Spaces:
Sleeping
Sleeping
Update agent.py
Browse files
agent.py
CHANGED
@@ -1,253 +1,242 @@
|
|
|
|
|
|
|
|
1 |
import json
|
2 |
import os
|
3 |
import pickle
|
4 |
import re
|
|
|
|
|
|
|
5 |
from datetime import datetime, timedelta
|
6 |
from io import BytesIO
|
7 |
from pathlib import Path
|
8 |
from typing import List
|
9 |
|
|
|
10 |
import requests
|
11 |
from cachetools import TTLCache
|
|
|
|
|
|
|
12 |
from langchain.schema import Document
|
|
|
13 |
from langchain_community.vectorstores import FAISS
|
14 |
-
from
|
|
|
|
|
|
|
15 |
from langchain_google_genai import ChatGoogleGenerativeAI
|
16 |
-
from
|
|
|
17 |
from langgraph.graph import START, StateGraph, MessagesState
|
18 |
from langgraph.prebuilt import ToolNode, tools_condition
|
19 |
-
from langchain_core.tools import tool
|
20 |
-
from dotenv import load_dotenv
|
21 |
|
|
|
|
|
22 |
load_dotenv()
|
23 |
|
24 |
# ----------------------------------------------------------
|
25 |
-
#
|
26 |
# ----------------------------------------------------------
|
27 |
JSONL_PATH = Path("metadata.jsonl")
|
28 |
FAISS_CACHE = Path("faiss_index.pkl")
|
29 |
EMBED_MODEL = "sentence-transformers/all-mpnet-base-v2"
|
30 |
-
RETRIEVER_K = 5
|
31 |
-
CACHE_TTL = 600
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
#
|
36 |
-
#
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
)
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
106 |
]
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
def web_search(query: str) -> str:
|
112 |
-
"""Smart web search with 3 keyword variants, cached."""
|
113 |
-
from langchain_community.tools.tavily_search import TavilySearchResults
|
114 |
-
|
115 |
-
keywords = [query, query.replace(" ", " OR "), f'"{query}"']
|
116 |
-
seen = set()
|
117 |
-
results = []
|
118 |
-
for kw in keywords:
|
119 |
-
key = f"web:{kw}"
|
120 |
-
snippets = cached_get(
|
121 |
-
key,
|
122 |
-
lambda: TavilySearchResults(max_results=3, include_raw_content=True).invoke(kw),
|
123 |
)
|
124 |
-
|
125 |
-
|
126 |
-
seen.add(s["url"])
|
127 |
-
results.append(s["content"][:2000])
|
128 |
-
if len(results) >= 5:
|
129 |
-
break
|
130 |
-
return "\n\n---\n\n".join(results)
|
131 |
-
|
132 |
-
@tool
|
133 |
-
def wiki_search(query: str) -> str:
|
134 |
-
from langchain_community.document_loaders import WikipediaLoader
|
135 |
-
key = f"wiki:{query}"
|
136 |
-
docs = cached_get(
|
137 |
-
key,
|
138 |
-
lambda: WikipediaLoader(query=query, load_max_docs=2).load(),
|
139 |
-
)
|
140 |
-
return "\n\n---\n\n".join(
|
141 |
-
f'<Document source="{d.metadata.get("source", "")}">\n{d.page_content}\n</Document>'
|
142 |
-
for d in docs
|
143 |
-
)
|
144 |
-
|
145 |
-
@tool
|
146 |
-
def arxiv_search(query: str) -> str:
|
147 |
-
from langchain_community.document_loaders import ArxivLoader
|
148 |
-
key = f"arxiv:{query}"
|
149 |
-
docs = cached_get(
|
150 |
-
key,
|
151 |
-
lambda: ArxivLoader(query=query, load_max_docs=2).load(),
|
152 |
-
)
|
153 |
-
return "\n\n---\n\n".join(
|
154 |
-
f'<Document source="{d.metadata.get("source", "")}">\n{d.page_content[:2000]}...\n</Document>'
|
155 |
-
for d in docs
|
156 |
-
)
|
157 |
|
158 |
# ----------------------------------------------------------
|
159 |
-
#
|
160 |
# ----------------------------------------------------------
|
161 |
SYSTEM_PROMPT = (
|
162 |
-
"""You are a helpful assistant
|
163 |
-
|
164 |
-
Your final answer must strictly follow this format:
|
165 |
-
FINAL ANSWER: [ANSWER]
|
166 |
-
|
167 |
-
Only write the answer in that exact format. Do not explain anything. Do not include any other text.
|
168 |
|
169 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
170 |
|
171 |
-
|
172 |
-
|
173 |
-
Examples:
|
174 |
-
- FINAL ANSWER: FunkMonk
|
175 |
-
- FINAL ANSWER: Paris
|
176 |
-
- FINAL ANSWER: 128
|
177 |
-
If you do not follow this format exactly, your response will be considered incorrect.
|
178 |
"""
|
179 |
)
|
180 |
|
181 |
# ----------------------------------------------------------
|
182 |
-
#
|
183 |
-
# ----------------------------------------------------------
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
)
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
return
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
"
|
219 |
-
return
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
user_query = state["messages"][-1].content
|
224 |
-
docs = retriever.invoke(user_query)
|
225 |
-
if docs:
|
226 |
-
example_text = "\n\n---\n\n".join(d.page_content for d in docs)
|
227 |
-
example_msg = HumanMessage(
|
228 |
-
content=f"Here are {len(docs)} similar solved examples:\n\n{example_text}"
|
229 |
-
)
|
230 |
-
return {"messages": [SYSTEM_PROMPT] + state["messages"] + [example_msg]}
|
231 |
-
return {"messages": [SYSTEM_PROMPT] + state["messages"]}
|
232 |
-
|
233 |
-
builder = StateGraph(MessagesState)
|
234 |
-
builder.add_node("retriever", retriever_node)
|
235 |
-
builder.add_node("assistant", assistant)
|
236 |
-
builder.add_node("tools", ToolNode(tools_list))
|
237 |
-
builder.add_edge(START, "retriever")
|
238 |
-
builder.add_edge("retriever", "assistant")
|
239 |
-
builder.add_conditional_edges("assistant", tools_condition)
|
240 |
-
builder.add_edge("tools", "assistant")
|
241 |
-
|
242 |
-
agent = builder.compile()
|
243 |
-
|
244 |
-
# ----------------------------------------------------------
|
245 |
-
# 6. Quick streaming test
|
246 |
# ----------------------------------------------------------
|
247 |
if __name__ == "__main__":
|
248 |
-
|
249 |
-
print("Agent
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# ----------------------------------------------------------
|
2 |
+
# Section 0: Imports
|
3 |
+
# ----------------------------------------------------------
|
4 |
import json
|
5 |
import os
|
6 |
import pickle
|
7 |
import re
|
8 |
+
import subprocess
|
9 |
+
import textwrap
|
10 |
+
import base64
|
11 |
from datetime import datetime, timedelta
|
12 |
from io import BytesIO
|
13 |
from pathlib import Path
|
14 |
from typing import List
|
15 |
|
16 |
+
# Third-party libraries
|
17 |
import requests
|
18 |
from cachetools import TTLCache
|
19 |
+
from PIL import Image
|
20 |
+
|
21 |
+
# LangChain and associated libraries
|
22 |
from langchain.schema import Document
|
23 |
+
from langchain.tools.retriever import create_retriever_tool
|
24 |
from langchain_community.vectorstores import FAISS
|
25 |
+
from langchain_community.tools.tavily_search import TavilySearchResults
|
26 |
+
from langchain_community.document_loaders import WikipediaLoader, ArxivLoader # Added loaders
|
27 |
+
from langchain_core.messages import SystemMessage, HumanMessage, AIMessage
|
28 |
+
from langchain_core.tools import tool
|
29 |
from langchain_google_genai import ChatGoogleGenerativeAI
|
30 |
+
from langchain_groq import ChatGroq
|
31 |
+
from langchain_huggingface import HuggingFaceEmbeddings, HuggingFaceEndpoint, ChatHuggingFace
|
32 |
from langgraph.graph import START, StateGraph, MessagesState
|
33 |
from langgraph.prebuilt import ToolNode, tools_condition
|
|
|
|
|
34 |
|
35 |
+
# Environment variable loading
|
36 |
+
from dotenv import load_dotenv
|
37 |
load_dotenv()
|
38 |
|
39 |
# ----------------------------------------------------------
|
40 |
+
# Section 1: Constants and Configuration
|
41 |
# ----------------------------------------------------------
|
42 |
JSONL_PATH = Path("metadata.jsonl")
|
43 |
FAISS_CACHE = Path("faiss_index.pkl")
|
44 |
EMBED_MODEL = "sentence-transformers/all-mpnet-base-v2"
|
45 |
+
RETRIEVER_K = 5 # Number of similar documents to retrieve
|
46 |
+
CACHE_TTL = 600 # Cache API calls for 10 minutes
|
47 |
+
# Global cache object for API calls
|
48 |
+
API_CACHE = TTLCache(maxsize=256, ttl=CACHE_TTL)
|
49 |
+
|
50 |
+
# ----------------------------------------------------------
|
51 |
+
# Section 2: The Agent Class
|
52 |
+
# ----------------------------------------------------------
|
53 |
+
class MyAgent:
|
54 |
+
"""
|
55 |
+
Encapsulates the agent's state, including LLMs, retriever, and tools.
|
56 |
+
This class-based approach ensures clean management of dependencies.
|
57 |
+
"""
|
58 |
+
|
59 |
+
def __init__(self, provider: str = "google"):
|
60 |
+
"""
|
61 |
+
Initializes the agent, setting up LLMs and the FAISS retriever.
|
62 |
+
Args:
|
63 |
+
provider (str): The LLM provider to use ('google', 'groq', 'huggingface').
|
64 |
+
"""
|
65 |
+
print(f"Initializing agent with provider: {provider}")
|
66 |
+
|
67 |
+
self.llm = self._build_llm(provider)
|
68 |
+
self.vision_llm = ChatGoogleGenerativeAI(model="gemini-1.5-flash", temperature=0)
|
69 |
+
self.retriever = self._get_retriever()
|
70 |
+
|
71 |
+
def _get_retriever(self):
|
72 |
+
"""Builds or loads the FAISS retriever from a local cache."""
|
73 |
+
embeddings = HuggingFaceEmbeddings(model_name=EMBED_MODEL)
|
74 |
+
|
75 |
+
if FAISS_CACHE.exists():
|
76 |
+
print(f"Loading FAISS index from cache: {FAISS_CACHE}")
|
77 |
+
with open(FAISS_CACHE, "rb") as f:
|
78 |
+
vector_store = pickle.load(f)
|
79 |
+
else:
|
80 |
+
print("FAISS cache not found. Building new index from metadata.jsonl...")
|
81 |
+
if not JSONL_PATH.exists():
|
82 |
+
raise FileNotFoundError(f"{JSONL_PATH} not found. Cannot build vector store.")
|
83 |
+
docs = [Document(page_content=f"Question: {rec['Question']}\n\nFinal answer: {rec['Final answer']}", metadata={"source": rec["task_id"]}) for rec in (json.loads(line) for line in open(JSONL_PATH, "rt", encoding="utf-8"))]
|
84 |
+
if not docs: raise ValueError("No documents found in metadata.jsonl.")
|
85 |
+
vector_store = FAISS.from_documents(docs, embeddings)
|
86 |
+
with open(FAISS_CACHE, "wb") as f: pickle.dump(vector_store, f)
|
87 |
+
print(f"FAISS index built and saved to cache: {FAISS_CACHE}")
|
88 |
+
|
89 |
+
return vector_store.as_retriever(search_kwargs={"k": RETRIEVER_K})
|
90 |
+
|
91 |
+
def _build_llm(self, provider: str):
|
92 |
+
"""Helper to build the main text-based LLM based on the chosen provider."""
|
93 |
+
if provider == "google": return ChatGoogleGenerativeAI(model="gemini-1.5-pro-latest", temperature=0)
|
94 |
+
elif provider == "groq": return ChatGroq(model_name="llama3-70b-8192", temperature=0)
|
95 |
+
elif provider == "huggingface": return ChatHuggingFace(llm=HuggingFaceEndpoint(repo_id="Qwen/Qwen2.5-Coder-32B-Instruct", temperature=0))
|
96 |
+
else: raise ValueError("Provider must be 'google', 'groq', or 'huggingface'")
|
97 |
+
|
98 |
+
def _cached_get(self, key: str, fetch_fn):
|
99 |
+
"""Helper for caching API calls."""
|
100 |
+
if key in API_CACHE: return API_CACHE[key]
|
101 |
+
val = fetch_fn()
|
102 |
+
API_CACHE[key] = val
|
103 |
+
return val
|
104 |
+
|
105 |
+
# --- Tool Definitions as Class Methods ---
|
106 |
+
|
107 |
+
@tool
|
108 |
+
def python_repl(self, code: str) -> str:
|
109 |
+
"""Executes a string of Python code and returns the stdout/stderr."""
|
110 |
+
code = textwrap.dedent(code).strip()
|
111 |
+
try:
|
112 |
+
result = subprocess.run(["python", "-c", code], capture_output=True, text=True, timeout=10, check=False)
|
113 |
+
if result.returncode == 0: return f"Execution successful.\nSTDOUT:\n```\n{result.stdout}\n```"
|
114 |
+
else: return f"Execution failed.\nSTDOUT:\n```\n{result.stdout}\n```\nSTDERR:\n```\n{result.stderr}\n```"
|
115 |
+
except subprocess.TimeoutExpired: return "Execution timed out (>10s)."
|
116 |
+
|
117 |
+
@tool
|
118 |
+
def describe_image(self, image_source: str) -> str:
|
119 |
+
"""Describes an image from a local file path or a URL using Gemini vision."""
|
120 |
+
try:
|
121 |
+
if image_source.startswith("http"):
|
122 |
+
img = Image.open(BytesIO(requests.get(image_source, timeout=10).content))
|
123 |
+
else:
|
124 |
+
img = Image.open(image_source)
|
125 |
+
buffered = BytesIO()
|
126 |
+
img.convert("RGB").save(buffered, format="JPEG")
|
127 |
+
b64_string = base64.b64encode(buffered.getvalue()).decode()
|
128 |
+
msg = HumanMessage(content=[{"type": "text", "text": "Describe this image in detail."}, {"type": "image_url", "image_url": {"url": f"data:image/jpeg;base64,{b64_string}"}}])
|
129 |
+
return self.vision_llm.invoke([msg]).content
|
130 |
+
except Exception as e: return f"Error processing image: {e}"
|
131 |
+
|
132 |
+
@tool
|
133 |
+
def web_search(self, query: str) -> str:
|
134 |
+
"""Performs a web search using Tavily and returns a compilation of results."""
|
135 |
+
key = f"web:{query}"
|
136 |
+
results = self._cached_get(key, lambda: TavilySearchResults(max_results=5).invoke(query))
|
137 |
+
return "\n\n---\n\n".join([f"Source: {res['url']}\nContent: {res['content']}" for res in results])
|
138 |
+
|
139 |
+
@tool
|
140 |
+
def wiki_search(self, query: str) -> str:
|
141 |
+
"""Searches Wikipedia and returns the top 2 results."""
|
142 |
+
key = f"wiki:{query}"
|
143 |
+
docs = self._cached_get(key, lambda: WikipediaLoader(query=query, load_max_docs=2, doc_content_chars_max=2000).load())
|
144 |
+
return "\n\n---\n\n".join([f"Source: {d.metadata['source']}\n\n{d.page_content}" for d in docs])
|
145 |
+
|
146 |
+
@tool
|
147 |
+
def arxiv_search(self, query: str) -> str:
|
148 |
+
"""Searches Arxiv for scientific papers and returns the top 2 results."""
|
149 |
+
key = f"arxiv:{query}"
|
150 |
+
docs = self._cached_get(key, lambda: ArxivLoader(query=query, load_max_docs=2).load())
|
151 |
+
return "\n\n---\n\n".join([f"Source: {d.metadata['source']}\nPublished: {d.metadata['Published']}\nTitle: {d.metadata['Title']}\n\nSummary:\n{d.page_content}" for d in docs])
|
152 |
+
|
153 |
+
def get_tools(self) -> list:
|
154 |
+
"""Returns a list of all tools available to the agent."""
|
155 |
+
tools_list = [
|
156 |
+
self.python_repl,
|
157 |
+
self.describe_image,
|
158 |
+
self.web_search,
|
159 |
+
self.wiki_search,
|
160 |
+
self.arxiv_search,
|
161 |
]
|
162 |
+
retriever_tool = create_retriever_tool(
|
163 |
+
retriever=self.retriever,
|
164 |
+
name="retrieve_examples",
|
165 |
+
description="Retrieve solved questions and answers similar to the user's query.",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
166 |
)
|
167 |
+
tools_list.append(retriever_tool)
|
168 |
+
return tools_list
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
169 |
|
170 |
# ----------------------------------------------------------
|
171 |
+
# Section 3: System Prompt
|
172 |
# ----------------------------------------------------------
|
173 |
SYSTEM_PROMPT = (
|
174 |
+
"""You are a helpful and expert assistant designed to answer questions accurately and concisely.
|
|
|
|
|
|
|
|
|
|
|
175 |
|
176 |
+
**Instructions:**
|
177 |
+
1. **Analyze the Question:** Carefully understand what is being asked.
|
178 |
+
2. **Use Tools:** You have a set of tools to find information. Use them logically.
|
179 |
+
3. **Synthesize the Answer:** Based on the information from the tools, formulate your final answer.
|
180 |
+
4. **Format the Output:** Your final response MUST be in the following format and nothing else:
|
181 |
+
|
182 |
+
FINAL ANSWER: [Your concise and accurate answer here]
|
183 |
|
184 |
+
If the `retrieve_examples` tool provides an answer to an identical question, use that answer. Otherwise, use your tools to find the correct answer for the current question.
|
|
|
|
|
|
|
|
|
|
|
|
|
185 |
"""
|
186 |
)
|
187 |
|
188 |
# ----------------------------------------------------------
|
189 |
+
# Section 4: Factory Function for Agent Executor
|
190 |
+
# ----------------------------------------------------------
|
191 |
+
def create_agent_executor(provider: str = "google"):
|
192 |
+
"""Factory function to create and compile the LangGraph agent executor."""
|
193 |
+
my_agent_instance = MyAgent(provider=provider)
|
194 |
+
tools_list = my_agent_instance.get_tools()
|
195 |
+
llm_with_tools = my_agent_instance.llm.bind_tools(tools_list)
|
196 |
+
|
197 |
+
def retriever_node(state: MessagesState):
|
198 |
+
"""First node: retrieves examples and prepends them to the message history."""
|
199 |
+
user_query = state["messages"][-1].content
|
200 |
+
docs = my_agent_instance.retriever.invoke(user_query)
|
201 |
+
messages = [SystemMessage(content=SYSTEM_PROMPT)]
|
202 |
+
if docs:
|
203 |
+
example_text = "\n\n---\n\n".join(d.page_content for d in docs)
|
204 |
+
example_msg = AIMessage(content=f"I have found {len(docs)} similar solved examples:\n\n{example_text}", name="ExampleRetriever")
|
205 |
+
messages.append(example_msg)
|
206 |
+
messages.extend(state["messages"])
|
207 |
+
return {"messages": messages}
|
208 |
+
|
209 |
+
def assistant_node(state: MessagesState):
|
210 |
+
"""Main assistant node: calls the LLM with the current state to decide the next action."""
|
211 |
+
result = llm_with_tools.invoke(state["messages"])
|
212 |
+
return {"messages": [result]}
|
213 |
+
|
214 |
+
builder = StateGraph(MessagesState)
|
215 |
+
builder.add_node("retriever", retriever_node)
|
216 |
+
builder.add_node("assistant", assistant_node)
|
217 |
+
builder.add_node("tools", ToolNode(tools_list))
|
218 |
+
|
219 |
+
builder.add_edge(START, "retriever")
|
220 |
+
builder.add_edge("retriever", "assistant")
|
221 |
+
builder.add_conditional_edges("assistant", tools_condition, {"tools": "tools", "__end__": "__end__"})
|
222 |
+
builder.add_edge("tools", "assistant")
|
223 |
+
|
224 |
+
agent_executor = builder.compile()
|
225 |
+
print("Agent Executor created successfully.")
|
226 |
+
return agent_executor
|
227 |
+
|
228 |
+
# ----------------------------------------------------------
|
229 |
+
# Section 5: Direct Execution Block for Testing
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
230 |
# ----------------------------------------------------------
|
231 |
if __name__ == "__main__":
|
232 |
+
"""direct testing of the agent's logic."""
|
233 |
+
print("--- Running Agent in Test Mode ---")
|
234 |
+
agent = create_agent_executor(provider="google")
|
235 |
+
question = "According to wikipedia, what is the main difference between a lama and an alpaca?"
|
236 |
+
print(f"\nTest Question: {question}\n\n--- Agent Thinking... ---\n")
|
237 |
+
|
238 |
+
for chunk in agent.stream({"messages": [("user", question)]}):
|
239 |
+
for key, value in chunk.items():
|
240 |
+
if value['messages']:
|
241 |
+
message = value['messages'][-1]
|
242 |
+
if message.content: print(f"--- Node: {key} ---\n{message.content}\n")
|