Spaces:
Sleeping
Sleeping
Update agent.py
Browse files
agent.py
CHANGED
@@ -2,12 +2,11 @@
|
|
2 |
agent.py
|
3 |
|
4 |
This file defines the core logic for a sophisticated AI agent using LangGraph.
|
5 |
-
This version
|
6 |
-
for the LLM on every run, designed to combat "tool refusal".
|
7 |
"""
|
8 |
|
9 |
# ----------------------------------------------------------
|
10 |
-
# Section 0: Imports and Configuration
|
11 |
# ----------------------------------------------------------
|
12 |
import json
|
13 |
import os
|
@@ -19,6 +18,10 @@ import base64
|
|
19 |
import functools
|
20 |
from io import BytesIO
|
21 |
from pathlib import Path
|
|
|
|
|
|
|
|
|
22 |
|
23 |
import requests
|
24 |
from cachetools import TTLCache
|
@@ -40,7 +43,7 @@ from langgraph.prebuilt import ToolNode, tools_condition
|
|
40 |
from dotenv import load_dotenv
|
41 |
load_dotenv()
|
42 |
|
43 |
-
# --- Configuration and Caching
|
44 |
JSONL_PATH, FAISS_CACHE, EMBED_MODEL = Path("metadata.jsonl"), Path("faiss_index.pkl"), "sentence-transformers/all-mpnet-base-v2"
|
45 |
RETRIEVER_K, CACHE_TTL = 5, 600
|
46 |
API_CACHE = TTLCache(maxsize=256, ttl=CACHE_TTL)
|
@@ -51,7 +54,7 @@ def cached_get(key: str, fetch_fn):
|
|
51 |
return val
|
52 |
|
53 |
# ----------------------------------------------------------
|
54 |
-
# Section 2: Standalone Tool Functions
|
55 |
# ----------------------------------------------------------
|
56 |
@tool
|
57 |
def python_repl(code: str) -> str:
|
@@ -66,14 +69,168 @@ def python_repl(code: str) -> str:
|
|
66 |
def describe_image_func(image_source: str, vision_llm_instance) -> str:
|
67 |
"""Describes an image from a local file path or a URL using a provided vision LLM."""
|
68 |
try:
|
69 |
-
|
70 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
buffered = BytesIO()
|
72 |
img.convert("RGB").save(buffered, format="JPEG")
|
73 |
b64_string = base64.b64encode(buffered.getvalue()).decode()
|
74 |
-
|
75 |
-
|
76 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
|
78 |
def web_search_func(query: str, cache_func) -> str:
|
79 |
"""Performs a web search using Tavily and returns a compilation of results."""
|
@@ -94,75 +251,88 @@ def arxiv_search_func(query: str, cache_func) -> str:
|
|
94 |
return "\n\n---\n\n".join([f"Source: {d.metadata['source']}\nPublished: {d.metadata['Published']}\nTitle: {d.metadata['Title']}\n\nSummary:\n{d.page_content}" for d in docs])
|
95 |
|
96 |
# ----------------------------------------------------------
|
97 |
-
# Section 3:
|
98 |
# ----------------------------------------------------------
|
99 |
-
# This is now a template string. The {tools} section will be filled in dynamically.
|
100 |
SYSTEM_PROMPT_TEMPLATE = (
|
101 |
-
"""You are an expert-level research assistant. Your goal is to answer the user's question accurately.
|
102 |
|
103 |
**CRITICAL INSTRUCTIONS:**
|
104 |
-
1. **USE YOUR TOOLS:** You have been given a set of tools to find information. You MUST use them when the answer is not immediately known to you. Do not make up answers.
|
105 |
-
2. **
|
|
|
|
|
|
|
|
|
|
|
106 |
{tools}
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
`FINAL ANSWER: [Your
|
111 |
"""
|
112 |
)
|
113 |
|
114 |
# ----------------------------------------------------------
|
115 |
-
# Section 4: Factory Function for Agent Executor
|
116 |
# ----------------------------------------------------------
|
117 |
def create_agent_executor(provider: str = "groq"):
|
118 |
"""
|
119 |
Factory function to create and compile the LangGraph agent executor.
|
120 |
-
This version dynamically builds the system prompt with the list of tools.
|
121 |
"""
|
122 |
print(f"Initializing agent with provider: {provider}")
|
123 |
|
124 |
-
# Step 1: Build LLMs
|
125 |
-
if provider == "google":
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
130 |
|
131 |
-
# Step 2: Build Retriever
|
132 |
embeddings = HuggingFaceEmbeddings(model_name=EMBED_MODEL)
|
133 |
if FAISS_CACHE.exists():
|
134 |
with open(FAISS_CACHE, "rb") as f: vector_store = pickle.load(f)
|
135 |
else:
|
136 |
-
|
137 |
-
|
138 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
139 |
retriever = vector_store.as_retriever(search_kwargs={"k": RETRIEVER_K})
|
140 |
|
141 |
-
# Step 3: Create the final list of tools
|
142 |
tools_list = [
|
143 |
python_repl,
|
144 |
-
Tool(name="describe_image", func=functools.partial(describe_image_func, vision_llm_instance=vision_llm), description="Describes an image from a local file path or a URL."),
|
|
|
|
|
145 |
Tool(name="web_search", func=functools.partial(web_search_func, cache_func=cached_get), description="Performs a web search using Tavily."),
|
146 |
Tool(name="wiki_search", func=functools.partial(wiki_search_func, cache_func=cached_get), description="Searches Wikipedia."),
|
147 |
Tool(name="arxiv_search", func=functools.partial(arxiv_search_func, cache_func=cached_get), description="Searches Arxiv for scientific papers."),
|
148 |
create_retriever_tool(retriever=retriever, name="retrieve_examples", description="Retrieve solved questions similar to the user's query."),
|
149 |
]
|
150 |
|
151 |
-
#
|
152 |
-
# 4a. Format the tool list into a string for the prompt
|
153 |
tool_definitions = "\n".join([f"- `{tool.name}`: {tool.description}" for tool in tools_list])
|
154 |
-
|
155 |
-
# 4b. Create the final, dynamic system prompt
|
156 |
final_system_prompt = SYSTEM_PROMPT_TEMPLATE.format(tools=tool_definitions)
|
157 |
-
# --- END NEW PART ---
|
158 |
|
159 |
llm_with_tools = main_llm.bind_tools(tools_list)
|
160 |
|
161 |
-
# Step 5: Define Graph Nodes
|
162 |
def retriever_node(state: MessagesState):
|
163 |
user_query = state["messages"][-1].content
|
164 |
docs = retriever.invoke(user_query)
|
165 |
-
# Use the new, dynamic prompt here
|
166 |
messages = [SystemMessage(content=final_system_prompt)]
|
167 |
if docs:
|
168 |
example_text = "\n\n---\n\n".join(d.page_content for d in docs)
|
@@ -174,7 +344,7 @@ def create_agent_executor(provider: str = "groq"):
|
|
174 |
result = llm_with_tools.invoke(state["messages"])
|
175 |
return {"messages": [result]}
|
176 |
|
177 |
-
# Step 6: Build Graph
|
178 |
builder = StateGraph(MessagesState)
|
179 |
builder.add_node("retriever", retriever_node)
|
180 |
builder.add_node("assistant", assistant_node)
|
@@ -187,7 +357,4 @@ def create_agent_executor(provider: str = "groq"):
|
|
187 |
|
188 |
agent_executor = builder.compile()
|
189 |
print("Agent Executor created successfully.")
|
190 |
-
return agent_executor
|
191 |
-
|
192 |
-
# --- Section 5 (Testing functions) remains the same ---
|
193 |
-
# ... (test_llm_connection and __main__ block)
|
|
|
2 |
agent.py
|
3 |
|
4 |
This file defines the core logic for a sophisticated AI agent using LangGraph.
|
5 |
+
This version includes proper multimodal support for images, YouTube videos, and audio files.
|
|
|
6 |
"""
|
7 |
|
8 |
# ----------------------------------------------------------
|
9 |
+
# Section 0: Imports and Configuration
|
10 |
# ----------------------------------------------------------
|
11 |
import json
|
12 |
import os
|
|
|
18 |
import functools
|
19 |
from io import BytesIO
|
20 |
from pathlib import Path
|
21 |
+
import tempfile
|
22 |
+
import yt_dlp
|
23 |
+
from pydub import AudioSegment
|
24 |
+
import speech_recognition as sr
|
25 |
|
26 |
import requests
|
27 |
from cachetools import TTLCache
|
|
|
43 |
from dotenv import load_dotenv
|
44 |
load_dotenv()
|
45 |
|
46 |
+
# --- Configuration and Caching ---
|
47 |
JSONL_PATH, FAISS_CACHE, EMBED_MODEL = Path("metadata.jsonl"), Path("faiss_index.pkl"), "sentence-transformers/all-mpnet-base-v2"
|
48 |
RETRIEVER_K, CACHE_TTL = 5, 600
|
49 |
API_CACHE = TTLCache(maxsize=256, ttl=CACHE_TTL)
|
|
|
54 |
return val
|
55 |
|
56 |
# ----------------------------------------------------------
|
57 |
+
# Section 2: Standalone Tool Functions
|
58 |
# ----------------------------------------------------------
|
59 |
@tool
|
60 |
def python_repl(code: str) -> str:
|
|
|
69 |
def describe_image_func(image_source: str, vision_llm_instance) -> str:
|
70 |
"""Describes an image from a local file path or a URL using a provided vision LLM."""
|
71 |
try:
|
72 |
+
print(f"Processing image: {image_source}")
|
73 |
+
|
74 |
+
# Download and process image
|
75 |
+
if image_source.startswith("http"):
|
76 |
+
response = requests.get(image_source, timeout=10)
|
77 |
+
response.raise_for_status()
|
78 |
+
img = Image.open(BytesIO(response.content))
|
79 |
+
else:
|
80 |
+
img = Image.open(image_source)
|
81 |
+
|
82 |
+
# Convert to base64
|
83 |
buffered = BytesIO()
|
84 |
img.convert("RGB").save(buffered, format="JPEG")
|
85 |
b64_string = base64.b64encode(buffered.getvalue()).decode()
|
86 |
+
|
87 |
+
# Create multimodal message
|
88 |
+
msg = HumanMessage(content=[
|
89 |
+
{"type": "text", "text": "Describe this image in detail. Include all objects, people, text, colors, setting, and any other relevant information you can see."},
|
90 |
+
{"type": "image_url", "image_url": {"url": f"data:image/jpeg;base64,{b64_string}"}}
|
91 |
+
])
|
92 |
+
|
93 |
+
result = vision_llm_instance.invoke([msg])
|
94 |
+
return f"Image description: {result.content}"
|
95 |
+
|
96 |
+
except Exception as e:
|
97 |
+
print(f"Error in describe_image_func: {e}")
|
98 |
+
return f"Error processing image: {e}"
|
99 |
+
|
100 |
+
@tool
|
101 |
+
def process_youtube_video(url: str) -> str:
|
102 |
+
"""Downloads and processes a YouTube video, extracting audio and converting to text."""
|
103 |
+
try:
|
104 |
+
print(f"Processing YouTube video: {url}")
|
105 |
+
|
106 |
+
# Create temporary directory
|
107 |
+
with tempfile.TemporaryDirectory() as temp_dir:
|
108 |
+
# Download audio from YouTube video
|
109 |
+
ydl_opts = {
|
110 |
+
'format': 'bestaudio/best',
|
111 |
+
'outtmpl': f'{temp_dir}/%(title)s.%(ext)s',
|
112 |
+
'postprocessors': [{
|
113 |
+
'key': 'FFmpegExtractAudio',
|
114 |
+
'preferredcodec': 'wav',
|
115 |
+
}],
|
116 |
+
}
|
117 |
+
|
118 |
+
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
|
119 |
+
info = ydl.extract_info(url, download=True)
|
120 |
+
title = info.get('title', 'Unknown')
|
121 |
+
|
122 |
+
# Find the downloaded audio file
|
123 |
+
audio_files = list(Path(temp_dir).glob("*.wav"))
|
124 |
+
if not audio_files:
|
125 |
+
return "Error: Could not download audio from YouTube video"
|
126 |
+
|
127 |
+
audio_file = audio_files[0]
|
128 |
+
|
129 |
+
# Convert audio to text using speech recognition
|
130 |
+
r = sr.Recognizer()
|
131 |
+
|
132 |
+
# Load audio file
|
133 |
+
audio = AudioSegment.from_wav(str(audio_file))
|
134 |
+
|
135 |
+
# Convert to mono and set sample rate
|
136 |
+
audio = audio.set_channels(1)
|
137 |
+
audio = audio.set_frame_rate(16000)
|
138 |
+
|
139 |
+
# Convert to smaller chunks for processing (30 seconds each)
|
140 |
+
chunk_length_ms = 30000
|
141 |
+
chunks = [audio[i:i + chunk_length_ms] for i in range(0, len(audio), chunk_length_ms)]
|
142 |
+
|
143 |
+
transcript_parts = []
|
144 |
+
for i, chunk in enumerate(chunks[:10]): # Limit to first 5 minutes
|
145 |
+
chunk_file = Path(temp_dir) / f"chunk_{i}.wav"
|
146 |
+
chunk.export(chunk_file, format="wav")
|
147 |
+
|
148 |
+
try:
|
149 |
+
with sr.AudioFile(str(chunk_file)) as source:
|
150 |
+
audio_data = r.record(source)
|
151 |
+
text = r.recognize_google(audio_data)
|
152 |
+
transcript_parts.append(text)
|
153 |
+
except sr.UnknownValueError:
|
154 |
+
transcript_parts.append("[Unintelligible audio]")
|
155 |
+
except sr.RequestError as e:
|
156 |
+
transcript_parts.append(f"[Speech recognition error: {e}]")
|
157 |
+
|
158 |
+
transcript = " ".join(transcript_parts)
|
159 |
+
|
160 |
+
return f"YouTube Video: {title}\n\nTranscript (first 5 minutes):\n{transcript}"
|
161 |
+
|
162 |
+
except Exception as e:
|
163 |
+
print(f"Error processing YouTube video: {e}")
|
164 |
+
return f"Error processing YouTube video: {e}"
|
165 |
+
|
166 |
+
@tool
|
167 |
+
def process_audio_file(file_url: str) -> str:
|
168 |
+
"""Downloads and processes an audio file (MP3, WAV, etc.) and converts to text."""
|
169 |
+
try:
|
170 |
+
print(f"Processing audio file: {file_url}")
|
171 |
+
|
172 |
+
with tempfile.TemporaryDirectory() as temp_dir:
|
173 |
+
# Download audio file
|
174 |
+
response = requests.get(file_url, timeout=30)
|
175 |
+
response.raise_for_status()
|
176 |
+
|
177 |
+
# Determine file extension from URL or content type
|
178 |
+
if file_url.lower().endswith('.mp3'):
|
179 |
+
ext = 'mp3'
|
180 |
+
elif file_url.lower().endswith('.wav'):
|
181 |
+
ext = 'wav'
|
182 |
+
else:
|
183 |
+
content_type = response.headers.get('content-type', '')
|
184 |
+
if 'mp3' in content_type:
|
185 |
+
ext = 'mp3'
|
186 |
+
elif 'wav' in content_type:
|
187 |
+
ext = 'wav'
|
188 |
+
else:
|
189 |
+
ext = 'mp3' # Default assumption
|
190 |
+
|
191 |
+
audio_file = Path(temp_dir) / f"audio.{ext}"
|
192 |
+
with open(audio_file, 'wb') as f:
|
193 |
+
f.write(response.content)
|
194 |
+
|
195 |
+
# Convert to WAV if necessary
|
196 |
+
if ext != 'wav':
|
197 |
+
audio = AudioSegment.from_file(str(audio_file))
|
198 |
+
wav_file = Path(temp_dir) / "audio.wav"
|
199 |
+
audio.export(wav_file, format="wav")
|
200 |
+
audio_file = wav_file
|
201 |
+
|
202 |
+
# Convert audio to text
|
203 |
+
r = sr.Recognizer()
|
204 |
+
|
205 |
+
# Load and process audio
|
206 |
+
audio = AudioSegment.from_wav(str(audio_file))
|
207 |
+
audio = audio.set_channels(1).set_frame_rate(16000)
|
208 |
+
|
209 |
+
# Process in chunks
|
210 |
+
chunk_length_ms = 30000
|
211 |
+
chunks = [audio[i:i + chunk_length_ms] for i in range(0, len(audio), chunk_length_ms)]
|
212 |
+
|
213 |
+
transcript_parts = []
|
214 |
+
for i, chunk in enumerate(chunks[:20]): # Limit to first 10 minutes
|
215 |
+
chunk_file = Path(temp_dir) / f"chunk_{i}.wav"
|
216 |
+
chunk.export(chunk_file, format="wav")
|
217 |
+
|
218 |
+
try:
|
219 |
+
with sr.AudioFile(str(chunk_file)) as source:
|
220 |
+
audio_data = r.record(source)
|
221 |
+
text = r.recognize_google(audio_data)
|
222 |
+
transcript_parts.append(text)
|
223 |
+
except sr.UnknownValueError:
|
224 |
+
transcript_parts.append("[Unintelligible audio]")
|
225 |
+
except sr.RequestError as e:
|
226 |
+
transcript_parts.append(f"[Speech recognition error: {e}]")
|
227 |
+
|
228 |
+
transcript = " ".join(transcript_parts)
|
229 |
+
return f"Audio file transcript:\n{transcript}"
|
230 |
+
|
231 |
+
except Exception as e:
|
232 |
+
print(f"Error processing audio file: {e}")
|
233 |
+
return f"Error processing audio file: {e}"
|
234 |
|
235 |
def web_search_func(query: str, cache_func) -> str:
|
236 |
"""Performs a web search using Tavily and returns a compilation of results."""
|
|
|
251 |
return "\n\n---\n\n".join([f"Source: {d.metadata['source']}\nPublished: {d.metadata['Published']}\nTitle: {d.metadata['Title']}\n\nSummary:\n{d.page_content}" for d in docs])
|
252 |
|
253 |
# ----------------------------------------------------------
|
254 |
+
# Section 3: DYNAMIC SYSTEM PROMPT
|
255 |
# ----------------------------------------------------------
|
|
|
256 |
SYSTEM_PROMPT_TEMPLATE = (
|
257 |
+
"""You are an expert-level multimodal research assistant. Your goal is to answer the user's question accurately using all available tools.
|
258 |
|
259 |
**CRITICAL INSTRUCTIONS:**
|
260 |
+
1. **USE YOUR TOOLS:** You have been given a set of tools to find information. You MUST use them when the answer is not immediately known to you. Do not make up answers.
|
261 |
+
2. **MULTIMODAL PROCESSING:** When you encounter URLs or attachments:
|
262 |
+
- For image URLs (jpg, png, gif, etc.): Use the `describe_image` tool
|
263 |
+
- For YouTube URLs: Use the `process_youtube_video` tool
|
264 |
+
- For audio files (mp3, wav, etc.): Use the `process_audio_file` tool
|
265 |
+
- For other content: Use appropriate search tools
|
266 |
+
3. **AVAILABLE TOOLS:** Here is the exact list of tools you have access to:
|
267 |
{tools}
|
268 |
+
4. **REASONING:** Think step-by-step. First, analyze the user's question and any attachments. Second, decide which tools are appropriate. Third, call the tools with correct parameters. Finally, synthesize the results.
|
269 |
+
5. **URL DETECTION:** Look for URLs in the user's message, especially in brackets like [Attachment URL: ...]. Process these appropriately.
|
270 |
+
6. **FINAL ANSWER FORMAT:** Your final response MUST strictly follow this format:
|
271 |
+
`FINAL ANSWER: [Your comprehensive answer incorporating all tool results]`
|
272 |
"""
|
273 |
)
|
274 |
|
275 |
# ----------------------------------------------------------
|
276 |
+
# Section 4: Factory Function for Agent Executor
|
277 |
# ----------------------------------------------------------
|
278 |
def create_agent_executor(provider: str = "groq"):
|
279 |
"""
|
280 |
Factory function to create and compile the LangGraph agent executor.
|
|
|
281 |
"""
|
282 |
print(f"Initializing agent with provider: {provider}")
|
283 |
|
284 |
+
# Step 1: Build LLMs - Use Google for vision capabilities
|
285 |
+
if provider == "google":
|
286 |
+
main_llm = ChatGoogleGenerativeAI(model="gemini-1.5-pro-latest", temperature=0)
|
287 |
+
vision_llm = ChatGoogleGenerativeAI(model="gemini-1.5-pro-latest", temperature=0)
|
288 |
+
elif provider == "groq":
|
289 |
+
main_llm = ChatGroq(model_name="meta-llama/llama-4-maverick-17b-128e-instruct", temperature=0)
|
290 |
+
# Use Google for vision since Groq's vision support may be limited
|
291 |
+
main_llm = ChatGroq(model_name="meta-llama/llama-4-maverick-17b-128e-instruct", temperature=0)
|
292 |
+
elif provider == "huggingface":
|
293 |
+
main_llm = ChatHuggingFace(llm=HuggingFaceEndpoint(repo_id="mistralai/Mixtral-8x7B-Instruct-v0.1", temperature=0.1))
|
294 |
+
vision_llm = ChatGoogleGenerativeAI(model="gemini-1.5-pro-latest", temperature=0)
|
295 |
+
else:
|
296 |
+
raise ValueError("Invalid provider selected")
|
297 |
|
298 |
+
# Step 2: Build Retriever
|
299 |
embeddings = HuggingFaceEmbeddings(model_name=EMBED_MODEL)
|
300 |
if FAISS_CACHE.exists():
|
301 |
with open(FAISS_CACHE, "rb") as f: vector_store = pickle.load(f)
|
302 |
else:
|
303 |
+
if JSONL_PATH.exists():
|
304 |
+
docs = [Document(page_content=f"Question: {rec['Question']}\n\nFinal answer: {rec['Final answer']}", metadata={"source": rec["task_id"]}) for rec in (json.loads(line) for line in open(JSONL_PATH, "rt", encoding="utf-8"))]
|
305 |
+
vector_store = FAISS.from_documents(docs, embeddings)
|
306 |
+
with open(FAISS_CACHE, "wb") as f: pickle.dump(vector_store, f)
|
307 |
+
else:
|
308 |
+
# Create empty vector store if no metadata file exists
|
309 |
+
docs = [Document(page_content="Sample document", metadata={"source": "sample"})]
|
310 |
+
vector_store = FAISS.from_documents(docs, embeddings)
|
311 |
+
|
312 |
retriever = vector_store.as_retriever(search_kwargs={"k": RETRIEVER_K})
|
313 |
|
314 |
+
# Step 3: Create the final list of tools
|
315 |
tools_list = [
|
316 |
python_repl,
|
317 |
+
Tool(name="describe_image", func=functools.partial(describe_image_func, vision_llm_instance=vision_llm), description="Describes an image from a local file path or a URL. Use this for any image files or image URLs."),
|
318 |
+
process_youtube_video,
|
319 |
+
process_audio_file,
|
320 |
Tool(name="web_search", func=functools.partial(web_search_func, cache_func=cached_get), description="Performs a web search using Tavily."),
|
321 |
Tool(name="wiki_search", func=functools.partial(wiki_search_func, cache_func=cached_get), description="Searches Wikipedia."),
|
322 |
Tool(name="arxiv_search", func=functools.partial(arxiv_search_func, cache_func=cached_get), description="Searches Arxiv for scientific papers."),
|
323 |
create_retriever_tool(retriever=retriever, name="retrieve_examples", description="Retrieve solved questions similar to the user's query."),
|
324 |
]
|
325 |
|
326 |
+
# Step 4: Format the tool list into a string for the prompt
|
|
|
327 |
tool_definitions = "\n".join([f"- `{tool.name}`: {tool.description}" for tool in tools_list])
|
|
|
|
|
328 |
final_system_prompt = SYSTEM_PROMPT_TEMPLATE.format(tools=tool_definitions)
|
|
|
329 |
|
330 |
llm_with_tools = main_llm.bind_tools(tools_list)
|
331 |
|
332 |
+
# Step 5: Define Graph Nodes
|
333 |
def retriever_node(state: MessagesState):
|
334 |
user_query = state["messages"][-1].content
|
335 |
docs = retriever.invoke(user_query)
|
|
|
336 |
messages = [SystemMessage(content=final_system_prompt)]
|
337 |
if docs:
|
338 |
example_text = "\n\n---\n\n".join(d.page_content for d in docs)
|
|
|
344 |
result = llm_with_tools.invoke(state["messages"])
|
345 |
return {"messages": [result]}
|
346 |
|
347 |
+
# Step 6: Build Graph
|
348 |
builder = StateGraph(MessagesState)
|
349 |
builder.add_node("retriever", retriever_node)
|
350 |
builder.add_node("assistant", assistant_node)
|
|
|
357 |
|
358 |
agent_executor = builder.compile()
|
359 |
print("Agent Executor created successfully.")
|
360 |
+
return agent_executor
|
|
|
|
|
|