Spaces:
Sleeping
Sleeping
Update agent.py
Browse files
agent.py
CHANGED
@@ -8,10 +8,9 @@ import re
|
|
8 |
import subprocess
|
9 |
import textwrap
|
10 |
import base64
|
11 |
-
|
12 |
from io import BytesIO
|
13 |
from pathlib import Path
|
14 |
-
from typing import List
|
15 |
|
16 |
# Third-party libraries
|
17 |
import requests
|
@@ -23,9 +22,9 @@ from langchain.schema import Document
|
|
23 |
from langchain.tools.retriever import create_retriever_tool
|
24 |
from langchain_community.vectorstores import FAISS
|
25 |
from langchain_community.tools.tavily_search import TavilySearchResults
|
26 |
-
from langchain_community.document_loaders import WikipediaLoader, ArxivLoader
|
27 |
from langchain_core.messages import SystemMessage, HumanMessage, AIMessage
|
28 |
-
from langchain_core.tools import tool
|
29 |
from langchain_google_genai import ChatGoogleGenerativeAI
|
30 |
from langchain_groq import ChatGroq
|
31 |
from langchain_huggingface import HuggingFaceEmbeddings, HuggingFaceEndpoint, ChatHuggingFace
|
@@ -42,185 +41,143 @@ load_dotenv()
|
|
42 |
JSONL_PATH = Path("metadata.jsonl")
|
43 |
FAISS_CACHE = Path("faiss_index.pkl")
|
44 |
EMBED_MODEL = "sentence-transformers/all-mpnet-base-v2"
|
45 |
-
RETRIEVER_K = 5
|
46 |
-
CACHE_TTL = 600
|
47 |
-
# Global cache object for API calls
|
48 |
API_CACHE = TTLCache(maxsize=256, ttl=CACHE_TTL)
|
49 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
# ----------------------------------------------------------
|
51 |
-
# Section 2:
|
52 |
# ----------------------------------------------------------
|
53 |
-
class MyAgent:
|
54 |
-
"""
|
55 |
-
Encapsulates the agent's state, including LLMs, retriever, and tools.
|
56 |
-
This class-based approach ensures clean management of dependencies.
|
57 |
-
"""
|
58 |
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
"""
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
if key in API_CACHE: return API_CACHE[key]
|
101 |
-
val = fetch_fn()
|
102 |
-
API_CACHE[key] = val
|
103 |
-
return val
|
104 |
-
|
105 |
-
# --- Tool Definitions as Class Methods ---
|
106 |
-
|
107 |
-
@tool
|
108 |
-
def python_repl(self, code: str) -> str:
|
109 |
-
"""Executes a string of Python code and returns the stdout/stderr."""
|
110 |
-
code = textwrap.dedent(code).strip()
|
111 |
-
try:
|
112 |
-
result = subprocess.run(["python", "-c", code], capture_output=True, text=True, timeout=10, check=False)
|
113 |
-
if result.returncode == 0: return f"Execution successful.\nSTDOUT:\n```\n{result.stdout}\n```"
|
114 |
-
else: return f"Execution failed.\nSTDOUT:\n```\n{result.stdout}\n```\nSTDERR:\n```\n{result.stderr}\n```"
|
115 |
-
except subprocess.TimeoutExpired: return "Execution timed out (>10s)."
|
116 |
-
|
117 |
-
@tool
|
118 |
-
def describe_image(self, image_source: str) -> str:
|
119 |
-
"""Describes an image from a local file path or a URL using Gemini vision."""
|
120 |
-
try:
|
121 |
-
if image_source.startswith("http"):
|
122 |
-
img = Image.open(BytesIO(requests.get(image_source, timeout=10).content))
|
123 |
-
else:
|
124 |
-
img = Image.open(image_source)
|
125 |
-
buffered = BytesIO()
|
126 |
-
img.convert("RGB").save(buffered, format="JPEG")
|
127 |
-
b64_string = base64.b64encode(buffered.getvalue()).decode()
|
128 |
-
msg = HumanMessage(content=[{"type": "text", "text": "Describe this image in detail."}, {"type": "image_url", "image_url": {"url": f"data:image/jpeg;base64,{b64_string}"}}])
|
129 |
-
return self.vision_llm.invoke([msg]).content
|
130 |
-
except Exception as e: return f"Error processing image: {e}"
|
131 |
-
|
132 |
-
@tool
|
133 |
-
def web_search(self, query: str) -> str:
|
134 |
-
"""Performs a web search using Tavily and returns a compilation of results."""
|
135 |
-
key = f"web:{query}"
|
136 |
-
results = self._cached_get(key, lambda: TavilySearchResults(max_results=5).invoke(query))
|
137 |
-
return "\n\n---\n\n".join([f"Source: {res['url']}\nContent: {res['content']}" for res in results])
|
138 |
-
|
139 |
-
@tool
|
140 |
-
def wiki_search(self, query: str) -> str:
|
141 |
-
"""Searches Wikipedia and returns the top 2 results."""
|
142 |
-
key = f"wiki:{query}"
|
143 |
-
docs = self._cached_get(key, lambda: WikipediaLoader(query=query, load_max_docs=2, doc_content_chars_max=2000).load())
|
144 |
-
return "\n\n---\n\n".join([f"Source: {d.metadata['source']}\n\n{d.page_content}" for d in docs])
|
145 |
-
|
146 |
-
@tool
|
147 |
-
def arxiv_search(self, query: str) -> str:
|
148 |
-
"""Searches Arxiv for scientific papers and returns the top 2 results."""
|
149 |
-
key = f"arxiv:{query}"
|
150 |
-
docs = self._cached_get(key, lambda: ArxivLoader(query=query, load_max_docs=2).load())
|
151 |
-
return "\n\n---\n\n".join([f"Source: {d.metadata['source']}\nPublished: {d.metadata['Published']}\nTitle: {d.metadata['Title']}\n\nSummary:\n{d.page_content}" for d in docs])
|
152 |
-
|
153 |
-
def get_tools(self) -> list:
|
154 |
-
"""Returns a list of all tools available to the agent."""
|
155 |
-
tools_list = [
|
156 |
-
self.python_repl,
|
157 |
-
self.describe_image,
|
158 |
-
self.web_search,
|
159 |
-
self.wiki_search,
|
160 |
-
self.arxiv_search,
|
161 |
-
]
|
162 |
-
retriever_tool = create_retriever_tool(
|
163 |
-
retriever=self.retriever,
|
164 |
-
name="retrieve_examples",
|
165 |
-
description="Retrieve solved questions and answers similar to the user's query.",
|
166 |
-
)
|
167 |
-
tools_list.append(retriever_tool)
|
168 |
-
return tools_list
|
169 |
|
170 |
# ----------------------------------------------------------
|
171 |
# Section 3: System Prompt
|
172 |
# ----------------------------------------------------------
|
173 |
-
|
174 |
SYSTEM_PROMPT = (
|
175 |
"""You are an expert-level research assistant designed to answer questions accurately.
|
176 |
|
177 |
**Your Reasoning Process:**
|
178 |
-
1. **Think Step-by-Step:**
|
179 |
-
2. **Use Your Tools:** Execute your plan by calling one tool at a time. Analyze the results
|
180 |
-
3. **Iterate
|
181 |
-
4. **Synthesize
|
182 |
|
183 |
**Output Format:**
|
184 |
-
- Your final response
|
185 |
`FINAL ANSWER: [Your concise and accurate answer here]`
|
186 |
|
187 |
**Crucial Instructions:**
|
188 |
-
- If
|
189 |
- In case of a limitation, your response should be:
|
190 |
`FINAL ANSWER: I am unable to answer this question because it requires a capability I do not possess, such as [describe the missing capability].`
|
191 |
-
|
192 |
-
**Example of handling a limitation:**
|
193 |
-
- User Question: "Please summarize the attached PDF."
|
194 |
-
- Your Response: `FINAL ANSWER: I am unable to answer this question because it requires a capability I do not possess, such as reading local PDF files.`
|
195 |
"""
|
196 |
)
|
197 |
|
198 |
# ----------------------------------------------------------
|
199 |
# Section 4: Factory Function for Agent Executor
|
200 |
# ----------------------------------------------------------
|
201 |
-
def create_agent_executor(provider: str = "
|
202 |
-
"""
|
203 |
-
|
204 |
-
|
205 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
206 |
|
|
|
207 |
def retriever_node(state: MessagesState):
|
208 |
-
"""First node: retrieves examples and prepends them to the message history."""
|
209 |
user_query = state["messages"][-1].content
|
210 |
-
docs =
|
211 |
messages = [SystemMessage(content=SYSTEM_PROMPT)]
|
212 |
if docs:
|
213 |
example_text = "\n\n---\n\n".join(d.page_content for d in docs)
|
214 |
-
|
215 |
-
messages.append(example_msg)
|
216 |
messages.extend(state["messages"])
|
217 |
return {"messages": messages}
|
218 |
|
219 |
def assistant_node(state: MessagesState):
|
220 |
-
"""Main assistant node: calls the LLM with the current state to decide the next action."""
|
221 |
result = llm_with_tools.invoke(state["messages"])
|
222 |
return {"messages": [result]}
|
223 |
|
|
|
224 |
builder = StateGraph(MessagesState)
|
225 |
builder.add_node("retriever", retriever_node)
|
226 |
builder.add_node("assistant", assistant_node)
|
@@ -236,10 +193,27 @@ def create_agent_executor(provider: str = "google"):
|
|
236 |
return agent_executor
|
237 |
|
238 |
# ----------------------------------------------------------
|
239 |
-
# Section 5: Direct Execution Block
|
240 |
# ----------------------------------------------------------
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
241 |
if __name__ == "__main__":
|
242 |
-
"""direct testing of the agent's logic."""
|
243 |
print("--- Running Agent in Test Mode ---")
|
244 |
agent = create_agent_executor(provider="google")
|
245 |
question = "According to wikipedia, what is the main difference between a lama and an alpaca?"
|
|
|
8 |
import subprocess
|
9 |
import textwrap
|
10 |
import base64
|
11 |
+
import functools # Used to pre-fill arguments for our tool functions
|
12 |
from io import BytesIO
|
13 |
from pathlib import Path
|
|
|
14 |
|
15 |
# Third-party libraries
|
16 |
import requests
|
|
|
22 |
from langchain.tools.retriever import create_retriever_tool
|
23 |
from langchain_community.vectorstores import FAISS
|
24 |
from langchain_community.tools.tavily_search import TavilySearchResults
|
25 |
+
from langchain_community.document_loaders import WikipediaLoader, ArxivLoader
|
26 |
from langchain_core.messages import SystemMessage, HumanMessage, AIMessage
|
27 |
+
from langchain_core.tools import Tool, tool # Import Tool for manual tool creation
|
28 |
from langchain_google_genai import ChatGoogleGenerativeAI
|
29 |
from langchain_groq import ChatGroq
|
30 |
from langchain_huggingface import HuggingFaceEmbeddings, HuggingFaceEndpoint, ChatHuggingFace
|
|
|
41 |
JSONL_PATH = Path("metadata.jsonl")
|
42 |
FAISS_CACHE = Path("faiss_index.pkl")
|
43 |
EMBED_MODEL = "sentence-transformers/all-mpnet-base-v2"
|
44 |
+
RETRIEVER_K = 5
|
45 |
+
CACHE_TTL = 600
|
|
|
46 |
API_CACHE = TTLCache(maxsize=256, ttl=CACHE_TTL)
|
47 |
|
48 |
+
# Global helper for caching API calls
|
49 |
+
def cached_get(key: str, fetch_fn):
|
50 |
+
if key in API_CACHE: return API_CACHE[key]
|
51 |
+
val = fetch_fn()
|
52 |
+
API_CACHE[key] = val
|
53 |
+
return val
|
54 |
+
|
55 |
# ----------------------------------------------------------
|
56 |
+
# Section 2: Standalone Tool Functions (No 'self' parameter)
|
57 |
# ----------------------------------------------------------
|
|
|
|
|
|
|
|
|
|
|
58 |
|
59 |
+
@tool
|
60 |
+
def python_repl(code: str) -> str:
|
61 |
+
"""Executes a string of Python code and returns the stdout/stderr."""
|
62 |
+
code = textwrap.dedent(code).strip()
|
63 |
+
try:
|
64 |
+
result = subprocess.run(["python", "-c", code], capture_output=True, text=True, timeout=10, check=False)
|
65 |
+
if result.returncode == 0: return f"Execution successful.\nSTDOUT:\n```\n{result.stdout}\n```"
|
66 |
+
else: return f"Execution failed.\nSTDOUT:\n```\n{result.stdout}\n```\nSTDERR:\n```\n{result.stderr}\n```"
|
67 |
+
except subprocess.TimeoutExpired: return "Execution timed out (>10s)."
|
68 |
+
|
69 |
+
# These functions now accept their dependencies (like an llm instance or a cache function) as arguments.
|
70 |
+
@tool
|
71 |
+
def describe_image_func(image_source: str, vision_llm_instance) -> str:
|
72 |
+
"""Describes an image from a local file path or a URL using a provided vision LLM."""
|
73 |
+
try:
|
74 |
+
if image_source.startswith("http"): img = Image.open(BytesIO(requests.get(image_source, timeout=10).content))
|
75 |
+
else: img = Image.open(image_source)
|
76 |
+
buffered = BytesIO()
|
77 |
+
img.convert("RGB").save(buffered, format="JPEG")
|
78 |
+
b64_string = base64.b64encode(buffered.getvalue()).decode()
|
79 |
+
msg = HumanMessage(content=[{"type": "text", "text": "Describe this image in detail."}, {"type": "image_url", "image_url": {"url": f"data:image/jpeg;base64,{b64_string}"}}])
|
80 |
+
return vision_llm_instance.invoke([msg]).content
|
81 |
+
except Exception as e: return f"Error processing image: {e}"
|
82 |
+
@tool
|
83 |
+
def web_search_func(query: str, cache_func) -> str:
|
84 |
+
"""Performs a web search using Tavily and returns a compilation of results."""
|
85 |
+
key = f"web:{query}"
|
86 |
+
results = cache_func(key, lambda: TavilySearchResults(max_results=5).invoke(query))
|
87 |
+
return "\n\n---\n\n".join([f"Source: {res['url']}\nContent: {res['content']}" for res in results])
|
88 |
+
@tool
|
89 |
+
def wiki_search_func(query: str, cache_func) -> str:
|
90 |
+
"""Searches Wikipedia and returns the top 2 results."""
|
91 |
+
key = f"wiki:{query}"
|
92 |
+
docs = cache_func(key, lambda: WikipediaLoader(query=query, load_max_docs=2, doc_content_chars_max=2000).load())
|
93 |
+
return "\n\n---\n\n".join([f"Source: {d.metadata['source']}\n\n{d.page_content}" for d in docs])
|
94 |
+
@tool
|
95 |
+
def arxiv_search_func(query: str, cache_func) -> str:
|
96 |
+
"""Searches Arxiv for scientific papers and returns the top 2 results."""
|
97 |
+
key = f"arxiv:{query}"
|
98 |
+
docs = cache_func(key, lambda: ArxivLoader(query=query, load_max_docs=2).load())
|
99 |
+
return "\n\n---\n\n".join([f"Source: {d.metadata['source']}\nPublished: {d.metadata['Published']}\nTitle: {d.metadata['Title']}\n\nSummary:\n{d.page_content}" for d in docs])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
100 |
|
101 |
# ----------------------------------------------------------
|
102 |
# Section 3: System Prompt
|
103 |
# ----------------------------------------------------------
|
|
|
104 |
SYSTEM_PROMPT = (
|
105 |
"""You are an expert-level research assistant designed to answer questions accurately.
|
106 |
|
107 |
**Your Reasoning Process:**
|
108 |
+
1. **Think Step-by-Step:** Break down the user's question into logical steps. Plan which tools you need.
|
109 |
+
2. **Use Your Tools:** Execute your plan by calling one tool at a time. Analyze the results.
|
110 |
+
3. **Iterate:** If needed, use more tools until you have enough information.
|
111 |
+
4. **Synthesize:** Formulate a concise final answer based on the information.
|
112 |
|
113 |
**Output Format:**
|
114 |
+
- Your final response MUST strictly follow this format:
|
115 |
`FINAL ANSWER: [Your concise and accurate answer here]`
|
116 |
|
117 |
**Crucial Instructions:**
|
118 |
+
- If your tools **cannot possibly answer the question** (e.g., it requires watching a video or listening to audio), you MUST respond by stating the limitation.
|
119 |
- In case of a limitation, your response should be:
|
120 |
`FINAL ANSWER: I am unable to answer this question because it requires a capability I do not possess, such as [describe the missing capability].`
|
|
|
|
|
|
|
|
|
121 |
"""
|
122 |
)
|
123 |
|
124 |
# ----------------------------------------------------------
|
125 |
# Section 4: Factory Function for Agent Executor
|
126 |
# ----------------------------------------------------------
|
127 |
+
def create_agent_executor(provider: str = "groq"):
|
128 |
+
"""
|
129 |
+
Factory function to create and compile the LangGraph agent executor.
|
130 |
+
This version creates tools from standalone functions to ensure model compatibility.
|
131 |
+
"""
|
132 |
+
print(f"Initializing agent with provider: {provider}")
|
133 |
+
|
134 |
+
# Step 1: Build LLMs
|
135 |
+
if provider == "google": main_llm = ChatGoogleGenerativeAI(model="gemini-1.5-pro-latest", temperature=0)
|
136 |
+
elif provider == "groq": main_llm = ChatGroq(model_name="meta-llama/llama-4-maverick-17b-128e-instruct", temperature=0)
|
137 |
+
elif provider == "huggingface": main_llm = ChatHuggingFace(llm=HuggingFaceEndpoint(repo_id="mistralai/Mixtral-8x7B-Instruct-v0.1", temperature=0.1))
|
138 |
+
else: raise ValueError("Invalid provider selected")
|
139 |
+
vision_llm = ChatGroq(model_name="meta-llama/llama-4-maverick-17b-128e-instruct", temperature=0)
|
140 |
+
|
141 |
+
# Step 2: Build Retriever
|
142 |
+
embeddings = HuggingFaceEmbeddings(model_name=EMBED_MODEL)
|
143 |
+
if FAISS_CACHE.exists():
|
144 |
+
with open(FAISS_CACHE, "rb") as f: vector_store = pickle.load(f)
|
145 |
+
else:
|
146 |
+
docs = [Document(page_content=f"Question: {rec['Question']}\n\nFinal answer: {rec['Final answer']}", metadata={"source": rec["task_id"]}) for rec in (json.loads(line) for line in open(JSONL_PATH, "rt", encoding="utf-8"))]
|
147 |
+
vector_store = FAISS.from_documents(docs, embeddings)
|
148 |
+
with open(FAISS_CACHE, "wb") as f: pickle.dump(vector_store, f)
|
149 |
+
retriever = vector_store.as_retriever(search_kwargs={"k": RETRIEVER_K})
|
150 |
+
|
151 |
+
# Step 3: Create the final list of tools
|
152 |
+
# We use functools.partial to "bake in" the dependencies (like the LLM or cache) into our standalone functions.
|
153 |
+
# This creates new functions with a simpler signature that the agent can easily call.
|
154 |
+
tools_list = [
|
155 |
+
python_repl,
|
156 |
+
Tool(name="describe_image", func=functools.partial(describe_image_func, vision_llm_instance=vision_llm), description="Describes an image from a local file path or a URL."),
|
157 |
+
Tool(name="web_search", func=functools.partial(web_search_func, cache_func=cached_get), description="Performs a web search using Tavily."),
|
158 |
+
Tool(name="wiki_search", func=functools.partial(wiki_search_func, cache_func=cached_get), description="Searches Wikipedia."),
|
159 |
+
Tool(name="arxiv_search", func=functools.partial(arxiv_search_func, cache_func=cached_get), description="Searches Arxiv for scientific papers."),
|
160 |
+
create_retriever_tool(retriever=retriever, name="retrieve_examples", description="Retrieve solved questions similar to the user's query."),
|
161 |
+
]
|
162 |
+
|
163 |
+
llm_with_tools = main_llm.bind_tools(tools_list)
|
164 |
|
165 |
+
# Step 4: Define Graph Nodes
|
166 |
def retriever_node(state: MessagesState):
|
|
|
167 |
user_query = state["messages"][-1].content
|
168 |
+
docs = retriever.invoke(user_query)
|
169 |
messages = [SystemMessage(content=SYSTEM_PROMPT)]
|
170 |
if docs:
|
171 |
example_text = "\n\n---\n\n".join(d.page_content for d in docs)
|
172 |
+
messages.append(AIMessage(content=f"I have found {len(docs)} similar solved examples:\n\n{example_text}", name="ExampleRetriever"))
|
|
|
173 |
messages.extend(state["messages"])
|
174 |
return {"messages": messages}
|
175 |
|
176 |
def assistant_node(state: MessagesState):
|
|
|
177 |
result = llm_with_tools.invoke(state["messages"])
|
178 |
return {"messages": [result]}
|
179 |
|
180 |
+
# Step 5: Build Graph
|
181 |
builder = StateGraph(MessagesState)
|
182 |
builder.add_node("retriever", retriever_node)
|
183 |
builder.add_node("assistant", assistant_node)
|
|
|
193 |
return agent_executor
|
194 |
|
195 |
# ----------------------------------------------------------
|
196 |
+
# Section 5: Pre-flight check and Direct Execution Block
|
197 |
# ----------------------------------------------------------
|
198 |
+
def test_llm_connection(provider: str = "google"):
|
199 |
+
"""Performs a quick test to see if the LLM provider is accessible."""
|
200 |
+
print(f"--- Performing pre-flight check for LLM provider: {provider} ---")
|
201 |
+
try:
|
202 |
+
if provider == "google": llm, name = ChatGoogleGenerativeAI(model="gemini-1.5-pro-latest"), "Google Gemini"
|
203 |
+
elif provider == "groq": llm, name = ChatGroq(model_name="llama3-70b-8192"), "Groq"
|
204 |
+
elif provider == "huggingface": llm, name = ChatHuggingFace(llm=HuggingFaceEndpoint(repo_id="mistralai/Mixtral-8x7B-Instruct-v0.1")), "Hugging Face"
|
205 |
+
else: return "❌ **LLM Status:** Invalid provider configured."
|
206 |
+
llm.invoke("hello")
|
207 |
+
success_message = f"✅ **LLM Status:** Connection to {name} is successful."
|
208 |
+
print(success_message)
|
209 |
+
return success_message
|
210 |
+
except Exception as e:
|
211 |
+
error_message = f"❌ **LLM Status:** FAILED to connect. Check API keys/credits. Details: {e}"
|
212 |
+
print(error_message)
|
213 |
+
return error_message
|
214 |
+
|
215 |
if __name__ == "__main__":
|
216 |
+
"""Allows for direct testing of the agent's logic."""
|
217 |
print("--- Running Agent in Test Mode ---")
|
218 |
agent = create_agent_executor(provider="google")
|
219 |
question = "According to wikipedia, what is the main difference between a lama and an alpaca?"
|