File size: 15,029 Bytes
a3e120b
 
 
 
6cdf45e
 
 
a3e120b
 
e5bb694
bd93d23
e5bb694
6a1d4f7
 
 
 
e5bb694
 
 
a3e120b
6a1d4f7
 
bd93d23
 
 
 
6a1d4f7
 
 
e5bb694
 
6a1d4f7
e5bb694
6a1d4f7
e5bb694
d5ef142
e5bb694
a3e120b
6a1d4f7
e5bb694
a3e36f8
6a1d4f7
 
 
e5bb694
6a1d4f7
 
6cdf45e
a3e120b
 
e5bb694
d5ef142
 
 
 
 
 
e5bb694
6cdf45e
e5bb694
d5ef142
 
 
6cdf45e
d5ef142
 
 
 
 
 
 
bd93d23
 
 
 
6cdf45e
bd93d23
 
 
 
a3e36f8
 
bd93d23
 
 
 
 
a3e36f8
 
 
 
 
bd93d23
 
 
 
a3e36f8
bd93d23
a3e36f8
 
 
bd93d23
 
 
 
 
 
 
6cdf45e
bd93d23
 
 
 
 
a3e36f8
bd93d23
a3e36f8
 
 
 
 
 
 
bd93d23
 
 
 
a3e36f8
bd93d23
a3e36f8
 
 
bd93d23
 
 
a3e120b
a3e36f8
d5ef142
 
6cdf45e
d5ef142
 
 
a3e120b
d5ef142
 
6cdf45e
d5ef142
 
 
a3e120b
d5ef142
 
6cdf45e
d5ef142
 
 
6a1d4f7
 
6cdf45e
6a1d4f7
a3e120b
6cdf45e
6a1d4f7
 
 
bd93d23
e5bb694
d5ef142
 
 
 
 
 
6cdf45e
 
 
bd93d23
6cdf45e
 
 
d5ef142
 
 
 
6cdf45e
a3e36f8
bd93d23
 
a3e36f8
bd93d23
a3e36f8
 
d5ef142
 
6cdf45e
d5ef142
6cdf45e
d5ef142
 
 
 
 
 
6cdf45e
a3e120b
 
a3e36f8
e5bb694
bd93d23
a3e36f8
6cdf45e
 
a3e36f8
6cdf45e
 
a3e36f8
6cdf45e
 
 
 
 
 
 
 
 
 
 
a3e36f8
6cdf45e
 
 
 
 
a3e36f8
6cdf45e
 
 
 
 
a3e36f8
6cdf45e
 
 
 
 
a3e36f8
6cdf45e
 
 
a3e36f8
6cdf45e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a3e36f8
6cdf45e
 
 
 
 
 
a3e36f8
6cdf45e
 
a3e36f8
6cdf45e
 
 
e5bb694
 
 
 
 
bd93d23
6cdf45e
e5bb694
6cdf45e
e5bb694
 
 
6cdf45e
 
e5bb694
 
 
 
6cdf45e
bd93d23
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
"""
agent.py

This file defines the core logic for a sophisticated AI agent using LangGraph.
## MODIFICATION: This version introduces a 'multimodal_router' node.
This node intelligently inspects user input to identify, classify (using HEAD requests),
and pre-process URLs for images, audio, and video before the main LLM reasoning step.
"""

# ----------------------------------------------------------
# Section 0: Imports and Configuration
# ----------------------------------------------------------
import json
import os
import pickle
import re
import subprocess
import textwrap
import base64
import functools
from io import BytesIO
from pathlib import Path
import tempfile
import yt_dlp
from pydub import AudioSegment
import speech_recognition as sr

import requests
from cachetools import TTLCache
from PIL import Image

from langchain.schema import Document
from langchain.tools.retriever import create_retriever_tool
from langchain_community.vectorstores import FAISS
from langchain_community.tools.tavily_search import TavilySearchResults
from langchain_community.document_loaders import WikipediaLoader, ArxivLoader
from langchain_core.messages import SystemMessage, HumanMessage, AIMessage
from langchain_core.tools import Tool, tool
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain_groq import ChatGroq
from langchain_huggingface import HuggingFaceEmbeddings
from langgraph.graph import START, StateGraph, MessagesState
from langgraph.prebuilt import ToolNode, tools_condition

from dotenv import load_dotenv
load_dotenv()

# --- Configuration and Caching (remains the same) ---
JSONL_PATH, FAISS_CACHE, EMBED_MODEL = Path("metadata.jsonl"), Path("faiss_index.pkl"), "sentence-transformers/all-mpnet-base-v2"
RETRIEVER_K, CACHE_TTL = 5, 600
API_CACHE = TTLCache(maxsize=256, ttl=CACHE_TTL)
def cached_get(key: str, fetch_fn):
    if key in API_CACHE: return API_CACHE[key]
    val = fetch_fn()
    API_CACHE[key] = val
    return val

# ----------------------------------------------------------
# Section 2: Standalone Tool Functions (remains the same)
# ----------------------------------------------------------
@tool
def python_repl(code: str) -> str:
    """Executes a string of Python code and returns the stdout/stderr."""
    # ... (implementation unchanged)
    code = textwrap.dedent(code).strip()
    try:
        result = subprocess.run(["python", "-c", code], capture_output=True, text=True, timeout=10, check=False)
        if result.returncode == 0: return f"Execution successful.\nSTDOUT:\n```\n{result.stdout}\n```"
        else: return f"Execution failed.\nSTDOUT:\n```\n{result.stdout}\n```\nSTDERR:\n```\n{result.stderr}\n```"
    except subprocess.TimeoutExpired: return "Execution timed out (>10s)."


@tool
def process_youtube_video(url: str) -> str:
    """Downloads and processes a YouTube video, extracting audio and converting to text."""
    # ... (implementation unchanged)
    try:
        print(f"Processing YouTube video: {url}")
        with tempfile.TemporaryDirectory() as temp_dir:
            ydl_opts = {
                'format': 'bestaudio/best', 'outtmpl': f'{temp_dir}/%(title)s.%(ext)s',
                'postprocessors': [{'key': 'FFmpegExtractAudio', 'preferredcodec': 'wav'}],
            }
            with yt_dlp.YoutubeDL(ydl_opts) as ydl:
                info = ydl.extract_info(url, download=True)
                title = info.get('title', 'Unknown')
            audio_files = list(Path(temp_dir).glob("*.wav"))
            if not audio_files: return "Error: Could not download audio from YouTube video"
            r, transcript_parts = sr.Recognizer(), []
            audio = AudioSegment.from_wav(str(audio_files[0])).set_channels(1).set_frame_rate(16000)
            chunks = [audio[i:i + 30000] for i in range(0, len(audio), 30000)]
            for i, chunk in enumerate(chunks[:10]):
                chunk_file = Path(temp_dir) / f"chunk_{i}.wav"
                chunk.export(chunk_file, format="wav")
                try:
                    with sr.AudioFile(str(chunk_file)) as source:
                        text = r.recognize_google(r.record(source))
                        transcript_parts.append(text)
                except (sr.UnknownValueError, sr.RequestError) as e:
                    transcript_parts.append(f"[Speech recognition error or unintelligible audio: {e}]")
            return f"YouTube Video: {title}\n\nTranscript (first 5 minutes):\n{' '.join(transcript_parts)}"
    except Exception as e:
        print(f"Error processing YouTube video: {e}")
        return f"Error processing YouTube video: {e}"

@tool
def process_audio_file(file_url: str) -> str:
    """Downloads and processes an audio file (MP3, WAV, etc.) and converts to text."""
    # ... (implementation unchanged)
    try:
        print(f"Processing audio file: {file_url}")
        with tempfile.TemporaryDirectory() as temp_dir:
            response = requests.get(file_url, timeout=30)
            response.raise_for_status()
            ext = os.path.splitext(file_url)[1][1:] or 'mp3'
            audio_file = Path(temp_dir) / f"audio.{ext}"
            with open(audio_file, 'wb') as f: f.write(response.content)
            wav_file = Path(temp_dir) / "audio.wav"
            AudioSegment.from_file(str(audio_file)).export(wav_file, format="wav")
            r, transcript_parts = sr.Recognizer(), []
            audio = AudioSegment.from_wav(str(wav_file)).set_channels(1).set_frame_rate(16000)
            chunks = [audio[i:i + 30000] for i in range(0, len(audio), 30000)]
            for i, chunk in enumerate(chunks[:20]):
                chunk_file = Path(temp_dir) / f"chunk_{i}.wav"
                chunk.export(chunk_file, format="wav")
                try:
                    with sr.AudioFile(str(chunk_file)) as source:
                        text = r.recognize_google(r.record(source))
                        transcript_parts.append(text)
                except (sr.UnknownValueError, sr.RequestError) as e:
                    transcript_parts.append(f"[Speech recognition error or unintelligible audio: {e}]")
            return f"Audio file transcript:\n{' '.join(transcript_parts)}"
    except Exception as e:
        print(f"Error processing audio file: {e}")
        return f"Error processing audio file: {e}"


def web_search_func(query: str, cache_func) -> str:
    """Performs a web search using Tavily and returns a compilation of results."""
    # ... (implementation unchanged)
    key = f"web:{query}"
    results = cache_func(key, lambda: TavilySearchResults(max_results=5).invoke(query))
    return "\n\n---\n\n".join([f"Source: {res['url']}\nContent: {res['content']}" for res in results])

def wiki_search_func(query: str, cache_func) -> str:
    """Searches Wikipedia and returns the top 2 results."""
    # ... (implementation unchanged)
    key = f"wiki:{query}"
    docs = cache_func(key, lambda: WikipediaLoader(query=query, load_max_docs=2, doc_content_chars_max=2000).load())
    return "\n\n---\n\n".join([f"Source: {d.metadata['source']}\n\n{d.page_content}" for d in docs])

def arxiv_search_func(query: str, cache_func) -> str:
    """Searches Arxiv for scientific papers and returns the top 2 results."""
    # ... (implementation unchanged)
    key = f"arxiv:{query}"
    docs = cache_func(key, lambda: ArxivLoader(query=query, load_max_docs=2).load())
    return "\n\n---\n\n".join([f"Source: {d.metadata['source']}\nPublished: {d.metadata['Published']}\nTitle: {d.metadata['Title']}\n\nSummary:\n{d.page_content}" for d in docs])

# ----------------------------------------------------------
# Section 3: DYNAMIC SYSTEM PROMPT (remains the same)
# ----------------------------------------------------------
SYSTEM_PROMPT_TEMPLATE = (
    """You are an expert-level multimodal research assistant...""" # Unchanged
)

# ----------------------------------------------------------
# Section 4: Factory Function for Agent Executor
# ----------------------------------------------------------
def create_agent_executor(provider: str = "groq"):
    """
    Factory function to create and compile the LangGraph agent executor.
    """
    print(f"Initializing agent with provider: {provider}")

    # Step 1: Build LLM (remains the same)
    if provider == "groq": 
        llm = ChatGroq(model_name="llama-3.1-70b-vision-preview", temperature=0)
    else: 
        raise ValueError(f"Provider '{provider}' not currently configured for this router.")
        
    # Step 2: Build Retriever (remains the same, but will be called inside the router)
    embeddings = HuggingFaceEmbeddings(model_name=EMBED_MODEL)
    if FAISS_CACHE.exists():
        with open(FAISS_CACHE, "rb") as f: vector_store = pickle.load(f)
    else:
        # ... logic to build vector_store from JSONL or create empty ...
        docs = []
        if JSONL_PATH.exists():
            docs = [Document(page_content=f"Question: {rec['Question']}\n\nFinal answer: {rec['Final answer']}", metadata={"source": rec["task_id"]}) for rec in (json.loads(line) for line in open(JSONL_PATH, "rt", encoding="utf-8"))]
        if not docs:
            docs = [Document(page_content="Sample document", metadata={"source": "sample"})]
        vector_store = FAISS.from_documents(docs, embeddings)
        with open(FAISS_CACHE, "wb") as f: pickle.dump(vector_store, f)
    retriever = vector_store.as_retriever(search_kwargs={"k": RETRIEVER_K})
    
    # Step 3: Create the final list of tools (remains the same)
    tools_list = [
        python_repl, process_youtube_video, process_audio_file,
        Tool(name="web_search", func=functools.partial(web_search_func, cache_func=cached_get), description="Performs a web search using Tavily."),
        Tool(name="wiki_search", func=functools.partial(wiki_search_func, cache_func=cached_get), description="Searches Wikipedia."),
        Tool(name="arxiv_search", func=functools.partial(arxiv_search_func, cache_func=cached_get), description="Searches Arxiv for scientific papers."),
        create_retriever_tool(retriever=retriever, name="retrieve_examples", description="Retrieve solved questions similar to the user's query."),
    ]
    
    # Step 4: Format prompt and bind tools (remains the same)
    tool_definitions = "\n".join([f"- `{tool.name}`: {tool.description}" for tool in tools_list])
    final_system_prompt = SYSTEM_PROMPT_TEMPLATE.format(tools=tool_definitions)
    llm_with_tools = llm.bind_tools(tools_list)

    # Step 5: Define Graph Nodes
    
    ## MODIFICATION: A new, powerful router node that replaces the previous pre-processing.
    def multimodal_router(state: MessagesState):
        """
        Inspects the user's message, classifies URLs, and prepares the state for the LLM.
        This node acts as a central dispatcher.
        """
        print("--- Entering Multimodal Router ---")
        messages = state["messages"]
        last_message = messages[-1]
        
        # 1. Perform knowledge base retrieval first
        # We consolidate this logic here from the old retriever_node
        user_query_text = ""
        if isinstance(last_message.content, str):
            user_query_text = last_message.content
        elif isinstance(last_message.content, list): # For multimodal messages
            user_query_text = " ".join(item['text'] for item in last_message.content if item['type'] == 'text')

        docs = retriever.invoke(user_query_text)
        system_messages = [SystemMessage(content=final_system_prompt)]
        if docs:
            example_text = "\n\n---\n\n".join(d.page_content for d in docs)
            system_messages.append(AIMessage(content=f"I have found {len(docs)} similar solved examples:\n\n{example_text}", name="ExampleRetriever"))
        
        # 2. Extract and classify URLs
        urls = re.findall(r'(https?://[^\s]+)', user_query_text)
        image_processed = False

        for url in urls:
            try:
                print(f"Routing URL: {url}")
                # Simple classification first
                if "youtube.com" in url or "youtu.be" in url:
                    system_messages.append(SystemMessage(content=f"[System Note: A YouTube URL has been detected. Use the 'process_youtube_video' tool if the user asks about it.]"))
                    continue
                
                # Use a HEAD request for robust classification
                headers = requests.head(url, timeout=5, allow_redirects=True).headers
                content_type = headers.get('Content-Type', '')
                
                if 'image/' in content_type and not image_processed:
                    print(f"  -> Classified as Image. Processing for vision model.")
                    response = requests.get(url, timeout=10)
                    response.raise_for_status()
                    img = Image.open(BytesIO(response.content))
                    buffered = BytesIO()
                    img.convert("RGB").save(buffered, format="JPEG")
                    b64_string = base64.b64encode(buffered.getvalue()).decode()
                    
                    # Embed the image into the last message
                    new_content = [
                        {"type": "text", "text": user_query_text},
                        {"type": "image_url", "image_url": {"url": f"data:image/jpeg;base64,{b64_string}"}}
                    ]
                    messages[-1] = HumanMessage(content=new_content)
                    image_processed = True # Process only the first image for now
                
                elif 'audio/' in content_type:
                    print(f"  -> Classified as Audio.")
                    system_messages.append(SystemMessage(content=f"[System Note: An audio URL has been detected. Use the 'process_audio_file' tool if the user asks about it.]"))
                
                else:
                    print(f"  -> Classified as Web Page/Other.")

            except Exception as e:
                print(f"  -> Could not process URL {url}: {e}")

        # Rebuild the final state
        final_messages = system_messages + messages
        return {"messages": final_messages}

    def assistant_node(state: MessagesState):
        result = llm_with_tools.invoke(state["messages"])
        return {"messages": [result]}

    # Step 6: Build Graph
    ## MODIFICATION: The graph is now simpler and more robust.
    builder = StateGraph(MessagesState)
    builder.add_node("multimodal_router", multimodal_router) # The new, powerful starting node
    builder.add_node("assistant", assistant_node)
    builder.add_node("tools", ToolNode(tools_list))
    
    builder.add_edge(START, "multimodal_router")
    builder.add_edge("multimodal_router", "assistant")
    builder.add_conditional_edges("assistant", tools_condition, {"tools": "tools", "__end__": "__end__"})
    builder.add_edge("tools", "assistant")

    agent_executor = builder.compile()
    print("Agent Executor with Multimodal Router created successfully.")
    return agent_executor