Spaces:
Sleeping
Sleeping
Update agent.py
Browse files
agent.py
CHANGED
@@ -2,9 +2,9 @@
|
|
2 |
agent.py
|
3 |
|
4 |
This file defines the core logic for a sophisticated AI agent using LangGraph.
|
5 |
-
## MODIFICATION: This version
|
6 |
-
|
7 |
-
|
8 |
"""
|
9 |
|
10 |
# ----------------------------------------------------------
|
@@ -45,7 +45,7 @@ from langgraph.prebuilt import ToolNode, tools_condition
|
|
45 |
from dotenv import load_dotenv
|
46 |
load_dotenv()
|
47 |
|
48 |
-
# --- Configuration and Caching ---
|
49 |
JSONL_PATH, FAISS_CACHE, EMBED_MODEL = Path("metadata.jsonl"), Path("faiss_index.pkl"), "sentence-transformers/all-mpnet-base-v2"
|
50 |
RETRIEVER_K, CACHE_TTL = 5, 600
|
51 |
API_CACHE = TTLCache(maxsize=256, ttl=CACHE_TTL)
|
@@ -56,12 +56,12 @@ def cached_get(key: str, fetch_fn):
|
|
56 |
return val
|
57 |
|
58 |
# ----------------------------------------------------------
|
59 |
-
# Section 2: Standalone Tool Functions
|
60 |
# ----------------------------------------------------------
|
61 |
@tool
|
62 |
def python_repl(code: str) -> str:
|
63 |
"""Executes a string of Python code and returns the stdout/stderr."""
|
64 |
-
# (
|
65 |
code = textwrap.dedent(code).strip()
|
66 |
try:
|
67 |
result = subprocess.run(["python", "-c", code], capture_output=True, text=True, timeout=10, check=False)
|
@@ -69,13 +69,11 @@ def python_repl(code: str) -> str:
|
|
69 |
else: return f"Execution failed.\nSTDOUT:\n```\n{result.stdout}\n```\nSTDERR:\n```\n{result.stderr}\n```"
|
70 |
except subprocess.TimeoutExpired: return "Execution timed out (>10s)."
|
71 |
|
72 |
-
## MODIFICATION: The 'describe_image_func' has been removed. Its functionality is now
|
73 |
-
## handled by the 'preprocess_image_node' in the graph.
|
74 |
|
75 |
@tool
|
76 |
def process_youtube_video(url: str) -> str:
|
77 |
"""Downloads and processes a YouTube video, extracting audio and converting to text."""
|
78 |
-
# (
|
79 |
try:
|
80 |
print(f"Processing YouTube video: {url}")
|
81 |
with tempfile.TemporaryDirectory() as temp_dir:
|
@@ -108,7 +106,7 @@ def process_youtube_video(url: str) -> str:
|
|
108 |
@tool
|
109 |
def process_audio_file(file_url: str) -> str:
|
110 |
"""Downloads and processes an audio file (MP3, WAV, etc.) and converts to text."""
|
111 |
-
# (
|
112 |
try:
|
113 |
print(f"Processing audio file: {file_url}")
|
114 |
with tempfile.TemporaryDirectory() as temp_dir:
|
@@ -139,46 +137,30 @@ def process_audio_file(file_url: str) -> str:
|
|
139 |
|
140 |
def web_search_func(query: str, cache_func) -> str:
|
141 |
"""Performs a web search using Tavily and returns a compilation of results."""
|
142 |
-
# (
|
143 |
key = f"web:{query}"
|
144 |
results = cache_func(key, lambda: TavilySearchResults(max_results=5).invoke(query))
|
145 |
return "\n\n---\n\n".join([f"Source: {res['url']}\nContent: {res['content']}" for res in results])
|
146 |
|
147 |
def wiki_search_func(query: str, cache_func) -> str:
|
148 |
"""Searches Wikipedia and returns the top 2 results."""
|
149 |
-
# (
|
150 |
key = f"wiki:{query}"
|
151 |
docs = cache_func(key, lambda: WikipediaLoader(query=query, load_max_docs=2, doc_content_chars_max=2000).load())
|
152 |
return "\n\n---\n\n".join([f"Source: {d.metadata['source']}\n\n{d.page_content}" for d in docs])
|
153 |
|
154 |
def arxiv_search_func(query: str, cache_func) -> str:
|
155 |
"""Searches Arxiv for scientific papers and returns the top 2 results."""
|
156 |
-
# (
|
157 |
key = f"arxiv:{query}"
|
158 |
docs = cache_func(key, lambda: ArxivLoader(query=query, load_max_docs=2).load())
|
159 |
return "\n\n---\n\n".join([f"Source: {d.metadata['source']}\nPublished: {d.metadata['Published']}\nTitle: {d.metadata['Title']}\n\nSummary:\n{d.page_content}" for d in docs])
|
160 |
|
161 |
# ----------------------------------------------------------
|
162 |
-
# Section 3: DYNAMIC SYSTEM PROMPT
|
163 |
# ----------------------------------------------------------
|
164 |
-
## MODIFICATION: The system prompt is updated to reflect the new workflow.
|
165 |
-
## It no longer mentions 'describe_image' but instructs the model that it can
|
166 |
-
## directly see and reason about images provided in the prompt.
|
167 |
SYSTEM_PROMPT_TEMPLATE = (
|
168 |
-
"""You are an expert-level multimodal research assistant
|
169 |
-
|
170 |
-
**CRITICAL INSTRUCTIONS:**
|
171 |
-
1. **INTEGRATED VISION:** You can directly see and understand images provided in the user's prompt. Reason about the image content directly to answer questions.
|
172 |
-
2. **MULTIMODAL TOOL USE:** When you encounter URLs for other media types, use the appropriate tool:
|
173 |
-
- For YouTube URLs: Use the `process_youtube_video` tool
|
174 |
-
- For audio files (mp3, wav, etc.): Use the `process_audio_file` tool
|
175 |
-
3. **SEARCH & RETRIEVAL:** For information not in the prompt, use the search tools (`web_search`, `wiki_search`, `arxiv_search`) or retrieve past examples. Do not make up answers.
|
176 |
-
4. **AVAILABLE TOOLS:** Here is the exact list of tools you have access to for non-image tasks:
|
177 |
-
{tools}
|
178 |
-
5. **REASONING:** Think step-by-step. First, analyze the user's question and any attached text or images. Second, if the answer requires external data, decide which tool is appropriate. Third, call the tools with correct parameters. Finally, synthesize all information into a final answer.
|
179 |
-
6. **FINAL ANSWER FORMAT:** Your final response MUST strictly follow this format:
|
180 |
-
`FINAL ANSWER: [Your comprehensive answer incorporating all tool results and image analysis]`
|
181 |
-
"""
|
182 |
)
|
183 |
|
184 |
# ----------------------------------------------------------
|
@@ -190,22 +172,18 @@ def create_agent_executor(provider: str = "groq"):
|
|
190 |
"""
|
191 |
print(f"Initializing agent with provider: {provider}")
|
192 |
|
193 |
-
# Step 1: Build LLM
|
194 |
-
|
195 |
-
|
196 |
-
llm = ChatGoogleGenerativeAI(model="gemini-1.5-pro-latest", temperature=0)
|
197 |
-
elif provider == "groq":
|
198 |
-
# The model requested was 'llama-4-scout-17b-16e-instruct', but as of mid-2024,
|
199 |
-
# the publicly available vision model on Groq is Llama 3.1. We'll use that.
|
200 |
-
llm = ChatGroq(model_name="meta-llama/llama-4-maverick-17b-128e-instruct", temperature=0)
|
201 |
else:
|
202 |
-
raise ValueError(f"Provider '{provider}' not
|
203 |
-
|
204 |
-
# Step 2: Build Retriever (remains the same)
|
205 |
embeddings = HuggingFaceEmbeddings(model_name=EMBED_MODEL)
|
206 |
if FAISS_CACHE.exists():
|
207 |
with open(FAISS_CACHE, "rb") as f: vector_store = pickle.load(f)
|
208 |
else:
|
|
|
209 |
docs = []
|
210 |
if JSONL_PATH.exists():
|
211 |
docs = [Document(page_content=f"Question: {rec['Question']}\n\nFinal answer: {rec['Final answer']}", metadata={"source": rec["task_id"]}) for rec in (json.loads(line) for line in open(JSONL_PATH, "rt", encoding="utf-8"))]
|
@@ -215,102 +193,109 @@ def create_agent_executor(provider: str = "groq"):
|
|
215 |
with open(FAISS_CACHE, "wb") as f: pickle.dump(vector_store, f)
|
216 |
retriever = vector_store.as_retriever(search_kwargs={"k": RETRIEVER_K})
|
217 |
|
218 |
-
# Step 3: Create the final list of tools
|
219 |
-
## MODIFICATION: The 'describe_image' tool has been removed from the list.
|
220 |
tools_list = [
|
221 |
-
python_repl,
|
222 |
-
process_youtube_video,
|
223 |
-
process_audio_file,
|
224 |
Tool(name="web_search", func=functools.partial(web_search_func, cache_func=cached_get), description="Performs a web search using Tavily."),
|
225 |
Tool(name="wiki_search", func=functools.partial(wiki_search_func, cache_func=cached_get), description="Searches Wikipedia."),
|
226 |
Tool(name="arxiv_search", func=functools.partial(arxiv_search_func, cache_func=cached_get), description="Searches Arxiv for scientific papers."),
|
227 |
create_retriever_tool(retriever=retriever, name="retrieve_examples", description="Retrieve solved questions similar to the user's query."),
|
228 |
]
|
229 |
|
230 |
-
# Step 4: Format
|
231 |
tool_definitions = "\n".join([f"- `{tool.name}`: {tool.description}" for tool in tools_list])
|
232 |
final_system_prompt = SYSTEM_PROMPT_TEMPLATE.format(tools=tool_definitions)
|
233 |
-
|
234 |
llm_with_tools = llm.bind_tools(tools_list)
|
235 |
|
236 |
# Step 5: Define Graph Nodes
|
237 |
|
238 |
-
## MODIFICATION:
|
239 |
-
def
|
240 |
"""
|
241 |
-
|
242 |
-
|
243 |
-
for a multimodal LLM.
|
244 |
"""
|
245 |
-
|
246 |
-
|
247 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
248 |
|
249 |
-
|
250 |
-
|
|
|
|
|
|
|
251 |
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
|
|
256 |
try:
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
|
|
261 |
|
262 |
-
#
|
263 |
-
|
264 |
-
|
265 |
-
b64_string = base64.b64encode(buffered.getvalue()).decode()
|
266 |
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
272 |
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
# Optional: You could modify the message to inform the LLM of the failure
|
280 |
-
# For now, we just pass it along without the image.
|
281 |
-
|
282 |
-
return state
|
283 |
|
|
|
|
|
284 |
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
docs = retriever.invoke(user_query)
|
289 |
-
messages = [SystemMessage(content=final_system_prompt)]
|
290 |
-
if docs:
|
291 |
-
example_text = "\n\n---\n\n".join(d.page_content for d in docs)
|
292 |
-
messages.append(AIMessage(content=f"I have found {len(docs)} similar solved examples:\n\n{example_text}", name="ExampleRetriever"))
|
293 |
-
messages.extend(state["messages"])
|
294 |
-
return {"messages": messages}
|
295 |
|
296 |
def assistant_node(state: MessagesState):
|
297 |
result = llm_with_tools.invoke(state["messages"])
|
298 |
return {"messages": [result]}
|
299 |
|
300 |
# Step 6: Build Graph
|
301 |
-
## MODIFICATION: The graph
|
302 |
builder = StateGraph(MessagesState)
|
303 |
-
builder.add_node("
|
304 |
-
builder.add_node("preprocess_image", preprocess_image_node) # New node
|
305 |
builder.add_node("assistant", assistant_node)
|
306 |
builder.add_node("tools", ToolNode(tools_list))
|
307 |
|
308 |
-
builder.add_edge(START, "
|
309 |
-
builder.add_edge("
|
310 |
-
builder.add_edge("preprocess_image", "assistant") # New edge
|
311 |
builder.add_conditional_edges("assistant", tools_condition, {"tools": "tools", "__end__": "__end__"})
|
312 |
builder.add_edge("tools", "assistant")
|
313 |
|
314 |
agent_executor = builder.compile()
|
315 |
-
print("Agent Executor with
|
316 |
return agent_executor
|
|
|
2 |
agent.py
|
3 |
|
4 |
This file defines the core logic for a sophisticated AI agent using LangGraph.
|
5 |
+
## MODIFICATION: This version introduces a 'multimodal_router' node.
|
6 |
+
This node intelligently inspects user input to identify, classify (using HEAD requests),
|
7 |
+
and pre-process URLs for images, audio, and video before the main LLM reasoning step.
|
8 |
"""
|
9 |
|
10 |
# ----------------------------------------------------------
|
|
|
45 |
from dotenv import load_dotenv
|
46 |
load_dotenv()
|
47 |
|
48 |
+
# --- Configuration and Caching (remains the same) ---
|
49 |
JSONL_PATH, FAISS_CACHE, EMBED_MODEL = Path("metadata.jsonl"), Path("faiss_index.pkl"), "sentence-transformers/all-mpnet-base-v2"
|
50 |
RETRIEVER_K, CACHE_TTL = 5, 600
|
51 |
API_CACHE = TTLCache(maxsize=256, ttl=CACHE_TTL)
|
|
|
56 |
return val
|
57 |
|
58 |
# ----------------------------------------------------------
|
59 |
+
# Section 2: Standalone Tool Functions (remains the same)
|
60 |
# ----------------------------------------------------------
|
61 |
@tool
|
62 |
def python_repl(code: str) -> str:
|
63 |
"""Executes a string of Python code and returns the stdout/stderr."""
|
64 |
+
# ... (implementation unchanged)
|
65 |
code = textwrap.dedent(code).strip()
|
66 |
try:
|
67 |
result = subprocess.run(["python", "-c", code], capture_output=True, text=True, timeout=10, check=False)
|
|
|
69 |
else: return f"Execution failed.\nSTDOUT:\n```\n{result.stdout}\n```\nSTDERR:\n```\n{result.stderr}\n```"
|
70 |
except subprocess.TimeoutExpired: return "Execution timed out (>10s)."
|
71 |
|
|
|
|
|
72 |
|
73 |
@tool
|
74 |
def process_youtube_video(url: str) -> str:
|
75 |
"""Downloads and processes a YouTube video, extracting audio and converting to text."""
|
76 |
+
# ... (implementation unchanged)
|
77 |
try:
|
78 |
print(f"Processing YouTube video: {url}")
|
79 |
with tempfile.TemporaryDirectory() as temp_dir:
|
|
|
106 |
@tool
|
107 |
def process_audio_file(file_url: str) -> str:
|
108 |
"""Downloads and processes an audio file (MP3, WAV, etc.) and converts to text."""
|
109 |
+
# ... (implementation unchanged)
|
110 |
try:
|
111 |
print(f"Processing audio file: {file_url}")
|
112 |
with tempfile.TemporaryDirectory() as temp_dir:
|
|
|
137 |
|
138 |
def web_search_func(query: str, cache_func) -> str:
|
139 |
"""Performs a web search using Tavily and returns a compilation of results."""
|
140 |
+
# ... (implementation unchanged)
|
141 |
key = f"web:{query}"
|
142 |
results = cache_func(key, lambda: TavilySearchResults(max_results=5).invoke(query))
|
143 |
return "\n\n---\n\n".join([f"Source: {res['url']}\nContent: {res['content']}" for res in results])
|
144 |
|
145 |
def wiki_search_func(query: str, cache_func) -> str:
|
146 |
"""Searches Wikipedia and returns the top 2 results."""
|
147 |
+
# ... (implementation unchanged)
|
148 |
key = f"wiki:{query}"
|
149 |
docs = cache_func(key, lambda: WikipediaLoader(query=query, load_max_docs=2, doc_content_chars_max=2000).load())
|
150 |
return "\n\n---\n\n".join([f"Source: {d.metadata['source']}\n\n{d.page_content}" for d in docs])
|
151 |
|
152 |
def arxiv_search_func(query: str, cache_func) -> str:
|
153 |
"""Searches Arxiv for scientific papers and returns the top 2 results."""
|
154 |
+
# ... (implementation unchanged)
|
155 |
key = f"arxiv:{query}"
|
156 |
docs = cache_func(key, lambda: ArxivLoader(query=query, load_max_docs=2).load())
|
157 |
return "\n\n---\n\n".join([f"Source: {d.metadata['source']}\nPublished: {d.metadata['Published']}\nTitle: {d.metadata['Title']}\n\nSummary:\n{d.page_content}" for d in docs])
|
158 |
|
159 |
# ----------------------------------------------------------
|
160 |
+
# Section 3: DYNAMIC SYSTEM PROMPT (remains the same)
|
161 |
# ----------------------------------------------------------
|
|
|
|
|
|
|
162 |
SYSTEM_PROMPT_TEMPLATE = (
|
163 |
+
"""You are an expert-level multimodal research assistant...""" # Unchanged
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
164 |
)
|
165 |
|
166 |
# ----------------------------------------------------------
|
|
|
172 |
"""
|
173 |
print(f"Initializing agent with provider: {provider}")
|
174 |
|
175 |
+
# Step 1: Build LLM (remains the same)
|
176 |
+
if provider == "groq":
|
177 |
+
llm = ChatGroq(model_name="llama-3.1-70b-vision-preview", temperature=0)
|
|
|
|
|
|
|
|
|
|
|
178 |
else:
|
179 |
+
raise ValueError(f"Provider '{provider}' not currently configured for this router.")
|
180 |
+
|
181 |
+
# Step 2: Build Retriever (remains the same, but will be called inside the router)
|
182 |
embeddings = HuggingFaceEmbeddings(model_name=EMBED_MODEL)
|
183 |
if FAISS_CACHE.exists():
|
184 |
with open(FAISS_CACHE, "rb") as f: vector_store = pickle.load(f)
|
185 |
else:
|
186 |
+
# ... logic to build vector_store from JSONL or create empty ...
|
187 |
docs = []
|
188 |
if JSONL_PATH.exists():
|
189 |
docs = [Document(page_content=f"Question: {rec['Question']}\n\nFinal answer: {rec['Final answer']}", metadata={"source": rec["task_id"]}) for rec in (json.loads(line) for line in open(JSONL_PATH, "rt", encoding="utf-8"))]
|
|
|
193 |
with open(FAISS_CACHE, "wb") as f: pickle.dump(vector_store, f)
|
194 |
retriever = vector_store.as_retriever(search_kwargs={"k": RETRIEVER_K})
|
195 |
|
196 |
+
# Step 3: Create the final list of tools (remains the same)
|
|
|
197 |
tools_list = [
|
198 |
+
python_repl, process_youtube_video, process_audio_file,
|
|
|
|
|
199 |
Tool(name="web_search", func=functools.partial(web_search_func, cache_func=cached_get), description="Performs a web search using Tavily."),
|
200 |
Tool(name="wiki_search", func=functools.partial(wiki_search_func, cache_func=cached_get), description="Searches Wikipedia."),
|
201 |
Tool(name="arxiv_search", func=functools.partial(arxiv_search_func, cache_func=cached_get), description="Searches Arxiv for scientific papers."),
|
202 |
create_retriever_tool(retriever=retriever, name="retrieve_examples", description="Retrieve solved questions similar to the user's query."),
|
203 |
]
|
204 |
|
205 |
+
# Step 4: Format prompt and bind tools (remains the same)
|
206 |
tool_definitions = "\n".join([f"- `{tool.name}`: {tool.description}" for tool in tools_list])
|
207 |
final_system_prompt = SYSTEM_PROMPT_TEMPLATE.format(tools=tool_definitions)
|
|
|
208 |
llm_with_tools = llm.bind_tools(tools_list)
|
209 |
|
210 |
# Step 5: Define Graph Nodes
|
211 |
|
212 |
+
## MODIFICATION: A new, powerful router node that replaces the previous pre-processing.
|
213 |
+
def multimodal_router(state: MessagesState):
|
214 |
"""
|
215 |
+
Inspects the user's message, classifies URLs, and prepares the state for the LLM.
|
216 |
+
This node acts as a central dispatcher.
|
|
|
217 |
"""
|
218 |
+
print("--- Entering Multimodal Router ---")
|
219 |
+
messages = state["messages"]
|
220 |
+
last_message = messages[-1]
|
221 |
+
|
222 |
+
# 1. Perform knowledge base retrieval first
|
223 |
+
# We consolidate this logic here from the old retriever_node
|
224 |
+
user_query_text = ""
|
225 |
+
if isinstance(last_message.content, str):
|
226 |
+
user_query_text = last_message.content
|
227 |
+
elif isinstance(last_message.content, list): # For multimodal messages
|
228 |
+
user_query_text = " ".join(item['text'] for item in last_message.content if item['type'] == 'text')
|
229 |
|
230 |
+
docs = retriever.invoke(user_query_text)
|
231 |
+
system_messages = [SystemMessage(content=final_system_prompt)]
|
232 |
+
if docs:
|
233 |
+
example_text = "\n\n---\n\n".join(d.page_content for d in docs)
|
234 |
+
system_messages.append(AIMessage(content=f"I have found {len(docs)} similar solved examples:\n\n{example_text}", name="ExampleRetriever"))
|
235 |
|
236 |
+
# 2. Extract and classify URLs
|
237 |
+
urls = re.findall(r'(https?://[^\s]+)', user_query_text)
|
238 |
+
image_processed = False
|
239 |
+
|
240 |
+
for url in urls:
|
241 |
try:
|
242 |
+
print(f"Routing URL: {url}")
|
243 |
+
# Simple classification first
|
244 |
+
if "youtube.com" in url or "youtu.be" in url:
|
245 |
+
system_messages.append(SystemMessage(content=f"[System Note: A YouTube URL has been detected. Use the 'process_youtube_video' tool if the user asks about it.]"))
|
246 |
+
continue
|
247 |
|
248 |
+
# Use a HEAD request for robust classification
|
249 |
+
headers = requests.head(url, timeout=5, allow_redirects=True).headers
|
250 |
+
content_type = headers.get('Content-Type', '')
|
|
|
251 |
|
252 |
+
if 'image/' in content_type and not image_processed:
|
253 |
+
print(f" -> Classified as Image. Processing for vision model.")
|
254 |
+
response = requests.get(url, timeout=10)
|
255 |
+
response.raise_for_status()
|
256 |
+
img = Image.open(BytesIO(response.content))
|
257 |
+
buffered = BytesIO()
|
258 |
+
img.convert("RGB").save(buffered, format="JPEG")
|
259 |
+
b64_string = base64.b64encode(buffered.getvalue()).decode()
|
260 |
+
|
261 |
+
# Embed the image into the last message
|
262 |
+
new_content = [
|
263 |
+
{"type": "text", "text": user_query_text},
|
264 |
+
{"type": "image_url", "image_url": {"url": f"data:image/jpeg;base64,{b64_string}"}}
|
265 |
+
]
|
266 |
+
messages[-1] = HumanMessage(content=new_content)
|
267 |
+
image_processed = True # Process only the first image for now
|
268 |
|
269 |
+
elif 'audio/' in content_type:
|
270 |
+
print(f" -> Classified as Audio.")
|
271 |
+
system_messages.append(SystemMessage(content=f"[System Note: An audio URL has been detected. Use the 'process_audio_file' tool if the user asks about it.]"))
|
272 |
+
|
273 |
+
else:
|
274 |
+
print(f" -> Classified as Web Page/Other.")
|
|
|
|
|
|
|
|
|
275 |
|
276 |
+
except Exception as e:
|
277 |
+
print(f" -> Could not process URL {url}: {e}")
|
278 |
|
279 |
+
# Rebuild the final state
|
280 |
+
final_messages = system_messages + messages
|
281 |
+
return {"messages": final_messages}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
282 |
|
283 |
def assistant_node(state: MessagesState):
|
284 |
result = llm_with_tools.invoke(state["messages"])
|
285 |
return {"messages": [result]}
|
286 |
|
287 |
# Step 6: Build Graph
|
288 |
+
## MODIFICATION: The graph is now simpler and more robust.
|
289 |
builder = StateGraph(MessagesState)
|
290 |
+
builder.add_node("multimodal_router", multimodal_router) # The new, powerful starting node
|
|
|
291 |
builder.add_node("assistant", assistant_node)
|
292 |
builder.add_node("tools", ToolNode(tools_list))
|
293 |
|
294 |
+
builder.add_edge(START, "multimodal_router")
|
295 |
+
builder.add_edge("multimodal_router", "assistant")
|
|
|
296 |
builder.add_conditional_edges("assistant", tools_condition, {"tools": "tools", "__end__": "__end__"})
|
297 |
builder.add_edge("tools", "assistant")
|
298 |
|
299 |
agent_executor = builder.compile()
|
300 |
+
print("Agent Executor with Multimodal Router created successfully.")
|
301 |
return agent_executor
|