CancelledError, Exception) as e:
|
935 |
-
print(f"Error cancelling audio processing task: {e}")
|
936 |
-
|
937 |
-
# Clear queue
|
938 |
-
while not self.audio_queue.empty():
|
939 |
-
try:
|
940 |
-
self.audio_queue.get_nowait()
|
941 |
-
self.audio_queue.task_done()
|
942 |
-
except:
|
943 |
-
pass
|
944 |
|
945 |
|
946 |
# Global instances
|
947 |
-
diarization_system =
|
948 |
audio_handler = None
|
949 |
|
950 |
-
|
951 |
def initialize_system():
|
952 |
"""Initialize the diarization system"""
|
953 |
-
global audio_handler
|
954 |
try:
|
955 |
-
if diarization_system is None:
|
956 |
-
print("Error: RealtimeSpeakerDiarization not initialized")
|
957 |
-
return "❌ Diarization system not available. Please ensure RealtimeSpeakerDiarization is properly imported."
|
958 |
-
|
959 |
success = diarization_system.initialize_models()
|
960 |
if success:
|
961 |
audio_handler = DiarizationHandler(diarization_system)
|
962 |
-
return "✅ System initialized successfully!
|
963 |
else:
|
964 |
-
return "❌ Failed to initialize system.
|
965 |
except Exception as e:
|
966 |
-
|
967 |
return f"❌ Initialization error: {str(e)}"
|
968 |
|
969 |
-
|
970 |
def start_recording():
|
971 |
"""Start recording and transcription"""
|
972 |
try:
|
973 |
-
if diarization_system is None:
|
974 |
-
return "❌ System not initialized"
|
975 |
result = diarization_system.start_recording()
|
976 |
-
return f"🎙️ {result}
|
977 |
except Exception as e:
|
978 |
return f"❌ Failed to start recording: {str(e)}"
|
979 |
|
980 |
-
|
981 |
def stop_recording():
|
982 |
"""Stop recording and transcription"""
|
983 |
try:
|
984 |
-
if diarization_system is None:
|
985 |
-
return "❌ System not initialized"
|
986 |
result = diarization_system.stop_recording()
|
987 |
return f"⏹️ {result}"
|
988 |
except Exception as e:
|
989 |
return f"❌ Failed to stop recording: {str(e)}"
|
990 |
|
991 |
-
|
992 |
def clear_conversation():
|
993 |
"""Clear the conversation"""
|
994 |
try:
|
995 |
-
if diarization_system is None:
|
996 |
-
return "❌ System not initialized"
|
997 |
result = diarization_system.clear_conversation()
|
998 |
return f"🗑️ {result}"
|
999 |
except Exception as e:
|
1000 |
return f"❌ Failed to clear conversation: {str(e)}"
|
1001 |
|
1002 |
-
|
1003 |
def update_settings(threshold, max_speakers):
|
1004 |
"""Update system settings"""
|
1005 |
try:
|
1006 |
-
if diarization_system is None:
|
1007 |
-
return "❌ System not initialized"
|
1008 |
result = diarization_system.update_settings(threshold, max_speakers)
|
1009 |
return f"⚙️ {result}"
|
1010 |
except Exception as e:
|
1011 |
return f"❌ Failed to update settings: {str(e)}"
|
1012 |
|
1013 |
-
|
1014 |
def get_conversation():
|
1015 |
"""Get the current conversation"""
|
1016 |
try:
|
1017 |
-
if diarization_system is None:
|
1018 |
-
return "<i>System not initialized</i>"
|
1019 |
return diarization_system.get_formatted_conversation()
|
1020 |
except Exception as e:
|
1021 |
return f"<i>Error getting conversation: {str(e)}</i>"
|
1022 |
|
1023 |
-
|
1024 |
def get_status():
|
1025 |
"""Get system status"""
|
1026 |
try:
|
1027 |
-
if diarization_system is None:
|
1028 |
-
return "System not initialized"
|
1029 |
return diarization_system.get_status_info()
|
1030 |
except Exception as e:
|
1031 |
return f"Error getting status: {str(e)}"
|
1032 |
|
1033 |
-
|
1034 |
# Create Gradio interface
|
1035 |
def create_interface():
|
1036 |
with gr.Blocks(title="Real-time Speaker Diarization", theme=gr.themes.Soft()) as interface:
|
1037 |
gr.Markdown("# 🎤 Real-time Speech Recognition with Speaker Diarization")
|
1038 |
-
gr.Markdown("
|
1039 |
|
1040 |
with gr.Row():
|
1041 |
with gr.Column(scale=2):
|
1042 |
-
#
|
1043 |
conversation_output = gr.HTML(
|
1044 |
-
value="<div style='padding: 20px; background: #
|
1045 |
-
label="Live Conversation"
|
1046 |
-
elem_id="conversation_display"
|
1047 |
)
|
1048 |
|
1049 |
# Control buttons
|
1050 |
with gr.Row():
|
1051 |
init_btn = gr.Button("🔧 Initialize System", variant="secondary", size="lg")
|
1052 |
-
start_btn = gr.Button("🎙️ Start
|
1053 |
-
stop_btn = gr.Button("⏹️ Stop
|
1054 |
clear_btn = gr.Button("🗑️ Clear", variant="secondary", size="lg", interactive=False)
|
1055 |
|
1056 |
-
# FastRTC Stream Interface
|
1057 |
-
with gr.Row():
|
1058 |
-
gr.HTML("""
|
1059 |
-
<div id="fastrtc-container" style="border: 2px solid #ddd; border-radius: 10px; padding: 20px; margin: 10px 0;">
|
1060 |
-
<h3>🎵 Audio Stream</h3>
|
1061 |
-
<p>FastRTC audio stream will appear here when recording starts.</p>
|
1062 |
-
<div id="stream-status" style="padding: 10px; background: #f8f9fa; border-radius: 5px; margin-top: 10px;">
|
1063 |
-
Status: Waiting for initialization...
|
1064 |
-
</div>
|
1065 |
-
</div>
|
1066 |
-
""")
|
1067 |
-
|
1068 |
# Status display
|
1069 |
status_output = gr.Textbox(
|
1070 |
label="System Status",
|
1071 |
-
value="
|
1072 |
-
lines=
|
1073 |
-
interactive=False
|
1074 |
-
show_copy_button=True
|
1075 |
)
|
1076 |
|
1077 |
with gr.Column(scale=1):
|
1078 |
-
# Settings
|
1079 |
gr.Markdown("## ⚙️ Settings")
|
1080 |
|
1081 |
threshold_slider = gr.Slider(
|
1082 |
-
minimum=0.
|
1083 |
-
maximum=0.
|
1084 |
step=0.05,
|
1085 |
-
value=
|
1086 |
label="Speaker Change Sensitivity",
|
1087 |
-
info="Lower = more sensitive
|
1088 |
)
|
1089 |
|
1090 |
max_speakers_slider = gr.Slider(
|
1091 |
minimum=2,
|
1092 |
-
maximum=
|
1093 |
step=1,
|
1094 |
-
value=
|
1095 |
-
label="Maximum
|
1096 |
)
|
1097 |
|
1098 |
-
|
1099 |
-
|
1100 |
-
# Audio settings
|
1101 |
-
gr.Markdown("## 🔊 Audio Configuration")
|
1102 |
-
with gr.Accordion("Advanced Audio Settings", open=False):
|
1103 |
-
gr.Markdown("""
|
1104 |
-
**Current Configuration:**
|
1105 |
-
- Sample Rate: 16kHz
|
1106 |
-
- Audio Format: 16-bit PCM → Float32 (via AudioProcessor)
|
1107 |
-
- Channels: Mono (stereo converted automatically)
|
1108 |
-
- Buffer Size: 1024 samples for real-time processing
|
1109 |
-
- Processing: Uses existing AudioProcessor.extract_embedding()
|
1110 |
-
""")
|
1111 |
|
1112 |
# Instructions
|
1113 |
-
gr.Markdown("## 📝 How to Use")
|
1114 |
gr.Markdown("""
|
1115 |
-
|
1116 |
-
|
1117 |
-
|
1118 |
-
|
1119 |
-
|
1120 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1121 |
""")
|
1122 |
-
|
1123 |
-
# Performance tips
|
1124 |
-
with gr.Accordion("💡 Performance Tips", open=False):
|
1125 |
-
gr.Markdown("""
|
1126 |
-
- Use Chrome/Edge for best FastRTC performance
|
1127 |
-
- Ensure stable internet connection
|
1128 |
-
- Use headphones to prevent echo
|
1129 |
-
- Position microphone 6-12 inches away
|
1130 |
-
- Minimize background noise
|
1131 |
-
- Allow browser microphone access
|
1132 |
-
""")
|
1133 |
-
|
1134 |
-
# Speaker color legend
|
1135 |
-
gr.Markdown("## 🎨 Speaker Colors")
|
1136 |
-
speaker_colors = [
|
1137 |
-
("#FF6B6B", "Red"),
|
1138 |
-
("#4ECDC4", "Teal"),
|
1139 |
-
("#45B7D1", "Blue"),
|
1140 |
-
("#96CEB4", "Green"),
|
1141 |
-
("#FFEAA7", "Yellow"),
|
1142 |
-
("#DDA0DD", "Plum"),
|
1143 |
-
("#98D8C8", "Mint"),
|
1144 |
-
("#F7DC6F", "Gold")
|
1145 |
-
]
|
1146 |
-
|
1147 |
-
color_html = ""
|
1148 |
-
for i, (color, name) in enumerate(speaker_colors[:4]):
|
1149 |
-
color_html += f'<div style="margin: 3px 0;"><span style="color:{color}; font-size: 16px; font-weight: bold;">●</span> Speaker {i+1} ({name})</div>'
|
1150 |
-
|
1151 |
-
gr.HTML(f"<div style='font-size: 14px;'>{color_html}</div>")
|
1152 |
-
|
1153 |
-
# Auto-refresh conversation and status
|
1154 |
-
def refresh_display():
|
1155 |
-
try:
|
1156 |
-
conversation = get_conversation()
|
1157 |
-
status = get_status()
|
1158 |
-
return conversation, status
|
1159 |
-
except Exception as e:
|
1160 |
-
error_msg = f"Error refreshing display: {str(e)}"
|
1161 |
-
return f"<i>{error_msg}</i>", error_msg
|
1162 |
|
1163 |
# Event handlers
|
1164 |
def on_initialize():
|
1165 |
-
|
1166 |
-
|
1167 |
-
|
1168 |
-
|
1169 |
-
|
1170 |
-
|
1171 |
-
return (
|
1172 |
-
result, # status_output
|
1173 |
-
gr.update(interactive=success), # start_btn
|
1174 |
-
gr.update(interactive=success), # clear_btn
|
1175 |
-
conversation, # conversation_output
|
1176 |
-
)
|
1177 |
-
except Exception as e:
|
1178 |
-
error_msg = f"❌ Initialization failed: {str(e)}"
|
1179 |
-
return (
|
1180 |
-
error_msg,
|
1181 |
-
gr.update(interactive=False),
|
1182 |
-
gr.update(interactive=False),
|
1183 |
-
"<i>System not ready</i>",
|
1184 |
-
)
|
1185 |
|
1186 |
def on_start():
|
1187 |
-
|
1188 |
-
|
1189 |
-
return (
|
1190 |
-
result, # status_output
|
1191 |
-
gr.update(interactive=False), # start_btn
|
1192 |
-
gr.update(interactive=True), # stop_btn
|
1193 |
-
)
|
1194 |
-
except Exception as e:
|
1195 |
-
error_msg = f"❌ Failed to start: {str(e)}"
|
1196 |
-
return (
|
1197 |
-
error_msg,
|
1198 |
-
gr.update(interactive=True),
|
1199 |
-
gr.update(interactive=False),
|
1200 |
-
)
|
1201 |
|
1202 |
def on_stop():
|
1203 |
-
|
1204 |
-
|
1205 |
-
return (
|
1206 |
-
result, # status_output
|
1207 |
-
gr.update(interactive=True), # start_btn
|
1208 |
-
gr.update(interactive=False), # stop_btn
|
1209 |
-
)
|
1210 |
-
except Exception as e:
|
1211 |
-
error_msg = f"❌ Failed to stop: {str(e)}"
|
1212 |
-
return (
|
1213 |
-
error_msg,
|
1214 |
-
gr.update(interactive=False),
|
1215 |
-
gr.update(interactive=True),
|
1216 |
-
)
|
1217 |
|
1218 |
def on_clear():
|
1219 |
-
|
1220 |
-
|
1221 |
-
conversation, status = refresh_display()
|
1222 |
-
return result, conversation
|
1223 |
-
except Exception as e:
|
1224 |
-
error_msg = f"❌ Failed to clear: {str(e)}"
|
1225 |
-
return error_msg, "<i>Error clearing conversation</i>"
|
1226 |
|
1227 |
def on_update_settings(threshold, max_speakers):
|
1228 |
-
|
1229 |
-
|
1230 |
-
return result
|
1231 |
-
except Exception as e:
|
1232 |
-
return f"❌ Failed to update settings: {str(e)}"
|
1233 |
|
1234 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
1235 |
init_btn.click(
|
1236 |
-
on_initialize,
|
1237 |
-
|
|
|
1238 |
)
|
1239 |
|
1240 |
start_btn.click(
|
1241 |
-
on_start,
|
|
|
1242 |
outputs=[status_output, start_btn, stop_btn]
|
1243 |
)
|
1244 |
|
1245 |
stop_btn.click(
|
1246 |
-
on_stop,
|
|
|
1247 |
outputs=[status_output, start_btn, stop_btn]
|
1248 |
)
|
1249 |
|
1250 |
clear_btn.click(
|
1251 |
-
on_clear,
|
1252 |
-
|
|
|
1253 |
)
|
1254 |
|
1255 |
-
|
1256 |
-
on_update_settings,
|
1257 |
inputs=[threshold_slider, max_speakers_slider],
|
1258 |
outputs=[status_output]
|
1259 |
)
|
1260 |
|
1261 |
-
# Auto-refresh
|
1262 |
-
|
1263 |
-
|
1264 |
-
|
1265 |
-
outputs=[conversation_output, status_output]
|
|
|
1266 |
)
|
1267 |
|
1268 |
return interface
|
1269 |
|
1270 |
|
1271 |
-
# FastAPI
|
1272 |
def create_fastapi_app():
|
1273 |
-
"""Create FastAPI app with
|
1274 |
-
app = FastAPI(
|
1275 |
-
title="Real-time Speaker Diarization",
|
1276 |
-
description="Real-time speech recognition with speaker diarization using FastRTC",
|
1277 |
-
version="1.0.0"
|
1278 |
-
)
|
1279 |
|
1280 |
-
|
1281 |
-
|
|
|
1282 |
|
1283 |
-
@
|
1284 |
-
async def
|
1285 |
-
|
1286 |
-
|
1287 |
-
|
1288 |
-
|
1289 |
-
|
1290 |
-
|
1291 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1292 |
|
1293 |
-
@
|
1294 |
async def get_conversation_api():
|
1295 |
-
"""Get current conversation"""
|
1296 |
try:
|
1297 |
return {
|
1298 |
-
"conversation":
|
1299 |
-
"
|
1300 |
-
"is_recording": diarization_system.is_running if diarization_system and hasattr(diarization_system, 'is_running') else False,
|
1301 |
-
"timestamp": time.time()
|
1302 |
}
|
1303 |
except Exception as e:
|
1304 |
-
return {"error": str(e)
|
1305 |
|
1306 |
-
@
|
1307 |
-
async def
|
1308 |
-
"""Control recording actions"""
|
1309 |
try:
|
1310 |
-
|
1311 |
-
|
1312 |
-
|
1313 |
-
|
1314 |
-
|
1315 |
-
|
1316 |
-
|
1317 |
-
|
1318 |
-
|
1319 |
-
|
1320 |
-
|
1321 |
-
return {
|
1322 |
-
|
1323 |
-
|
1324 |
-
|
1325 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1326 |
except Exception as e:
|
1327 |
-
return {"error": str(e), "
|
|
|
|
|
|
|
|
|
1328 |
|
1329 |
-
app.include_router(router)
|
1330 |
return app
|
1331 |
|
1332 |
|
1333 |
-
#
|
1334 |
-
|
1335 |
-
|
1336 |
-
try:
|
1337 |
-
if audio_handler is None:
|
1338 |
-
print("Warning: Audio handler not initialized. Initialize system first.")
|
1339 |
-
return None
|
1340 |
-
|
1341 |
-
# Get HuggingFace token for TURN server (optional)
|
1342 |
-
hf_token = os.environ.get("HF_TOKEN")
|
1343 |
-
|
1344 |
-
# Configure RTC settings
|
1345 |
-
rtc_config = {
|
1346 |
-
"iceServers": [
|
1347 |
-
{"urls": "stun:stun.l.google.com:19302"},
|
1348 |
-
{"urls": "stun:stun1.l.google.com:19302"}
|
1349 |
-
]
|
1350 |
-
}
|
1351 |
-
|
1352 |
-
# Create FastRTC stream
|
1353 |
-
stream = Stream(
|
1354 |
-
handler=audio_handler,
|
1355 |
-
rtc_configuration=rtc_config,
|
1356 |
-
modality="audio",
|
1357 |
-
mode="receive" # We only receive audio, don't send
|
1358 |
-
)
|
1359 |
-
|
1360 |
-
# Mount the stream
|
1361 |
-
app.mount("/stream", stream)
|
1362 |
-
print("✅ FastRTC stream configured successfully!")
|
1363 |
-
return stream
|
1364 |
-
|
1365 |
-
except Exception as e:
|
1366 |
-
print(f"⚠️ Warning: Failed to setup FastRTC stream: {e}")
|
1367 |
-
print("Audio streaming may not work properly.")
|
1368 |
-
return None
|
1369 |
-
|
1370 |
-
|
1371 |
-
# Main application setup
|
1372 |
-
def create_app(diarization_sys=None):
|
1373 |
-
"""Create the complete application"""
|
1374 |
-
global diarization_system
|
1375 |
-
|
1376 |
-
# Set the diarization system
|
1377 |
-
if diarization_sys is not None:
|
1378 |
-
diarization_system = diarization_sys
|
1379 |
|
1380 |
-
|
1381 |
-
|
|
|
|
|
|
|
|
|
|
|
1382 |
|
1383 |
-
|
1384 |
-
gradio_interface = create_interface()
|
1385 |
|
1386 |
-
|
1387 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1388 |
|
1389 |
-
|
1390 |
-
|
1391 |
-
|
1392 |
-
|
1393 |
-
diarization_system.initialize_models()
|
1394 |
-
|
1395 |
-
# Create audio handler if needed
|
1396 |
-
global audio_handler
|
1397 |
-
if audio_handler is None:
|
1398 |
-
audio_handler = DiarizationHandler(diarization_system)
|
1399 |
-
|
1400 |
-
# Setup and mount the FastRTC stream
|
1401 |
-
setup_fastrtc_stream(app)
|
1402 |
|
1403 |
-
|
1404 |
-
|
1405 |
-
|
1406 |
-
# Entry point for HuggingFace Spaces
|
1407 |
-
if __name__ == "__main__":
|
1408 |
-
try:
|
1409 |
-
# Import your diarization system here
|
1410 |
-
# from your_module import RealtimeSpeakerDiarization
|
1411 |
-
diarization_system = RealtimeSpeakerDiarization()
|
1412 |
|
1413 |
-
#
|
1414 |
-
app
|
|
|
|
|
|
|
|
|
|
|
1415 |
|
1416 |
-
#
|
|
|
1417 |
interface.launch(
|
1418 |
-
server_name=
|
1419 |
-
server_port=
|
1420 |
share=True,
|
1421 |
-
show_error=True
|
1422 |
-
quiet=False
|
1423 |
)
|
1424 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1425 |
except Exception as e:
|
1426 |
-
|
1427 |
-
|
1428 |
-
|
1429 |
-
|
1430 |
-
# Fallback - launch just Gradio interface
|
1431 |
-
try:
|
1432 |
-
interface = create_interface()
|
1433 |
-
interface.launch(
|
1434 |
-
server_name="0.0.0.0",
|
1435 |
-
server_port=int(os.environ.get("PORT", 7860)),
|
1436 |
-
share=False
|
1437 |
-
)
|
1438 |
-
except Exception as fallback_error:
|
1439 |
-
print(f"Fallback launch also failed: {fallback_error}")
|
1440 |
|
|
|
|
|
1441 |
|
1442 |
-
#
|
1443 |
-
|
1444 |
-
"""Initialize the application with your diarization system"""
|
1445 |
-
global diarization_system
|
1446 |
-
diarization_system = diarization_sys
|
1447 |
-
return create_app(diarization_sys)
|
|
|
10 |
from scipy.spatial.distance import cosine
|
11 |
from RealtimeSTT import AudioToTextRecorder
|
12 |
from fastapi import FastAPI, APIRouter
|
13 |
+
from fastrtc import Stream, AsyncStreamHandler
|
14 |
import json
|
|
|
|
|
15 |
import asyncio
|
16 |
import uvicorn
|
|
|
17 |
from queue import Queue
|
18 |
+
import logging
|
19 |
+
|
20 |
+
# Set up logging
|
21 |
+
logging.basicConfig(level=logging.INFO)
|
22 |
+
logger = logging.getLogger(__name__)
|
23 |
+
|
24 |
# Simplified configuration parameters
|
25 |
SILENCE_THRESHS = [0, 0.4]
|
26 |
FINAL_TRANSCRIPTION_MODEL = "distil-large-v3"
|
|
|
34 |
PRE_RECORDING_BUFFER_DURATION = 0.35
|
35 |
|
36 |
# Speaker change detection parameters
|
37 |
+
DEFAULT_CHANGE_THRESHOLD = 0.65
|
38 |
EMBEDDING_HISTORY_SIZE = 5
|
39 |
+
MIN_SEGMENT_DURATION = 1.5
|
40 |
DEFAULT_MAX_SPEAKERS = 4
|
41 |
+
ABSOLUTE_MAX_SPEAKERS = 8
|
42 |
|
43 |
# Global variables
|
|
|
44 |
SAMPLE_RATE = 16000
|
45 |
+
BUFFER_SIZE = 1024
|
46 |
CHANNELS = 1
|
47 |
|
48 |
+
# Speaker colors - more distinguishable colors
|
49 |
SPEAKER_COLORS = [
|
50 |
+
"#FF6B6B", # Red
|
51 |
+
"#4ECDC4", # Teal
|
52 |
+
"#45B7D1", # Blue
|
53 |
+
"#96CEB4", # Green
|
54 |
+
"#FFEAA7", # Yellow
|
55 |
+
"#DDA0DD", # Plum
|
56 |
+
"#98D8C8", # Mint
|
57 |
+
"#F7DC6F", # Gold
|
|
|
|
|
58 |
]
|
59 |
|
60 |
SPEAKER_COLOR_NAMES = [
|
61 |
+
"Red", "Teal", "Blue", "Green", "Yellow", "Plum", "Mint", "Gold"
|
|
|
62 |
]
|
63 |
|
64 |
|
|
|
72 |
self.cache_dir = os.path.join(os.path.expanduser("~"), ".cache", "speechbrain")
|
73 |
os.makedirs(self.cache_dir, exist_ok=True)
|
74 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
def load_model(self):
|
76 |
"""Load the ECAPA-TDNN model"""
|
77 |
try:
|
78 |
from speechbrain.pretrained import EncoderClassifier
|
79 |
|
|
|
|
|
80 |
self.model = EncoderClassifier.from_hparams(
|
81 |
source="speechbrain/spkrec-ecapa-voxceleb",
|
82 |
savedir=self.cache_dir,
|
|
|
84 |
)
|
85 |
|
86 |
self.model_loaded = True
|
87 |
+
logger.info("ECAPA-TDNN model loaded successfully!")
|
88 |
return True
|
89 |
except Exception as e:
|
90 |
+
logger.error(f"Error loading ECAPA-TDNN model: {e}")
|
91 |
return False
|
92 |
|
93 |
def embed_utterance(self, audio, sr=16000):
|
|
|
97 |
|
98 |
try:
|
99 |
if isinstance(audio, np.ndarray):
|
100 |
+
# Ensure audio is float32 and properly normalized
|
101 |
+
audio = audio.astype(np.float32)
|
102 |
+
if np.max(np.abs(audio)) > 1.0:
|
103 |
+
audio = audio / np.max(np.abs(audio))
|
104 |
+
waveform = torch.tensor(audio).unsqueeze(0)
|
105 |
else:
|
106 |
waveform = audio.unsqueeze(0)
|
107 |
|
108 |
+
# Resample if necessary
|
109 |
if sr != 16000:
|
110 |
waveform = torchaudio.functional.resample(waveform, orig_freq=sr, new_freq=16000)
|
111 |
|
|
|
114 |
|
115 |
return embedding.squeeze().cpu().numpy()
|
116 |
except Exception as e:
|
117 |
+
logger.error(f"Error extracting embedding: {e}")
|
118 |
return np.zeros(self.embedding_dim)
|
119 |
|
120 |
|
|
|
122 |
"""Processes audio data to extract speaker embeddings"""
|
123 |
def __init__(self, encoder):
|
124 |
self.encoder = encoder
|
125 |
+
self.audio_buffer = []
|
126 |
+
self.min_audio_length = int(SAMPLE_RATE * 1.0) # Minimum 1 second of audio
|
127 |
|
128 |
+
def add_audio_chunk(self, audio_chunk):
|
129 |
+
"""Add audio chunk to buffer"""
|
130 |
+
self.audio_buffer.extend(audio_chunk)
|
131 |
+
|
132 |
+
# Keep buffer from getting too large
|
133 |
+
max_buffer_size = int(SAMPLE_RATE * 10) # 10 seconds max
|
134 |
+
if len(self.audio_buffer) > max_buffer_size:
|
135 |
+
self.audio_buffer = self.audio_buffer[-max_buffer_size:]
|
136 |
+
|
137 |
+
def extract_embedding_from_buffer(self):
|
138 |
+
"""Extract embedding from current audio buffer"""
|
139 |
+
if len(self.audio_buffer) < self.min_audio_length:
|
140 |
+
return None
|
141 |
|
142 |
+
try:
|
143 |
+
# Use the last portion of the buffer for embedding
|
144 |
+
audio_segment = np.array(self.audio_buffer[-self.min_audio_length:], dtype=np.float32)
|
145 |
|
146 |
+
# Normalize audio
|
147 |
+
if np.max(np.abs(audio_segment)) > 0:
|
148 |
+
audio_segment = audio_segment / np.max(np.abs(audio_segment))
|
149 |
+
else:
|
150 |
+
return None
|
151 |
|
152 |
+
embedding = self.encoder.embed_utterance(audio_segment)
|
153 |
return embedding
|
154 |
except Exception as e:
|
155 |
+
logger.error(f"Embedding extraction error: {e}")
|
156 |
+
return None
|
157 |
|
158 |
|
159 |
class SpeakerChangeDetector:
|
160 |
+
"""Improved speaker change detector"""
|
161 |
def __init__(self, embedding_dim=192, change_threshold=DEFAULT_CHANGE_THRESHOLD, max_speakers=DEFAULT_MAX_SPEAKERS):
|
162 |
self.embedding_dim = embedding_dim
|
163 |
self.change_threshold = change_threshold
|
164 |
self.max_speakers = min(max_speakers, ABSOLUTE_MAX_SPEAKERS)
|
165 |
self.current_speaker = 0
|
|
|
|
|
|
|
166 |
self.speaker_embeddings = [[] for _ in range(self.max_speakers)]
|
167 |
+
self.speaker_centroids = [None] * self.max_speakers
|
168 |
+
self.last_change_time = time.time()
|
169 |
+
self.last_similarity = 1.0
|
170 |
self.active_speakers = set([0])
|
171 |
+
self.segment_counter = 0
|
172 |
|
173 |
def set_max_speakers(self, max_speakers):
|
174 |
"""Update the maximum number of speakers"""
|
175 |
new_max = min(max_speakers, ABSOLUTE_MAX_SPEAKERS)
|
176 |
|
177 |
if new_max < self.max_speakers:
|
178 |
+
# Remove speakers beyond the new limit
|
179 |
for speaker_id in list(self.active_speakers):
|
180 |
if speaker_id >= new_max:
|
181 |
self.active_speakers.discard(speaker_id)
|
|
|
183 |
if self.current_speaker >= new_max:
|
184 |
self.current_speaker = 0
|
185 |
|
186 |
+
# Resize arrays
|
187 |
if new_max > self.max_speakers:
|
|
|
188 |
self.speaker_embeddings.extend([[] for _ in range(new_max - self.max_speakers)])
|
189 |
+
self.speaker_centroids.extend([None] * (new_max - self.max_speakers))
|
190 |
else:
|
|
|
191 |
self.speaker_embeddings = self.speaker_embeddings[:new_max]
|
192 |
+
self.speaker_centroids = self.speaker_centroids[:new_max]
|
193 |
|
194 |
self.max_speakers = new_max
|
195 |
|
196 |
def set_change_threshold(self, threshold):
|
197 |
"""Update the threshold for detecting speaker changes"""
|
198 |
+
self.change_threshold = max(0.1, min(threshold, 0.95))
|
199 |
|
200 |
def add_embedding(self, embedding, timestamp=None):
|
201 |
+
"""Add a new embedding and detect speaker changes"""
|
202 |
current_time = timestamp or time.time()
|
203 |
+
self.segment_counter += 1
|
204 |
+
|
205 |
+
# Initialize first speaker
|
206 |
+
if not self.speaker_embeddings[0]:
|
207 |
+
self.speaker_embeddings[0].append(embedding)
|
208 |
+
self.speaker_centroids[0] = embedding.copy()
|
209 |
+
self.active_speakers.add(0)
|
210 |
+
return 0, 1.0
|
211 |
+
|
212 |
+
# Calculate similarity with current speaker
|
213 |
+
current_centroid = self.speaker_centroids[self.current_speaker]
|
214 |
+
if current_centroid is not None:
|
215 |
+
similarity = 1.0 - cosine(embedding, current_centroid)
|
216 |
else:
|
217 |
+
similarity = 0.5
|
218 |
|
219 |
self.last_similarity = similarity
|
220 |
|
221 |
+
# Check for speaker change
|
222 |
time_since_last_change = current_time - self.last_change_time
|
223 |
+
speaker_changed = False
|
224 |
|
225 |
+
if time_since_last_change >= MIN_SEGMENT_DURATION and similarity < self.change_threshold:
|
226 |
+
# Find best matching speaker
|
227 |
+
best_speaker = self.current_speaker
|
228 |
+
best_similarity = similarity
|
229 |
+
|
230 |
+
for speaker_id in self.active_speakers:
|
231 |
+
if speaker_id == self.current_speaker:
|
232 |
+
continue
|
|
|
|
|
233 |
|
234 |
+
centroid = self.speaker_centroids[speaker_id]
|
235 |
+
if centroid is not None:
|
236 |
+
speaker_similarity = 1.0 - cosine(embedding, centroid)
|
237 |
+
if speaker_similarity > best_similarity and speaker_similarity > self.change_threshold:
|
238 |
+
best_similarity = speaker_similarity
|
239 |
+
best_speaker = speaker_id
|
240 |
+
|
241 |
+
# If no good match found and we can add a new speaker
|
242 |
+
if best_speaker == self.current_speaker and len(self.active_speakers) < self.max_speakers:
|
243 |
+
for new_id in range(self.max_speakers):
|
244 |
+
if new_id not in self.active_speakers:
|
245 |
+
best_speaker = new_id
|
246 |
+
self.active_speakers.add(new_id)
|
247 |
+
break
|
248 |
+
|
249 |
+
if best_speaker != self.current_speaker:
|
250 |
+
self.current_speaker = best_speaker
|
251 |
+
self.last_change_time = current_time
|
252 |
+
speaker_changed = True
|
253 |
+
|
254 |
+
# Update speaker embeddings and centroids
|
|
|
|
|
|
|
|
|
255 |
self.speaker_embeddings[self.current_speaker].append(embedding)
|
|
|
256 |
|
257 |
+
# Keep only recent embeddings (sliding window)
|
258 |
+
max_embeddings = 20
|
259 |
+
if len(self.speaker_embeddings[self.current_speaker]) > max_embeddings:
|
260 |
+
self.speaker_embeddings[self.current_speaker] = self.speaker_embeddings[self.current_speaker][-max_embeddings:]
|
261 |
+
|
262 |
+
# Update centroid
|
263 |
if self.speaker_embeddings[self.current_speaker]:
|
264 |
+
self.speaker_centroids[self.current_speaker] = np.mean(
|
265 |
self.speaker_embeddings[self.current_speaker], axis=0
|
266 |
)
|
267 |
|
|
|
274 |
return "#FFFFFF"
|
275 |
|
276 |
def get_status_info(self):
|
277 |
+
"""Return status information"""
|
278 |
speaker_counts = [len(self.speaker_embeddings[i]) for i in range(self.max_speakers)]
|
279 |
|
280 |
return {
|
|
|
283 |
"active_speakers": len(self.active_speakers),
|
284 |
"max_speakers": self.max_speakers,
|
285 |
"last_similarity": self.last_similarity,
|
286 |
+
"threshold": self.change_threshold,
|
287 |
+
"segment_counter": self.segment_counter
|
288 |
}
|
289 |
|
290 |
|
|
|
294 |
self.audio_processor = None
|
295 |
self.speaker_detector = None
|
296 |
self.recorder = None
|
297 |
+
self.sentence_queue = queue.Queue()
|
298 |
self.full_sentences = []
|
299 |
self.sentence_speakers = []
|
300 |
self.pending_sentences = []
|
301 |
+
self.current_conversation = ""
|
|
|
302 |
self.is_running = False
|
303 |
self.change_threshold = DEFAULT_CHANGE_THRESHOLD
|
304 |
self.max_speakers = DEFAULT_MAX_SPEAKERS
|
305 |
+
self.last_transcription = ""
|
306 |
+
self.transcription_lock = threading.Lock()
|
|
|
|
|
|
|
307 |
|
308 |
def initialize_models(self):
|
309 |
"""Initialize the speaker encoder model"""
|
310 |
try:
|
311 |
device_str = "cuda" if torch.cuda.is_available() else "cpu"
|
312 |
+
logger.info(f"Using device: {device_str}")
|
313 |
|
314 |
self.encoder = SpeechBrainEncoder(device=device_str)
|
315 |
+
success = self.encoder.load_model()
|
316 |
|
317 |
+
if success:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
318 |
self.audio_processor = AudioProcessor(self.encoder)
|
319 |
self.speaker_detector = SpeakerChangeDetector(
|
320 |
embedding_dim=self.encoder.embedding_dim,
|
321 |
change_threshold=self.change_threshold,
|
322 |
max_speakers=self.max_speakers
|
323 |
)
|
324 |
+
logger.info("Models initialized successfully!")
|
325 |
return True
|
326 |
else:
|
327 |
+
logger.error("Failed to load models")
|
328 |
+
return False
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
329 |
except Exception as e:
|
330 |
+
logger.error(f"Model initialization error: {e}")
|
331 |
return False
|
332 |
|
333 |
def live_text_detected(self, text):
|
334 |
"""Callback for real-time transcription updates"""
|
335 |
+
with self.transcription_lock:
|
336 |
+
self.last_transcription = text.strip()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
337 |
|
338 |
def process_final_text(self, text):
|
339 |
"""Process final transcribed text with speaker embedding"""
|
340 |
text = text.strip()
|
341 |
if text:
|
342 |
try:
|
343 |
+
# Get audio data for this transcription
|
344 |
+
audio_bytes = getattr(self.recorder, 'last_transcription_bytes', None)
|
345 |
+
if audio_bytes:
|
346 |
+
self.sentence_queue.put((text, audio_bytes))
|
347 |
+
else:
|
348 |
+
# If no audio bytes, use current speaker
|
349 |
+
self.sentence_queue.put((text, None))
|
350 |
+
|
351 |
except Exception as e:
|
352 |
+
logger.error(f"Error processing final text: {e}")
|
353 |
|
354 |
def process_sentence_queue(self):
|
355 |
"""Process sentences in the queue for speaker detection"""
|
356 |
while self.is_running:
|
357 |
try:
|
358 |
+
text, audio_bytes = self.sentence_queue.get(timeout=1)
|
359 |
|
360 |
+
current_speaker = self.speaker_detector.current_speaker
|
|
|
361 |
|
362 |
+
if audio_bytes:
|
363 |
+
# Convert audio data and extract embedding
|
364 |
+
audio_int16 = np.frombuffer(audio_bytes, dtype=np.int16)
|
365 |
+
audio_float = audio_int16.astype(np.float32) / 32768.0
|
|
|
|
|
|
|
|
|
|
|
|
|
366 |
|
367 |
+
# Extract embedding
|
368 |
+
embedding = self.audio_processor.encoder.embed_utterance(audio_float)
|
369 |
+
if embedding is not None:
|
370 |
+
current_speaker, similarity = self.speaker_detector.add_embedding(embedding)
|
371 |
+
|
372 |
+
# Store sentence with speaker
|
373 |
+
with self.transcription_lock:
|
374 |
+
self.full_sentences.append((text, current_speaker))
|
375 |
+
self.update_conversation_display()
|
|
|
376 |
|
377 |
except queue.Empty:
|
378 |
continue
|
379 |
except Exception as e:
|
380 |
+
logger.error(f"Error processing sentence: {e}")
|
381 |
+
|
382 |
+
def update_conversation_display(self):
|
383 |
+
"""Update the conversation display"""
|
384 |
+
try:
|
385 |
+
sentences_with_style = []
|
386 |
+
|
387 |
+
for sentence_text, speaker_id in self.full_sentences:
|
388 |
+
color = self.speaker_detector.get_color_for_speaker(speaker_id)
|
389 |
+
speaker_name = f"Speaker {speaker_id + 1}"
|
390 |
+
sentences_with_style.append(
|
391 |
+
f'<span style="color:{color}; font-weight: bold;">{speaker_name}:</span> '
|
392 |
+
f'<span style="color:#333333;">{sentence_text}</span>'
|
393 |
+
)
|
394 |
+
|
395 |
+
# Add current transcription if available
|
396 |
+
if self.last_transcription:
|
397 |
+
current_color = self.speaker_detector.get_color_for_speaker(self.speaker_detector.current_speaker)
|
398 |
+
current_speaker = f"Speaker {self.speaker_detector.current_speaker + 1}"
|
399 |
+
sentences_with_style.append(
|
400 |
+
f'<span style="color:{current_color}; font-weight: bold; opacity: 0.7;">{current_speaker}:</span> '
|
401 |
+
f'<span style="color:#666666; font-style: italic;">{self.last_transcription}...</span>'
|
402 |
+
)
|
403 |
+
|
404 |
+
if sentences_with_style:
|
405 |
+
self.current_conversation = "<br><br>".join(sentences_with_style)
|
406 |
+
else:
|
407 |
+
self.current_conversation = "<i>Waiting for speech input...</i>"
|
408 |
+
|
409 |
+
except Exception as e:
|
410 |
+
logger.error(f"Error updating conversation display: {e}")
|
411 |
+
self.current_conversation = f"<i>Error: {str(e)}</i>"
|
412 |
|
413 |
def start_recording(self):
|
414 |
"""Start the recording and transcription process"""
|
|
|
416 |
return "Please initialize models first!"
|
417 |
|
418 |
try:
|
419 |
+
# Setup recorder configuration
|
420 |
recorder_config = {
|
421 |
'spinner': False,
|
422 |
+
'use_microphone': True, # Changed to True for direct microphone input
|
423 |
'model': FINAL_TRANSCRIPTION_MODEL,
|
424 |
'language': TRANSCRIPTION_LANGUAGE,
|
425 |
'silero_sensitivity': SILERO_SENSITIVITY,
|
|
|
429 |
'pre_recording_buffer_duration': PRE_RECORDING_BUFFER_DURATION,
|
430 |
'min_gap_between_recordings': 0,
|
431 |
'enable_realtime_transcription': True,
|
432 |
+
'realtime_processing_pause': 0.1,
|
433 |
'realtime_model_type': REALTIME_TRANSCRIPTION_MODEL,
|
434 |
'on_realtime_transcription_update': self.live_text_detected,
|
435 |
'beam_size': FINAL_BEAM_SIZE,
|
436 |
'beam_size_realtime': REALTIME_BEAM_SIZE,
|
|
|
437 |
'sample_rate': SAMPLE_RATE,
|
|
|
438 |
}
|
439 |
|
|
|
|
|
|
|
|
|
|
|
|
|
440 |
self.recorder = AudioToTextRecorder(**recorder_config)
|
441 |
|
442 |
+
# Start processing threads
|
|
|
|
|
|
|
|
|
|
|
443 |
self.is_running = True
|
444 |
self.sentence_thread = threading.Thread(target=self.process_sentence_queue, daemon=True)
|
445 |
self.sentence_thread.start()
|
446 |
|
|
|
447 |
self.transcription_thread = threading.Thread(target=self.run_transcription, daemon=True)
|
448 |
self.transcription_thread.start()
|
449 |
|
450 |
+
return "Recording started successfully!"
|
451 |
|
452 |
except Exception as e:
|
453 |
+
logger.error(f"Error starting recording: {e}")
|
454 |
+
return f"Error starting recording: {e}"
|
|
|
|
|
455 |
|
456 |
def run_transcription(self):
|
457 |
"""Run the transcription loop"""
|
|
|
459 |
while self.is_running:
|
460 |
self.recorder.text(self.process_final_text)
|
461 |
except Exception as e:
|
462 |
+
logger.error(f"Transcription error: {e}")
|
463 |
|
464 |
def stop_recording(self):
|
465 |
"""Stop the recording process"""
|
466 |
self.is_running = False
|
467 |
if self.recorder:
|
468 |
self.recorder.stop()
|
|
|
|
|
|
|
|
|
469 |
return "Recording stopped!"
|
470 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
471 |
def clear_conversation(self):
|
472 |
"""Clear all conversation data"""
|
473 |
+
with self.transcription_lock:
|
474 |
+
self.full_sentences = []
|
475 |
+
self.last_transcription = ""
|
476 |
+
self.current_conversation = "Conversation cleared!"
|
|
|
|
|
477 |
|
478 |
if self.speaker_detector:
|
479 |
self.speaker_detector = SpeakerChangeDetector(
|
|
|
496 |
return f"Settings updated: Threshold={threshold:.2f}, Max Speakers={max_speakers}"
|
497 |
|
498 |
def get_formatted_conversation(self):
|
499 |
+
"""Get the formatted conversation"""
|
500 |
+
return self.current_conversation
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
501 |
|
502 |
def get_status_info(self):
|
503 |
"""Get current status information"""
|
|
|
513 |
f"**Last Similarity:** {status['last_similarity']:.3f}",
|
514 |
f"**Change Threshold:** {status['threshold']:.2f}",
|
515 |
f"**Total Sentences:** {len(self.full_sentences)}",
|
516 |
+
f"**Segments Processed:** {status['segment_counter']}",
|
517 |
"",
|
518 |
+
"**Speaker Activity:**"
|
519 |
]
|
520 |
|
521 |
for i in range(status['max_speakers']):
|
522 |
color_name = SPEAKER_COLOR_NAMES[i] if i < len(SPEAKER_COLOR_NAMES) else f"Speaker {i+1}"
|
523 |
+
count = status['speaker_counts'][i]
|
524 |
+
active = "🟢" if count > 0 else "⚫"
|
525 |
+
status_lines.append(f"{active} Speaker {i+1} ({color_name}): {count} segments")
|
526 |
|
527 |
return "\n".join(status_lines)
|
528 |
|
529 |
except Exception as e:
|
530 |
return f"Error getting status: {e}"
|
531 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
532 |
def process_audio_chunk(self, audio_data, sample_rate=16000):
|
533 |
"""Process audio chunk from FastRTC input"""
|
534 |
+
if not self.is_running or self.audio_processor is None:
|
535 |
return
|
536 |
|
537 |
try:
|
538 |
+
# Ensure audio is float32
|
539 |
+
if isinstance(audio_data, np.ndarray):
|
540 |
+
if audio_data.dtype != np.float32:
|
541 |
+
audio_data = audio_data.astype(np.float32)
|
542 |
+
else:
|
543 |
+
audio_data = np.array(audio_data, dtype=np.float32)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
544 |
|
545 |
+
# Ensure mono
|
546 |
+
if len(audio_data.shape) > 1:
|
547 |
+
audio_data = np.mean(audio_data, axis=1) if audio_data.shape[1] > 1 else audio_data.flatten()
|
548 |
|
549 |
+
# Normalize if needed
|
550 |
+
if np.max(np.abs(audio_data)) > 1.0:
|
551 |
+
audio_data = audio_data / np.max(np.abs(audio_data))
|
552 |
|
553 |
+
# Add to audio processor buffer for speaker detection
|
554 |
+
self.audio_processor.add_audio_chunk(audio_data)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
555 |
|
556 |
+
# Periodically extract embeddings for speaker detection
|
557 |
+
if len(self.audio_processor.audio_buffer) % (SAMPLE_RATE // 2) == 0: # Every 0.5 seconds
|
558 |
+
embedding = self.audio_processor.extract_embedding_from_buffer()
|
559 |
+
if embedding is not None:
|
560 |
+
self.speaker_detector.add_embedding(embedding)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
561 |
|
|
|
|
|
562 |
except Exception as e:
|
563 |
+
logger.error(f"Error processing audio chunk: {e}")
|
|
|
|
|
|
|
|
|
|
|
564 |
|
|
|
565 |
|
566 |
+
# FastRTC Audio Handler
|
567 |
class DiarizationHandler(AsyncStreamHandler):
|
568 |
def __init__(self, diarization_system):
|
569 |
super().__init__()
|
570 |
self.diarization_system = diarization_system
|
571 |
+
self.audio_buffer = []
|
572 |
+
self.buffer_size = BUFFER_SIZE
|
|
|
|
|
573 |
|
574 |
def copy(self):
|
575 |
"""Return a fresh handler for each new stream connection"""
|
576 |
return DiarizationHandler(self.diarization_system)
|
577 |
|
578 |
async def emit(self):
|
579 |
+
"""Not used - we only receive audio"""
|
580 |
return None
|
581 |
|
582 |
async def receive(self, frame):
|
583 |
+
"""Receive audio data from FastRTC"""
|
584 |
try:
|
585 |
if not self.diarization_system.is_running:
|
586 |
return
|
587 |
|
588 |
+
# Extract audio data
|
589 |
+
audio_data = getattr(frame, 'data', frame)
|
590 |
+
|
591 |
+
# Convert to numpy array
|
592 |
+
if isinstance(audio_data, bytes):
|
593 |
+
audio_array = np.frombuffer(audio_data, dtype=np.int16).astype(np.float32) / 32768.0
|
594 |
+
elif isinstance(audio_data, (list, tuple)):
|
595 |
+
audio_array = np.array(audio_data, dtype=np.float32)
|
596 |
else:
|
597 |
+
audio_array = np.array(audio_data, dtype=np.float32)
|
598 |
|
599 |
+
# Ensure 1D
|
600 |
+
if len(audio_array.shape) > 1:
|
601 |
+
audio_array = audio_array.flatten()
|
602 |
|
603 |
+
# Buffer audio chunks
|
604 |
+
self.audio_buffer.extend(audio_array)
|
605 |
+
|
606 |
+
# Process in chunks
|
607 |
+
while len(self.audio_buffer) >= self.buffer_size:
|
608 |
+
chunk = np.array(self.audio_buffer[:self.buffer_size])
|
609 |
+
self.audio_buffer = self.audio_buffer[self.buffer_size:]
|
610 |
+
|
611 |
+
# Process asynchronously
|
612 |
+
await self.process_audio_async(chunk)
|
|
|
613 |
|
614 |
except Exception as e:
|
615 |
+
logger.error(f"Error in FastRTC receive: {e}")
|
|
|
|
|
616 |
|
617 |
+
async def process_audio_async(self, audio_data):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
618 |
"""Process audio data asynchronously"""
|
619 |
try:
|
|
|
620 |
loop = asyncio.get_event_loop()
|
621 |
await loop.run_in_executor(
|
622 |
None,
|
623 |
self.diarization_system.process_audio_chunk,
|
624 |
audio_data,
|
625 |
+
SAMPLE_RATE
|
626 |
)
|
627 |
except Exception as e:
|
628 |
+
logger.error(f"Error in async audio processing: {e}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
629 |
|
630 |
|
631 |
# Global instances
|
632 |
+
diarization_system = RealtimeSpeakerDiarization()
|
633 |
audio_handler = None
|
634 |
|
|
|
635 |
def initialize_system():
|
636 |
"""Initialize the diarization system"""
|
637 |
+
global audio_handler
|
638 |
try:
|
|
|
|
|
|
|
|
|
639 |
success = diarization_system.initialize_models()
|
640 |
if success:
|
641 |
audio_handler = DiarizationHandler(diarization_system)
|
642 |
+
return "✅ System initialized successfully!"
|
643 |
else:
|
644 |
+
return "❌ Failed to initialize system. Check logs for details."
|
645 |
except Exception as e:
|
646 |
+
logger.error(f"Initialization error: {e}")
|
647 |
return f"❌ Initialization error: {str(e)}"
|
648 |
|
|
|
649 |
def start_recording():
|
650 |
"""Start recording and transcription"""
|
651 |
try:
|
|
|
|
|
652 |
result = diarization_system.start_recording()
|
653 |
+
return f"🎙️ {result}"
|
654 |
except Exception as e:
|
655 |
return f"❌ Failed to start recording: {str(e)}"
|
656 |
|
|
|
657 |
def stop_recording():
|
658 |
"""Stop recording and transcription"""
|
659 |
try:
|
|
|
|
|
660 |
result = diarization_system.stop_recording()
|
661 |
return f"⏹️ {result}"
|
662 |
except Exception as e:
|
663 |
return f"❌ Failed to stop recording: {str(e)}"
|
664 |
|
|
|
665 |
def clear_conversation():
|
666 |
"""Clear the conversation"""
|
667 |
try:
|
|
|
|
|
668 |
result = diarization_system.clear_conversation()
|
669 |
return f"🗑️ {result}"
|
670 |
except Exception as e:
|
671 |
return f"❌ Failed to clear conversation: {str(e)}"
|
672 |
|
|
|
673 |
def update_settings(threshold, max_speakers):
|
674 |
"""Update system settings"""
|
675 |
try:
|
|
|
|
|
676 |
result = diarization_system.update_settings(threshold, max_speakers)
|
677 |
return f"⚙️ {result}"
|
678 |
except Exception as e:
|
679 |
return f"❌ Failed to update settings: {str(e)}"
|
680 |
|
|
|
681 |
def get_conversation():
|
682 |
"""Get the current conversation"""
|
683 |
try:
|
|
|
|
|
684 |
return diarization_system.get_formatted_conversation()
|
685 |
except Exception as e:
|
686 |
return f"<i>Error getting conversation: {str(e)}</i>"
|
687 |
|
|
|
688 |
def get_status():
|
689 |
"""Get system status"""
|
690 |
try:
|
|
|
|
|
691 |
return diarization_system.get_status_info()
|
692 |
except Exception as e:
|
693 |
return f"Error getting status: {str(e)}"
|
694 |
|
|
|
695 |
# Create Gradio interface
|
696 |
def create_interface():
|
697 |
with gr.Blocks(title="Real-time Speaker Diarization", theme=gr.themes.Soft()) as interface:
|
698 |
gr.Markdown("# 🎤 Real-time Speech Recognition with Speaker Diarization")
|
699 |
+
gr.Markdown("Live transcription with automatic speaker identification using FastRTC audio streaming.")
|
700 |
|
701 |
with gr.Row():
|
702 |
with gr.Column(scale=2):
|
703 |
+
# Conversation display
|
704 |
conversation_output = gr.HTML(
|
705 |
+
value="<div style='padding: 20px; background: #f8f9fa; border-radius: 10px; min-height: 300px;'><i>Click 'Initialize System' to start...</i></div>",
|
706 |
+
label="Live Conversation"
|
|
|
707 |
)
|
708 |
|
709 |
# Control buttons
|
710 |
with gr.Row():
|
711 |
init_btn = gr.Button("🔧 Initialize System", variant="secondary", size="lg")
|
712 |
+
start_btn = gr.Button("🎙️ Start", variant="primary", size="lg", interactive=False)
|
713 |
+
stop_btn = gr.Button("⏹️ Stop", variant="stop", size="lg", interactive=False)
|
714 |
clear_btn = gr.Button("🗑️ Clear", variant="secondary", size="lg", interactive=False)
|
715 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
716 |
# Status display
|
717 |
status_output = gr.Textbox(
|
718 |
label="System Status",
|
719 |
+
value="Ready to initialize...",
|
720 |
+
lines=8,
|
721 |
+
interactive=False
|
|
|
722 |
)
|
723 |
|
724 |
with gr.Column(scale=1):
|
725 |
+
# Settings
|
726 |
gr.Markdown("## ⚙️ Settings")
|
727 |
|
728 |
threshold_slider = gr.Slider(
|
729 |
+
minimum=0.3,
|
730 |
+
maximum=0.9,
|
731 |
step=0.05,
|
732 |
+
value=DEFAULT_CHANGE_THRESHOLD,
|
733 |
label="Speaker Change Sensitivity",
|
734 |
+
info="Lower = more sensitive"
|
735 |
)
|
736 |
|
737 |
max_speakers_slider = gr.Slider(
|
738 |
minimum=2,
|
739 |
+
maximum=ABSOLUTE_MAX_SPEAKERS,
|
740 |
step=1,
|
741 |
+
value=DEFAULT_MAX_SPEAKERS,
|
742 |
+
label="Maximum Speakers"
|
743 |
)
|
744 |
|
745 |
+
update_btn = gr.Button("Update Settings", variant="secondary")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
746 |
|
747 |
# Instructions
|
|
|
748 |
gr.Markdown("""
|
749 |
+
## 📋 Instructions
|
750 |
+
1. **Initialize** the system (loads AI models)
|
751 |
+
2. **Start** recording
|
752 |
+
3. **Speak** - system will transcribe and identify speakers
|
753 |
+
4. **Monitor** real-time results below
|
754 |
+
|
755 |
+
## 🎨 Speaker Colors
|
756 |
+
- 🔴 Speaker 1 (Red)
|
757 |
+
- 🟢 Speaker 2 (Teal)
|
758 |
+
- 🔵 Speaker 3 (Blue)
|
759 |
+
- 🟡 Speaker 4 (Green)
|
760 |
+
- 🟣 Speaker 5 (Yellow)
|
761 |
+
- 🟤 Speaker 6 (Plum)
|
762 |
+
- 🟫 Speaker 7 (Mint)
|
763 |
+
- 🟨 Speaker 8 (Gold)
|
764 |
""")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
765 |
|
766 |
# Event handlers
|
767 |
def on_initialize():
|
768 |
+
result = initialize_system()
|
769 |
+
if "✅" in result:
|
770 |
+
return result, gr.update(interactive=True), gr.update(interactive=True), gr.update(interactive=True)
|
771 |
+
else:
|
772 |
+
return result, gr.update(interactive=False), gr.update(interactive=False), gr.update(interactive=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
773 |
|
774 |
def on_start():
|
775 |
+
result = start_recording()
|
776 |
+
return result, gr.update(interactive=False), gr.update(interactive=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
777 |
|
778 |
def on_stop():
|
779 |
+
result = stop_recording()
|
780 |
+
return result, gr.update(interactive=True), gr.update(interactive=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
781 |
|
782 |
def on_clear():
|
783 |
+
result = clear_conversation()
|
784 |
+
return result
|
|
|
|
|
|
|
|
|
|
|
785 |
|
786 |
def on_update_settings(threshold, max_speakers):
|
787 |
+
result = update_settings(threshold, int(max_speakers))
|
788 |
+
return result
|
|
|
|
|
|
|
789 |
|
790 |
+
def update_display():
|
791 |
+
"""Continuously update the conversation display"""
|
792 |
+
conversation = get_conversation()
|
793 |
+
status = get_status()
|
794 |
+
return conversation, status
|
795 |
+
|
796 |
+
# Button event bindings
|
797 |
init_btn.click(
|
798 |
+
fn=on_initialize,
|
799 |
+
inputs=[],
|
800 |
+
outputs=[status_output, start_btn, stop_btn, clear_btn]
|
801 |
)
|
802 |
|
803 |
start_btn.click(
|
804 |
+
fn=on_start,
|
805 |
+
inputs=[],
|
806 |
outputs=[status_output, start_btn, stop_btn]
|
807 |
)
|
808 |
|
809 |
stop_btn.click(
|
810 |
+
fn=on_stop,
|
811 |
+
inputs=[],
|
812 |
outputs=[status_output, start_btn, stop_btn]
|
813 |
)
|
814 |
|
815 |
clear_btn.click(
|
816 |
+
fn=on_clear,
|
817 |
+
inputs=[],
|
818 |
+
outputs=[status_output]
|
819 |
)
|
820 |
|
821 |
+
update_btn.click(
|
822 |
+
fn=on_update_settings,
|
823 |
inputs=[threshold_slider, max_speakers_slider],
|
824 |
outputs=[status_output]
|
825 |
)
|
826 |
|
827 |
+
# Auto-refresh conversation display every 500ms
|
828 |
+
interface.load(
|
829 |
+
fn=update_display,
|
830 |
+
inputs=[],
|
831 |
+
outputs=[conversation_output, status_output],
|
832 |
+
every=0.5
|
833 |
)
|
834 |
|
835 |
return interface
|
836 |
|
837 |
|
838 |
+
# FastAPI integration for FastRTC
|
839 |
def create_fastapi_app():
|
840 |
+
"""Create FastAPI app with FastRTC integration"""
|
841 |
+
app = FastAPI(title="Real-time Speaker Diarization API")
|
|
|
|
|
|
|
|
|
842 |
|
843 |
+
@app.get("/")
|
844 |
+
async def root():
|
845 |
+
return {"message": "Real-time Speaker Diarization API"}
|
846 |
|
847 |
+
@app.get("/status")
|
848 |
+
async def api_status():
|
849 |
+
try:
|
850 |
+
if diarization_system.speaker_detector:
|
851 |
+
status = diarization_system.speaker_detector.get_status_info()
|
852 |
+
return {
|
853 |
+
"initialized": True,
|
854 |
+
"running": diarization_system.is_running,
|
855 |
+
"current_speaker": status["current_speaker"],
|
856 |
+
"active_speakers": status["active_speakers"],
|
857 |
+
"max_speakers": status["max_speakers"],
|
858 |
+
"last_similarity": status["last_similarity"],
|
859 |
+
"threshold": status["threshold"]
|
860 |
+
}
|
861 |
+
else:
|
862 |
+
return {"initialized": False, "running": False}
|
863 |
+
except Exception as e:
|
864 |
+
return {"error": str(e)}
|
865 |
|
866 |
+
@app.get("/conversation")
|
867 |
async def get_conversation_api():
|
|
|
868 |
try:
|
869 |
return {
|
870 |
+
"conversation": diarization_system.get_formatted_conversation(),
|
871 |
+
"sentences": len(diarization_system.full_sentences)
|
|
|
|
|
872 |
}
|
873 |
except Exception as e:
|
874 |
+
return {"error": str(e)}
|
875 |
|
876 |
+
@app.post("/initialize")
|
877 |
+
async def initialize_api():
|
|
|
878 |
try:
|
879 |
+
result = initialize_system()
|
880 |
+
return {"message": result, "success": "✅" in result}
|
881 |
+
except Exception as e:
|
882 |
+
return {"error": str(e), "success": False}
|
883 |
+
|
884 |
+
@app.post("/start")
|
885 |
+
async def start_api():
|
886 |
+
try:
|
887 |
+
result = start_recording()
|
888 |
+
return {"message": result, "success": "🎙️" in result}
|
889 |
+
except Exception as e:
|
890 |
+
return {"error": str(e), "success": False}
|
891 |
+
|
892 |
+
@app.post("/stop")
|
893 |
+
async def stop_api():
|
894 |
+
try:
|
895 |
+
result = stop_recording()
|
896 |
+
return {"message": result, "success": "⏹️" in result}
|
897 |
+
except Exception as e:
|
898 |
+
return {"error": str(e), "success": False}
|
899 |
+
|
900 |
+
@app.post("/clear")
|
901 |
+
async def clear_api():
|
902 |
+
try:
|
903 |
+
result = clear_conversation()
|
904 |
+
return {"message": result, "success": True}
|
905 |
except Exception as e:
|
906 |
+
return {"error": str(e), "success": False}
|
907 |
+
|
908 |
+
# FastRTC stream endpoint
|
909 |
+
if audio_handler:
|
910 |
+
app.add_websocket_route("/stream", Stream(audio_handler))
|
911 |
|
|
|
912 |
return app
|
913 |
|
914 |
|
915 |
+
# Main execution
|
916 |
+
if __name__ == "__main__":
|
917 |
+
import argparse
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
918 |
|
919 |
+
parser = argparse.ArgumentParser(description='Real-time Speaker Diarization System')
|
920 |
+
parser.add_argument('--mode', choices=['gradio', 'api', 'both'], default='gradio',
|
921 |
+
help='Run mode: gradio interface, API only, or both')
|
922 |
+
parser.add_argument('--port', type=int, default=7860,
|
923 |
+
help='Port to run on (default: 7860)')
|
924 |
+
parser.add_argument('--host', type=str, default='0.0.0.0',
|
925 |
+
help='Host to bind to (default: 0.0.0.0)')
|
926 |
|
927 |
+
args = parser.parse_args()
|
|
|
928 |
|
929 |
+
if args.mode == 'gradio':
|
930 |
+
# Run Gradio interface only
|
931 |
+
interface = create_interface()
|
932 |
+
interface.launch(
|
933 |
+
server_name=args.host,
|
934 |
+
server_port=args.port,
|
935 |
+
share=True,
|
936 |
+
show_error=True
|
937 |
+
)
|
938 |
|
939 |
+
elif args.mode == 'api':
|
940 |
+
# Run FastAPI only
|
941 |
+
app = create_fastapi_app()
|
942 |
+
uvicorn.run(app, host=args.host, port=args.port)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
943 |
|
944 |
+
elif args.mode == 'both':
|
945 |
+
# Run both Gradio and FastAPI
|
946 |
+
import threading
|
|
|
|
|
|
|
|
|
|
|
|
|
947 |
|
948 |
+
# Start FastAPI in a separate thread
|
949 |
+
app = create_fastapi_app()
|
950 |
+
api_thread = threading.Thread(
|
951 |
+
target=lambda: uvicorn.run(app, host=args.host, port=args.port + 1),
|
952 |
+
daemon=True
|
953 |
+
)
|
954 |
+
api_thread.start()
|
955 |
|
956 |
+
# Start Gradio interface
|
957 |
+
interface = create_interface()
|
958 |
interface.launch(
|
959 |
+
server_name=args.host,
|
960 |
+
server_port=args.port,
|
961 |
share=True,
|
962 |
+
show_error=True
|
|
|
963 |
)
|
964 |
+
|
965 |
+
|
966 |
+
# Additional utility functions for Hugging Face Spaces
|
967 |
+
def setup_for_huggingface():
|
968 |
+
"""Setup function specifically for Hugging Face Spaces"""
|
969 |
+
# Auto-initialize when running on HF Spaces
|
970 |
+
try:
|
971 |
+
if os.environ.get('SPACE_ID'): # Running on HF Spaces
|
972 |
+
logger.info("Running on Hugging Face Spaces - Auto-initializing...")
|
973 |
+
initialize_system()
|
974 |
+
logger.info("System ready for Hugging Face Spaces!")
|
975 |
except Exception as e:
|
976 |
+
logger.error(f"HF Spaces setup error: {e}")
|
977 |
+
|
978 |
+
# Call setup for HF Spaces
|
979 |
+
setup_for_huggingface()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
980 |
|
981 |
+
# For Hugging Face Spaces, create and launch interface directly
|
982 |
+
interface = create_interface()
|
983 |
|
984 |
+
# Export the interface for HF Spaces
|
985 |
+
demo = interface
|
|
|
|
|
|
|
|