Abbasid commited on
Commit
a3e120b
·
verified ·
1 Parent(s): d5ef142

Update agent.py

Browse files
Files changed (1) hide show
  1. agent.py +50 -83
agent.py CHANGED
@@ -1,5 +1,13 @@
 
 
 
 
 
 
 
 
1
  # ----------------------------------------------------------
2
- # Section 0: Imports
3
  # ----------------------------------------------------------
4
  import json
5
  import os
@@ -8,44 +16,34 @@ import re
8
  import subprocess
9
  import textwrap
10
  import base64
11
- import functools # Used to pre-fill arguments for our tool functions
12
  from io import BytesIO
13
  from pathlib import Path
14
 
15
- # Third-party libraries
16
  import requests
17
  from cachetools import TTLCache
18
  from PIL import Image
19
 
20
- # LangChain and associated libraries
21
  from langchain.schema import Document
22
  from langchain.tools.retriever import create_retriever_tool
23
  from langchain_community.vectorstores import FAISS
24
  from langchain_community.tools.tavily_search import TavilySearchResults
25
  from langchain_community.document_loaders import WikipediaLoader, ArxivLoader
26
  from langchain_core.messages import SystemMessage, HumanMessage, AIMessage
27
- from langchain_core.tools import Tool, tool # Import Tool for manual tool creation
28
  from langchain_google_genai import ChatGoogleGenerativeAI
29
  from langchain_groq import ChatGroq
30
  from langchain_huggingface import HuggingFaceEmbeddings, HuggingFaceEndpoint, ChatHuggingFace
31
  from langgraph.graph import START, StateGraph, MessagesState
32
  from langgraph.prebuilt import ToolNode, tools_condition
33
 
34
- # Environment variable loading
35
  from dotenv import load_dotenv
36
  load_dotenv()
37
 
38
- # ----------------------------------------------------------
39
- # Section 1: Constants and Configuration
40
- # ----------------------------------------------------------
41
- JSONL_PATH = Path("metadata.jsonl")
42
- FAISS_CACHE = Path("faiss_index.pkl")
43
- EMBED_MODEL = "sentence-transformers/all-mpnet-base-v2"
44
- RETRIEVER_K = 5
45
- CACHE_TTL = 600
46
  API_CACHE = TTLCache(maxsize=256, ttl=CACHE_TTL)
47
-
48
- # Global helper for caching API calls
49
  def cached_get(key: str, fetch_fn):
50
  if key in API_CACHE: return API_CACHE[key]
51
  val = fetch_fn()
@@ -53,9 +51,8 @@ def cached_get(key: str, fetch_fn):
53
  return val
54
 
55
  # ----------------------------------------------------------
56
- # Section 2: Standalone Tool Functions (No 'self' parameter)
57
  # ----------------------------------------------------------
58
-
59
  @tool
60
  def python_repl(code: str) -> str:
61
  """Executes a string of Python code and returns the stdout/stderr."""
@@ -66,8 +63,6 @@ def python_repl(code: str) -> str:
66
  else: return f"Execution failed.\nSTDOUT:\n```\n{result.stdout}\n```\nSTDERR:\n```\n{result.stderr}\n```"
67
  except subprocess.TimeoutExpired: return "Execution timed out (>10s)."
68
 
69
- # These functions now accept their dependencies (like an llm instance or a cache function) as arguments.
70
- @tool
71
  def describe_image_func(image_source: str, vision_llm_instance) -> str:
72
  """Describes an image from a local file path or a URL using a provided vision LLM."""
73
  try:
@@ -79,19 +74,19 @@ def describe_image_func(image_source: str, vision_llm_instance) -> str:
79
  msg = HumanMessage(content=[{"type": "text", "text": "Describe this image in detail."}, {"type": "image_url", "image_url": {"url": f"data:image/jpeg;base64,{b64_string}"}}])
80
  return vision_llm_instance.invoke([msg]).content
81
  except Exception as e: return f"Error processing image: {e}"
82
- @tool
83
  def web_search_func(query: str, cache_func) -> str:
84
  """Performs a web search using Tavily and returns a compilation of results."""
85
  key = f"web:{query}"
86
  results = cache_func(key, lambda: TavilySearchResults(max_results=5).invoke(query))
87
  return "\n\n---\n\n".join([f"Source: {res['url']}\nContent: {res['content']}" for res in results])
88
- @tool
89
  def wiki_search_func(query: str, cache_func) -> str:
90
  """Searches Wikipedia and returns the top 2 results."""
91
  key = f"wiki:{query}"
92
  docs = cache_func(key, lambda: WikipediaLoader(query=query, load_max_docs=2, doc_content_chars_max=2000).load())
93
  return "\n\n---\n\n".join([f"Source: {d.metadata['source']}\n\n{d.page_content}" for d in docs])
94
- @tool
95
  def arxiv_search_func(query: str, cache_func) -> str:
96
  """Searches Arxiv for scientific papers and returns the top 2 results."""
97
  key = f"arxiv:{query}"
@@ -99,46 +94,41 @@ def arxiv_search_func(query: str, cache_func) -> str:
99
  return "\n\n---\n\n".join([f"Source: {d.metadata['source']}\nPublished: {d.metadata['Published']}\nTitle: {d.metadata['Title']}\n\nSummary:\n{d.page_content}" for d in docs])
100
 
101
  # ----------------------------------------------------------
102
- # Section 3: System Prompt
103
  # ----------------------------------------------------------
104
- SYSTEM_PROMPT = (
105
- """You are an expert-level research assistant designed to answer questions accurately.
106
-
107
- **Your Reasoning Process:**
108
- 1. **Think Step-by-Step:** Break down the user's question into logical steps. Plan which tools you need.
109
- 2. **Use Your Tools:** Execute your plan by calling one tool at a time. Analyze the results.
110
- 3. **Iterate:** If needed, use more tools until you have enough information.
111
- 4. **Synthesize:** Formulate a concise final answer based on the information.
112
-
113
- **Output Format:**
114
- - Your final response MUST strictly follow this format:
115
- `FINAL ANSWER: [Your concise and accurate answer here]`
116
-
117
- **Crucial Instructions:**
118
- - If your tools **cannot possibly answer the question** (e.g., it requires watching a video or listening to audio), you MUST respond by stating the limitation.
119
- - In case of a limitation, your response should be:
120
- `FINAL ANSWER: I am unable to answer this question because it requires a capability I do not possess, such as [describe the missing capability].`
121
  """
122
  )
123
 
124
  # ----------------------------------------------------------
125
- # Section 4: Factory Function for Agent Executor
126
  # ----------------------------------------------------------
127
  def create_agent_executor(provider: str = "groq"):
128
  """
129
  Factory function to create and compile the LangGraph agent executor.
130
- This version creates tools from standalone functions to ensure model compatibility.
131
  """
132
  print(f"Initializing agent with provider: {provider}")
133
 
134
- # Step 1: Build LLMs
135
  if provider == "google": main_llm = ChatGoogleGenerativeAI(model="gemini-1.5-pro-latest", temperature=0)
136
  elif provider == "groq": main_llm = ChatGroq(model_name="meta-llama/llama-4-maverick-17b-128e-instruct", temperature=0)
137
  elif provider == "huggingface": main_llm = ChatHuggingFace(llm=HuggingFaceEndpoint(repo_id="mistralai/Mixtral-8x7B-Instruct-v0.1", temperature=0.1))
138
  else: raise ValueError("Invalid provider selected")
139
  vision_llm = ChatGroq(model_name="meta-llama/llama-4-maverick-17b-128e-instruct", temperature=0)
140
 
141
- # Step 2: Build Retriever
142
  embeddings = HuggingFaceEmbeddings(model_name=EMBED_MODEL)
143
  if FAISS_CACHE.exists():
144
  with open(FAISS_CACHE, "rb") as f: vector_store = pickle.load(f)
@@ -148,9 +138,7 @@ def create_agent_executor(provider: str = "groq"):
148
  with open(FAISS_CACHE, "wb") as f: pickle.dump(vector_store, f)
149
  retriever = vector_store.as_retriever(search_kwargs={"k": RETRIEVER_K})
150
 
151
- # Step 3: Create the final list of tools
152
- # We use functools.partial to "bake in" the dependencies (like the LLM or cache) into our standalone functions.
153
- # This creates new functions with a simpler signature that the agent can easily call.
154
  tools_list = [
155
  python_repl,
156
  Tool(name="describe_image", func=functools.partial(describe_image_func, vision_llm_instance=vision_llm), description="Describes an image from a local file path or a URL."),
@@ -160,13 +148,22 @@ def create_agent_executor(provider: str = "groq"):
160
  create_retriever_tool(retriever=retriever, name="retrieve_examples", description="Retrieve solved questions similar to the user's query."),
161
  ]
162
 
 
 
 
 
 
 
 
 
163
  llm_with_tools = main_llm.bind_tools(tools_list)
164
 
165
- # Step 4: Define Graph Nodes
166
  def retriever_node(state: MessagesState):
167
  user_query = state["messages"][-1].content
168
  docs = retriever.invoke(user_query)
169
- messages = [SystemMessage(content=SYSTEM_PROMPT)]
 
170
  if docs:
171
  example_text = "\n\n---\n\n".join(d.page_content for d in docs)
172
  messages.append(AIMessage(content=f"I have found {len(docs)} similar solved examples:\n\n{example_text}", name="ExampleRetriever"))
@@ -177,7 +174,7 @@ def create_agent_executor(provider: str = "groq"):
177
  result = llm_with_tools.invoke(state["messages"])
178
  return {"messages": [result]}
179
 
180
- # Step 5: Build Graph
181
  builder = StateGraph(MessagesState)
182
  builder.add_node("retriever", retriever_node)
183
  builder.add_node("assistant", assistant_node)
@@ -192,35 +189,5 @@ def create_agent_executor(provider: str = "groq"):
192
  print("Agent Executor created successfully.")
193
  return agent_executor
194
 
195
- # ----------------------------------------------------------
196
- # Section 5: Pre-flight check and Direct Execution Block
197
- # ----------------------------------------------------------
198
- def test_llm_connection(provider: str = "google"):
199
- """Performs a quick test to see if the LLM provider is accessible."""
200
- print(f"--- Performing pre-flight check for LLM provider: {provider} ---")
201
- try:
202
- if provider == "google": llm, name = ChatGoogleGenerativeAI(model="gemini-1.5-pro-latest"), "Google Gemini"
203
- elif provider == "groq": llm, name = ChatGroq(model_name="llama3-70b-8192"), "Groq"
204
- elif provider == "huggingface": llm, name = ChatHuggingFace(llm=HuggingFaceEndpoint(repo_id="mistralai/Mixtral-8x7B-Instruct-v0.1")), "Hugging Face"
205
- else: return "❌ **LLM Status:** Invalid provider configured."
206
- llm.invoke("hello")
207
- success_message = f"✅ **LLM Status:** Connection to {name} is successful."
208
- print(success_message)
209
- return success_message
210
- except Exception as e:
211
- error_message = f"❌ **LLM Status:** FAILED to connect. Check API keys/credits. Details: {e}"
212
- print(error_message)
213
- return error_message
214
-
215
- if __name__ == "__main__":
216
- """Allows for direct testing of the agent's logic."""
217
- print("--- Running Agent in Test Mode ---")
218
- agent = create_agent_executor(provider="google")
219
- question = "According to wikipedia, what is the main difference between a lama and an alpaca?"
220
- print(f"\nTest Question: {question}\n\n--- Agent Thinking... ---\n")
221
-
222
- for chunk in agent.stream({"messages": [("user", question)]}):
223
- for key, value in chunk.items():
224
- if value['messages']:
225
- message = value['messages'][-1]
226
- if message.content: print(f"--- Node: {key} ---\n{message.content}\n")
 
1
+ """
2
+ agent.py
3
+
4
+ This file defines the core logic for a sophisticated AI agent using LangGraph.
5
+ This version uses a dynamic system prompt to explicitly list the available tools
6
+ for the LLM on every run, designed to combat "tool refusal".
7
+ """
8
+
9
  # ----------------------------------------------------------
10
+ # Section 0: Imports and Configuration (Identical to before)
11
  # ----------------------------------------------------------
12
  import json
13
  import os
 
16
  import subprocess
17
  import textwrap
18
  import base64
19
+ import functools
20
  from io import BytesIO
21
  from pathlib import Path
22
 
 
23
  import requests
24
  from cachetools import TTLCache
25
  from PIL import Image
26
 
 
27
  from langchain.schema import Document
28
  from langchain.tools.retriever import create_retriever_tool
29
  from langchain_community.vectorstores import FAISS
30
  from langchain_community.tools.tavily_search import TavilySearchResults
31
  from langchain_community.document_loaders import WikipediaLoader, ArxivLoader
32
  from langchain_core.messages import SystemMessage, HumanMessage, AIMessage
33
+ from langchain_core.tools import Tool, tool
34
  from langchain_google_genai import ChatGoogleGenerativeAI
35
  from langchain_groq import ChatGroq
36
  from langchain_huggingface import HuggingFaceEmbeddings, HuggingFaceEndpoint, ChatHuggingFace
37
  from langgraph.graph import START, StateGraph, MessagesState
38
  from langgraph.prebuilt import ToolNode, tools_condition
39
 
 
40
  from dotenv import load_dotenv
41
  load_dotenv()
42
 
43
+ # --- Configuration and Caching (Identical) ---
44
+ JSONL_PATH, FAISS_CACHE, EMBED_MODEL = Path("metadata.jsonl"), Path("faiss_index.pkl"), "sentence-transformers/all-mpnet-base-v2"
45
+ RETRIEVER_K, CACHE_TTL = 5, 600
 
 
 
 
 
46
  API_CACHE = TTLCache(maxsize=256, ttl=CACHE_TTL)
 
 
47
  def cached_get(key: str, fetch_fn):
48
  if key in API_CACHE: return API_CACHE[key]
49
  val = fetch_fn()
 
51
  return val
52
 
53
  # ----------------------------------------------------------
54
+ # Section 2: Standalone Tool Functions (Identical to before)
55
  # ----------------------------------------------------------
 
56
  @tool
57
  def python_repl(code: str) -> str:
58
  """Executes a string of Python code and returns the stdout/stderr."""
 
63
  else: return f"Execution failed.\nSTDOUT:\n```\n{result.stdout}\n```\nSTDERR:\n```\n{result.stderr}\n```"
64
  except subprocess.TimeoutExpired: return "Execution timed out (>10s)."
65
 
 
 
66
  def describe_image_func(image_source: str, vision_llm_instance) -> str:
67
  """Describes an image from a local file path or a URL using a provided vision LLM."""
68
  try:
 
74
  msg = HumanMessage(content=[{"type": "text", "text": "Describe this image in detail."}, {"type": "image_url", "image_url": {"url": f"data:image/jpeg;base64,{b64_string}"}}])
75
  return vision_llm_instance.invoke([msg]).content
76
  except Exception as e: return f"Error processing image: {e}"
77
+
78
  def web_search_func(query: str, cache_func) -> str:
79
  """Performs a web search using Tavily and returns a compilation of results."""
80
  key = f"web:{query}"
81
  results = cache_func(key, lambda: TavilySearchResults(max_results=5).invoke(query))
82
  return "\n\n---\n\n".join([f"Source: {res['url']}\nContent: {res['content']}" for res in results])
83
+
84
  def wiki_search_func(query: str, cache_func) -> str:
85
  """Searches Wikipedia and returns the top 2 results."""
86
  key = f"wiki:{query}"
87
  docs = cache_func(key, lambda: WikipediaLoader(query=query, load_max_docs=2, doc_content_chars_max=2000).load())
88
  return "\n\n---\n\n".join([f"Source: {d.metadata['source']}\n\n{d.page_content}" for d in docs])
89
+
90
  def arxiv_search_func(query: str, cache_func) -> str:
91
  """Searches Arxiv for scientific papers and returns the top 2 results."""
92
  key = f"arxiv:{query}"
 
94
  return "\n\n---\n\n".join([f"Source: {d.metadata['source']}\nPublished: {d.metadata['Published']}\nTitle: {d.metadata['Title']}\n\nSummary:\n{d.page_content}" for d in docs])
95
 
96
  # ----------------------------------------------------------
97
+ # Section 3: NEW DYNAMIC SYSTEM PROMPT
98
  # ----------------------------------------------------------
99
+ # This is now a template string. The {tools} section will be filled in dynamically.
100
+ SYSTEM_PROMPT_TEMPLATE = (
101
+ """You are an expert-level research assistant. Your goal is to answer the user's question accurately.
102
+
103
+ **CRITICAL INSTRUCTIONS:**
104
+ 1. **USE YOUR TOOLS:** You have been given a set of tools to find information. You MUST use them when the answer is not immediately known to you. Do not make up answers. Do not apologize or refuse to use a tool. You must try.
105
+ 2. **AVAILABLE TOOLS:** Here is the exact list of tools you have access to:
106
+ {tools}
107
+ 3. **REASONING:** Think step-by-step. First, analyze the user's question. Second, decide which tool is appropriate. Third, call the tool with the correct parameters. Finally, analyze the tool's output to formulate your answer.
108
+ 4. **LIMITATIONS:** If a question requires a capability you absolutely do not have (e.g., watching a video, listening to audio), you must state that limitation clearly.
109
+ 5. **FINAL ANSWER FORMAT:** Your final response MUST strictly follow this format and nothing else:
110
+ `FINAL ANSWER: [Your concise and accurate answer here]`
 
 
 
 
 
111
  """
112
  )
113
 
114
  # ----------------------------------------------------------
115
+ # Section 4: Factory Function for Agent Executor (MODIFIED)
116
  # ----------------------------------------------------------
117
  def create_agent_executor(provider: str = "groq"):
118
  """
119
  Factory function to create and compile the LangGraph agent executor.
120
+ This version dynamically builds the system prompt with the list of tools.
121
  """
122
  print(f"Initializing agent with provider: {provider}")
123
 
124
+ # Step 1: Build LLMs (Identical)
125
  if provider == "google": main_llm = ChatGoogleGenerativeAI(model="gemini-1.5-pro-latest", temperature=0)
126
  elif provider == "groq": main_llm = ChatGroq(model_name="meta-llama/llama-4-maverick-17b-128e-instruct", temperature=0)
127
  elif provider == "huggingface": main_llm = ChatHuggingFace(llm=HuggingFaceEndpoint(repo_id="mistralai/Mixtral-8x7B-Instruct-v0.1", temperature=0.1))
128
  else: raise ValueError("Invalid provider selected")
129
  vision_llm = ChatGroq(model_name="meta-llama/llama-4-maverick-17b-128e-instruct", temperature=0)
130
 
131
+ # Step 2: Build Retriever (Identical)
132
  embeddings = HuggingFaceEmbeddings(model_name=EMBED_MODEL)
133
  if FAISS_CACHE.exists():
134
  with open(FAISS_CACHE, "rb") as f: vector_store = pickle.load(f)
 
138
  with open(FAISS_CACHE, "wb") as f: pickle.dump(vector_store, f)
139
  retriever = vector_store.as_retriever(search_kwargs={"k": RETRIEVER_K})
140
 
141
+ # Step 3: Create the final list of tools (Identical)
 
 
142
  tools_list = [
143
  python_repl,
144
  Tool(name="describe_image", func=functools.partial(describe_image_func, vision_llm_instance=vision_llm), description="Describes an image from a local file path or a URL."),
 
148
  create_retriever_tool(retriever=retriever, name="retrieve_examples", description="Retrieve solved questions similar to the user's query."),
149
  ]
150
 
151
+ # --- THIS PART IS NEW ---
152
+ # 4a. Format the tool list into a string for the prompt
153
+ tool_definitions = "\n".join([f"- `{tool.name}`: {tool.description}" for tool in tools_list])
154
+
155
+ # 4b. Create the final, dynamic system prompt
156
+ final_system_prompt = SYSTEM_PROMPT_TEMPLATE.format(tools=tool_definitions)
157
+ # --- END NEW PART ---
158
+
159
  llm_with_tools = main_llm.bind_tools(tools_list)
160
 
161
+ # Step 5: Define Graph Nodes (Modified to use the new prompt)
162
  def retriever_node(state: MessagesState):
163
  user_query = state["messages"][-1].content
164
  docs = retriever.invoke(user_query)
165
+ # Use the new, dynamic prompt here
166
+ messages = [SystemMessage(content=final_system_prompt)]
167
  if docs:
168
  example_text = "\n\n---\n\n".join(d.page_content for d in docs)
169
  messages.append(AIMessage(content=f"I have found {len(docs)} similar solved examples:\n\n{example_text}", name="ExampleRetriever"))
 
174
  result = llm_with_tools.invoke(state["messages"])
175
  return {"messages": [result]}
176
 
177
+ # Step 6: Build Graph (Identical)
178
  builder = StateGraph(MessagesState)
179
  builder.add_node("retriever", retriever_node)
180
  builder.add_node("assistant", assistant_node)
 
189
  print("Agent Executor created successfully.")
190
  return agent_executor
191
 
192
+ # --- Section 5 (Testing functions) remains the same ---
193
+ # ... (test_llm_connection and __main__ block)