seed
stringlengths
25
2.89k
seed_api
stringlengths
14
102
index
int64
0
14.8k
import tensorflow as tf num_params = 0 # utils.logger.log('Model parameters:') for var in tf_trainable_vars: # utils.logger.log(str(var)) num_params += np.prod([dim.value for dim in var.get_shape()]) utils.logger.log('Model has {} parameters'.format(num_params)) return num_params def _add_vars_assign_op(self, vars): var_phs = { tf_var.name: tf.placeholder(dtype=tf_var.dtype, shape=tf_var.shape) for tf_var in vars } vars_assign_op = tf.group([ tf.assign(tf_var, ph) for (tf_var, ph) in zip(vars, var_phs.values()) ], name='vars_assign_op') return (var_phs, vars_assign_op) ####################################
tensorflow.placeholder
6,300
import tensorflow as tf tf.logging.info("**** Trainable Variables ****") for var in tvars: init_string = "" if var.name in initialized_variable_names: init_string = ", *INIT_FROM_CKPT*" tf.logging.info(" name = %s, shape = %s%s", var.name, var.shape, init_string) output_spec = None if mode == tf.estimator.ModeKeys.TRAIN:
tensorflow.logging.info
6,301
import tensorflow as tf x_t_flat = tf.reshape(x_t, (1, -1)) y_t_flat = tf.reshape(y_t, (1, -1)) d_t_flat = tf.reshape(d_t, (1, -1))
tensorflow.reshape
6,302
import tensorflow as tf querry_size = query.get_shape().as_list()[-1] queries = tf.tile(query, [1, tf.shape(facts)[1]]) queries = tf.reshape(queries, tf.shape(facts)) din_all = tf.concat([queries, facts, queries-facts, queries*facts], axis=-1) d_layer_1_all = tf.layers.dense(din_all, 80, activation=tf.nn.sigmoid, name='f1_att' + stag) d_layer_2_all = tf.layers.dense(d_layer_1_all, 40, activation=tf.nn.sigmoid, name='f2_att' + stag) d_layer_3_all = tf.layers.dense(d_layer_2_all, 1, activation=None, name='f3_att' + stag) d_layer_3_all = tf.reshape(d_layer_3_all, [-1, 1, tf.shape(facts)[1]]) scores = d_layer_3_all # Mask # key_masks = tf.sequence_mask(facts_length, tf.shape(facts)[1]) # [B, T] key_masks = tf.expand_dims(mask, 1) # [B, 1, T] paddings = tf.ones_like(scores) * (-2 ** 32 + 1) scores = tf.where(key_masks, scores, paddings) # [B, 1, T] # Scale # scores = scores / (facts.get_shape().as_list()[-1] ** 0.5) # Activation if softmax_stag: scores = tf.nn.softmax(scores) # [B, 1, T]
tensorflow.expand_dims
6,303
import tensorflow as tf opt_denoise = self.optimizer_func(self.hparams.learning_rate) opt_ranker = self.optimizer_func(self.ranker_learning_rate) denoise_updates = opt_denoise.apply_gradients(zip(denoise_gradients, denoise_params), global_step=self.global_step) ranker_updates = opt_ranker.apply_gradients(zip(ranking_model_gradients, ranking_model_params)) self.updates = tf.group(denoise_updates, ranker_updates) def DenoisingNet(self, list_size, forward_only=False, scope=None): with tf.variable_scope(scope or "denoising_model"): # If we are in testing, do not compute propensity if forward_only: return tf.ones_like(self.output)#, tf.ones_like(self.output) input_vec_size = list_size*4 def propensity_network(input_data, index): reuse = None if index < 1 else True propensity_initializer = tf.constant_initializer(0.001) if self.hparams.constant_propensity_initialization else None with tf.variable_scope("propensity_network", initializer=propensity_initializer, reuse=reuse): output_data = input_data current_size = input_vec_size output_sizes = [ int((list_size+1)/2) + 1, int((list_size+1)/4) + 1,
tensorflow.ones_like
6,304
from tensorflow.python.ops import array_ops 'concatenate along must have statically known size') # We move `axis` to the front of the internal array so assign ops can be # applied to contiguous slices init_size = 0 if max_size is None else max_size init_shape = [init_size] + fixed_shape array = _create_local( 'array', shape=init_shape, validate_shape=False, dtype=values.dtype) size = _create_local('size', shape=[], dtype=dtypes.int32) perm = [0 if n == axis else n + 1 if n < axis else n for n in range(ndim)] valid_array = array[:size] valid_array.set_shape([None] + fixed_shape) value = array_ops.transpose(valid_array, perm, name='concat') values_size = array_ops.shape(values)[axis] if max_size is None: batch_size = values_size else: batch_size = math_ops.minimum(values_size, max_size - size) perm = [axis] + [n for n in range(ndim) if n != axis] batch_values = array_ops.transpose(values, perm)[:batch_size] def reallocate(): next_size = _next_array_size(new_size)
tensorflow.python.ops.array_ops.transpose
6,305
import tensorflow as tf lr_dec_every=self.lr_dec_every, lr_dec_rate=self.lr_dec_rate, optim_algo=self.optim_algo, sync_replicas=self.sync_replicas, num_aggregate=self.num_aggregate, num_replicas=self.num_replicas) self.skip_rate = tf.constant(0.0, dtype=tf.float32)
tensorflow.constant
6,306
import tensorflow as tf self.batch_size = 1000 # LSTM structure self.n_inputs = len(X_train[0][0]) # Features count is of 9: three 3D sensors features over time self.n_hidden = N_HIDDEN_CONFIG # nb of neurons inside the neural network self.n_classes = 6 # Final output classes self.W = { 'hidden': tf.Variable(tf.random_normal([self.n_inputs, self.n_hidden])), # [9, 32] 'output': tf.Variable(tf.random_normal([self.n_hidden, self.n_classes])) # [32, 6] } self.biases = { 'hidden': tf.Variable(tf.random_normal([self.n_hidden], mean=1.0)), # [32] 'output': tf.Variable(tf.random_normal([self.n_classes])) # [6] }
tensorflow.random_normal
6,307
from tensorflow.python.ops import control_flow_ops g_t = tf.div(m_t_hat, tf.sqrt(v_t_hat) + eps) g_t_1 = self.get_slot(var, "g") g_t = g_t_1.assign(g_t) var_update = state_ops.assign_sub(var, 2. * lr_t * g_t - lr_t * g_t_1) # Adam would be lr_t * g_t return control_flow_ops.group(*[var_update, m_t, v_t, g_t]) def _apply_sparse(self, grad, var): raise NotImplementedError("Sparse gradient updates are not supported.") class RegularizeGradientDescentOptimizer(optimizer.Optimizer):
tensorflow.python.ops.control_flow_ops.group
6,308
import tensorflow as tf # Set up training loss and learning rate. global_step = tf.train.get_or_create_global_step()
tensorflow.train.get_or_create_global_step
6,309
import tensorflow as tf with tf.variable_scope("Context_to_Query_Attention_Layer"): # C = tf.tile(tf.expand_dims(c,2),[1,1,self.q_maxlen,1]) # Q = tf.tile(tf.expand_dims(q,1),[1,self.c_maxlen,1,1]) # S = trilinear([C, Q, C*Q], input_keep_prob = 1.0 - self.dropout) S = optimized_trilinear_for_attention([c, q], self.c_maxlen, self.q_maxlen, input_keep_prob = 1.0 - self.dropout) mask_q = tf.expand_dims(self.q_mask, 1) S_ = tf.nn.softmax(mask_logits(S, mask = mask_q)) mask_c = tf.expand_dims(self.c_mask, 2) S_T = tf.transpose(tf.nn.softmax(mask_logits(S, mask = mask_c), dim = 1),(0,2,1)) self.c2q = tf.matmul(S_, q) self.q2c = tf.matmul(tf.matmul(S_, S_T), c) attention_outputs = [c, self.c2q, c * self.c2q, c * self.q2c] with tf.variable_scope("Model_Encoder_Layer"): inputs = tf.concat(attention_outputs, axis = -1) self.enc = [conv(inputs, d, name = "input_projection")] for i in range(3): if i % 2 == 0: # dropout every 2 blocks self.enc[i] = tf.nn.dropout(self.enc[i], 1.0 - self.dropout) self.enc.append( residual_block(self.enc[i], num_blocks = 7, num_conv_layers = 2, kernel_size = 5, mask = self.c_mask, num_filters = d, num_heads = nh, seq_len = self.c_len, scope = "Model_Encoder",
tensorflow.concat
6,310
import tensorflow as tf 'Optimizer vars: %s.' % ', '.join(var for var in optimizer_vars)) tf.logging.info('Will train: %s.' % vars_to_load) tf.train.init_from_checkpoint(params['resnet_checkpoint'], vars_to_load) if not vars_to_load:
tensorflow.train.init_from_checkpoint
6,311
import tensorflow as tf self.training_op = tf.compat.v1.train.AdamOptimizer(self.learning_rate).minimize(self.loss) # Perf metrics with tf.name_scope("accuracy"): prediction = tf.equal(tf.argmax(self.fc2, 1), tf.argmax(self.y, 1)) self.accuracy = tf.reduce_mean(tf.cast(prediction, tf.float32))
tensorflow.argmax
6,312
import tensorflow as tf if direction is None: direct_mask = tf.not_equal(head_idxs, dep_idxs) # [bs, slh, sld] else: if direction == 'forward': direct_mask = tf.greater(head_idxs, dep_idxs) # [bs, slh, sld] else: direct_mask = tf.less(head_idxs, dep_idxs) # [bs, slh, sld] # [bs, slh, slh] rep_mask_tile = tf.logical_and(tf.expand_dims(rep_dep_mask, 1), tf.expand_dims(rep_head_mask, 2)) attn_mask = tf.logical_and(direct_mask, rep_mask_tile) # [bs, slh, sld] # tensor tile rep_map_tile = tf.tile(tf.expand_dims(rep_dep_tensor, 1), [1, sl_head, 1, 1]) # bs,slh,sld,vec with tf.variable_scope('attention'): # bs,sl,sl,vec f_bias = tf.get_variable('f_bias', [ivec], tf.float32, tf.constant_initializer(0.)) dependent = linear(rep_dep_tensor_dp, ivec, False, scope='linear_dependent') # bs,sld,vec dependent_etd = tf.expand_dims(dependent, 1) # bs,1,sld,vec head = linear(rep_head_tensor_dp, ivec, False, scope='linear_head') # bs,slh,vec head_etd = tf.expand_dims(head, 2) # bs,slh,1,vec logits = scaled_tanh(dependent_etd + head_etd + f_bias, 5.0) # bs,slh,sld,vec logits_masked = exp_mask_for_high_rank(logits, attn_mask) # bs,slh,sld,vec attn_score = tf.nn.softmax(logits_masked, 2) # bs,slh,sld,vec attn_score = mask_for_high_rank(attn_score, attn_mask) attn_result = tf.reduce_sum(attn_score * rep_map_tile, 2) # bs,slh,vec -> head_org_idx return attn_result
tensorflow.variable_scope
6,313
import tensorflow as tf segment_ids.append(0) assert len(input_ids) == max_seq_length assert len(input_mask) == max_seq_length assert len(segment_ids) == max_seq_length label_id = label_map[example.label] if ex_index < 5: tf.logging.info("*** Example ***") tf.logging.info("guid: %s" % (example.guid)) tf.logging.info("tokens: %s" % " ".join( [tokenization.printable_text(x) for x in tokens])) tf.logging.info("input_ids: %s" % " ".join([str(x) for x in input_ids])) tf.logging.info("input_mask: %s" % " ".join([str(x) for x in input_mask])) tf.logging.info("segment_ids: %s" % " ".join([str(x) for x in segment_ids])) tf.logging.info("label: %s (id = %d)" % (example.label, label_id)) feature = InputFeatures( input_ids=input_ids, input_mask=input_mask, segment_ids=segment_ids, label_id=label_id) return feature def file_based_convert_examples_to_features( examples, label_list, max_seq_length, tokenizer, output_file): """Convert a set of `InputExample`s to a TFRecord file.""" writer = tf.python_io.TFRecordWriter(output_file)
tensorflow.logging.info
6,314
import tensorflow as tf tf.estimator.ModeKeys.EVAL, eval_metrics=(eval_metrics_fn, logits), loss=loss) else: return tf.contrib.tpu.TPUEstimatorSpec( tf.estimator.ModeKeys.EVAL, eval_metrics=(eval_metrics_fn, [logits, labels]), loss=loss) else: eval_metrics_fns = metrics.create_evaluation_metrics([problem], hparams) eval_metrics = {} for metric_name, metric_fn in six.iteritems(eval_metrics_fns): eval_metrics[metric_name] = metric_fn(logits, features) return tf.estimator.EstimatorSpec( tf.estimator.ModeKeys.EVAL, predictions={"predictions": logits}, eval_metric_ops=eval_metrics, loss=loss) def estimator_spec_predict(self, features): """Construct EstimatorSpec for PREDICT mode.""" decode_hparams = self._decode_hparams infer_out = self.infer( features, beam_size=decode_hparams.beam_size, top_beams=(decode_hparams.beam_size if decode_hparams.return_beams else 1),
tensorflow.estimator.EstimatorSpec
6,315
from tensorflow.python.framework import ops # The dimensions are compatible, so output is the same size in that # dimension. return_dims.append(dim_x.merge_with(dim_y)) else: raise ValueError("Incompatible shapes for broadcasting: %s and %s" % (shape_x, shape_y)) return [tensor_shape.TensorShape(return_dims)] @ops.RegisterShape("AddN") def _AddNShape(op): merged_shape = tensor_shape.unknown_shape() for input_ in op.inputs: merged_shape = merged_shape.merge_with(input_.get_shape()) return [merged_shape] @ops.RegisterShape("Select")
tensorflow.python.framework.ops.RegisterShape
6,316
import tensorflow as tf return output_ if decoder.use_dropout: # FIXME: why no pervasive dropout here? initial_state = tf.nn.dropout(initial_state, keep_prob=decoder.initial_state_keep_prob) with tf.variable_scope(scope_name): activation_fn = None if decoder.initial_state == 'linear' else tf.nn.tanh if decoder.initial_state == 'trained': initial_state = get_variable(shape=[cell_state_size], name='initial_state') initial_state = tf.tile(tf.expand_dims(initial_state, axis=0), [batch_size, 1]) elif decoder.initial_state == 'zero': initial_state = tf.zeros(shape=[batch_size, cell_state_size]) elif decoder.layer_norm: initial_state = dense(initial_state, cell_state_size, use_bias=False, name='initial_state_projection') initial_state = tf.contrib.layers.layer_norm(initial_state, activation_fn=activation_fn, scope='initial_state_layer_norm') else: initial_state = dense(initial_state, cell_state_size, use_bias=True, name='initial_state_projection', activation=activation_fn) if decoder.cell_type.lower() == 'lstm' and decoder.use_lstm_full_state: initial_output = initial_state
tensorflow.zeros
6,317
import tensorflow as tf with tf.variable_scope('decoder_{}'.format(decoder.name)): initial_context, _ = look(0, initial_output, initial_input, pos=initial_pos, prev_weights=initial_weights, context=zero_context) initial_data = tf.concat([initial_state, initial_context, tf.expand_dims(initial_pos, axis=1), initial_weights], axis=1) context_size = initial_context.shape[1].value
tensorflow.expand_dims
6,318
import tensorflow as tf def create_global_steps(self, n_points_train_set): self.n_batches_per_epoch = np.ceil(n_points_train_set/self.batch_size["train"]) self.global_step = tf.train.get_or_create_global_step() self.global_epoch = tf.cast(tf.floor(tf.cast(self.global_step, tf.float32) / self.n_batches_per_epoch), tf.int64, "global_epoch")
tensorflow.cast
6,319
import tensorflow as tf offset = get_variable("offset", shape=[channels], dtype=tf.float32, initializer=tf.constant_initializer(0.0)) scale = get_variable("scale", shape=[channels], dtype=tf.float32, initializer=tf.constant_initializer(1.0), regularizer=tf.nn.l2_loss) mean, variance = tf.nn.moments(inp, axes=[0, 1, 2], shift=moving_mean) mean_op = moving_mean.assign(decay * moving_mean + (1 - decay) * mean) var_op = moving_variance.assign(decay * moving_variance + (1 - decay) * variance) assert(phase in ['train', 'test']) if phase == 'train': with tf.control_dependencies([mean_op, var_op]): return tf.nn.batch_normalization(inp, mean, variance, offset, scale, 0.01, name='norm') else: return tf.nn.batch_normalization(inp, moving_mean, moving_variance, offset, scale, 0.01, name='norm') def pool(inp, name, kind, size, stride, padding='SAME'): assert kind in ['max', 'avg']
tensorflow.control_dependencies
6,320
import tensorflow as tf start_y = tf.random.uniform(shape=(1,), minval=0, maxval=im_height, dtype=tf.int32) mask = tf.pad(mask, [[cutout_size + start_y[0], im_height - start_y[0]], [cutout_size + start_x[0], im_width - start_x[0]]]) mask = mask[cutout_size: cutout_size + im_height, cutout_size: cutout_size + im_width] mask = tf.tile(tf.reshape(mask, (im_height, im_width, 1)), (1, 1, 3)) image = tf.where(tf.equal(mask, 0), x=image, y=tf.zeros_like(image)) return image def _add_drop_path(self, X, keep_prob): with tf.variable_scope('drop_path'): batch_size = tf.shape(X)[0] noise_shape = (batch_size, 1, 1, 1) random_tensor = keep_prob + tf.random_uniform(noise_shape, dtype=tf.float32) binary_tensor = tf.floor(random_tensor) X = (X / keep_prob) * binary_tensor return X def _do_conv(self, X, w, h, in_ch, out_ch, filter_size=1, no_relu=False, no_reg=False, is_train=False): W = self._make_var('W', (filter_size, filter_size, in_ch, out_ch), no_reg=no_reg) if not no_relu: X = tf.nn.relu(X) X = tf.nn.conv2d(X, W, (1, 1, 1, 1), padding='SAME') X = self._add_batch_norm(X, out_ch, is_train=is_train) X = tf.reshape(X, (-1, w, h, out_ch)) # Sanity shape check return X def _do_separable_conv(self, X, w, h, ch, filter_size=3, stride=1, ch_mul=1,
tensorflow.floor
6,321
import tensorflow as tf x = (x + 1.0) * (width_f) / 2.0 y = (y + 1.0) * (height_f) / 2.0 z = (z + 1.0) * (depth_f) / 2.0 x0 = tf.to_int32(tf.floor(x)) x1 = x0 + 1 y0 = tf.to_int32(tf.floor(y)) y1 = y0 + 1 z0 = tf.to_int32(tf.floor(z)) z1 = z0 + 1 x0_clip = tf.clip_by_value(x0, zero, max_x) x1_clip = tf.clip_by_value(x1, zero, max_x) y0_clip = tf.clip_by_value(y0, zero, max_y) y1_clip = tf.clip_by_value(y1, zero, max_y) z0_clip = tf.clip_by_value(z0, zero, max_z)
tensorflow.floor
6,322
import tensorflow as tf image = tf.slice(image, [offset_height, offset_width, 0], [size, size, -1]) return image def lighting(image, std, eigval, eigvec): v = tf.random_normal(shape=[3], stddev=std) * eigval inc = tf.matmul(eigvec, tf.reshape(v, [3, 1])) image = tf.cast(tf.cast(image, tf.float32) + tf.reshape(inc, [3]), image.dtype) return image def validation_mapper(byte): image = tf.image.decode_jpeg( tf.reshape(byte, shape=[]), 3, **JPEG_OPT) image = resize_shortest_edge(image, tf.shape(image), 256) image = center_crop(image, 224) image = tf.reverse(image, axis=[2]) # to BGR return image def training_mapper(byte): jpeg_shape = tf.image.extract_jpeg_shape(byte) # hwc bbox_begin, bbox_size, distort_bbox = tf.image.sample_distorted_bounding_box( jpeg_shape, bounding_boxes=tf.zeros(shape=[0, 0, 4]),
tensorflow.reshape
6,323
import tensorflow as tf self.grads.append(self.grads_and_vars[i][0]); self.vars.append(self.grads_and_vars[i][1]); self.grads=self.grads[-1*NUM_VARS:]; self.vars=self.vars[-1*NUM_VARS:]; self.train_op = self.optimizer.apply_gradients( self.grads_and_vars, global_step=tf.contrib.framework.get_global_step()) def predict(self, state, sess=None): sess = sess or tf.get_default_session() state=featurize_state(state); return sess.run(self.action, { self.state: [state] })[0] def update(self, state, target, action, sess=None): sess = sess or tf.get_default_session() for st_idx in range(len(state)): state[st_idx]=featurize_state(state[st_idx]); feed_dict = { self.state: state, self.target: target, self.a_his: action } _, loss = sess.run([self.train_op, self.loss], feed_dict) return loss class ValueEstimator_MountainCarContinuous(): def __init__(self, learning_rate=0.1, par_idx=0,scope="value_estimator"): w_init = tf.random_normal_initializer(0.,.1); with tf.variable_scope(scope+"_"+str(par_idx)): # state and target self.state = tf.placeholder(tf.float32, [None,400], "state")
tensorflow.get_default_session
6,324
import tensorflow as tf for network_parameters in ap.network_wrappers.values(): network_parameters.framework = args.framework return graph_manager def _save_tf_model(self): ckpt_dir = '/opt/ml/output/data/checkpoint' model_dir = '/opt/ml/model' import tensorflow as tf # importing tensorflow here so that MXNet docker image is compatible with this file. # Re-Initialize from the checkpoint so that you will have the latest models up. tf.train.init_from_checkpoint(ckpt_dir, {'main_level/agent/online/network_0/': 'main_level/agent/online/network_0'}) tf.train.init_from_checkpoint(ckpt_dir, {'main_level/agent/online/network_1/': 'main_level/agent/online/network_1'}) # Create a new session with a new tf graph. sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True)) sess.run(tf.global_variables_initializer()) # initialize the checkpoint. # This is the node that will accept the input.
tensorflow.train.init_from_checkpoint
6,325
import tensorflow as tf initializer=modeling.create_initializer(bert_config.initializer_range)) output_bias = tf.get_variable( "output_bias", shape=[2], initializer=tf.zeros_initializer()) logits = tf.matmul(input_tensor, output_weights, transpose_b=True) logits = tf.nn.bias_add(logits, output_bias) log_probs = tf.nn.log_softmax(logits, axis=-1) labels = tf.reshape(labels, [-1]) one_hot_labels = tf.one_hot(labels, depth=2, dtype=tf.float32) per_example_loss = -tf.reduce_sum(one_hot_labels * log_probs, axis=-1) loss = tf.reduce_mean(per_example_loss) return (loss, per_example_loss, log_probs)
tensorflow.nn.log_softmax
6,326
import tensorflow as tf def sample(logits): noise = tf.random_uniform(tf.shape(logits)) return tf.argmax(logits - tf.log(-tf.log(noise)), 1) def cat_entropy(logits): a0 = logits - tf.reduce_max(logits, 1, keepdims=True) ea0 = tf.exp(a0) z0 = tf.reduce_sum(ea0, 1, keepdims=True) p0 = ea0 / z0 return tf.reduce_sum(p0 * (tf.log(z0) - a0), 1) def cat_entropy_softmax(p0): return - tf.reduce_sum(p0 * tf.log(p0 + 1e-6), axis = 1) def ortho_init(scale=1.0): def _ortho_init(shape, dtype, partition_info=None): #lasagne ortho init for tf shape = tuple(shape) if len(shape) == 2: flat_shape = shape
tensorflow.log
6,327
import tensorflow as tf return filename with tf.gfile.GFile(lang1_fname, mode="w") as lang1_resfile:
tensorflow.gfile.GFile
6,328
import tensorflow as tf self._loss = None if mode_gen in ('ce_train', 'loss', ): xent = CE_loss(vocab_scores, answer_batch, loss_weights) # [batch_size] if mode_gen == 'loss': xent *= self.placeholders.reward # multiply with rewards self._loss = tf.reduce_mean(xent) # Calculate coverage loss from the attention distributions if options.use_coverage: with tf.variable_scope('coverage_loss'): self._coverage_loss = _coverage_loss(attn_dists, loss_weights) self._loss = self._loss + options.cov_loss_wt * self._coverage_loss # accuracy is calculated only under 'ce_train', where true answer is given if mode_gen == 'ce_train': accuracy = _mask_and_accuracy(vocab_scores, answer_batch, loss_weights)
tensorflow.variable_scope
6,329
import tensorflow as tf # q network evaluation q_t = q_func(obs_t_input.get(), num_actions, scope="q_func", reuse=True) # reuse parameters from act q_func_vars = U.scope_vars(U.absolute_scope_name("q_func")) # target q network evalution q_tp1 = q_func(obs_tp1_input.get(), num_actions, scope="target_q_func") target_q_func_vars = U.scope_vars(U.absolute_scope_name("target_q_func")) # q scores for actions which we know were selected in the given state. q_t_selected = tf.reduce_sum(q_t * tf.one_hot(act_t_ph, num_actions), 1) # compute estimate of best possible value starting from state at t + 1 if double_q: q_tp1_using_online_net = q_func(obs_tp1_input.get(), num_actions, scope="q_func", reuse=True) q_tp1_best_using_online_net = tf.arg_max(q_tp1_using_online_net, 1) q_tp1_best = tf.reduce_sum(q_tp1 * tf.one_hot(q_tp1_best_using_online_net, num_actions), 1) else: q_tp1_best = tf.reduce_max(q_tp1, 1) q_tp1_best_masked = (1.0 - done_mask_ph) * q_tp1_best # compute RHS of bellman equation q_t_selected_target = rew_t_ph + gamma * q_tp1_best_masked # compute the error (potentially clipped) td_error = q_t_selected - tf.stop_gradient(q_t_selected_target) errors = U.huber_loss(td_error) weighted_error = tf.reduce_mean(importance_weights_ph * errors)
tensorflow.arg_max
6,330
import tensorflow as tf with tf.variable_scope(scope, default_name="bert"): with tf.variable_scope("embeddings"):
tensorflow.variable_scope
6,331
import tensorflow as tf (tf.Tensor) A single value tensor containing the loss. """ loss = None with tf.name_scope(name, "softmax_loss",[output]): label_dis = labels / tf.reduce_sum(labels, 1, keep_dims=True) loss = tf.nn.softmax_cross_entropy_with_logits(logits=output, labels=label_dis) * tf.reduce_sum(labels, 1) return tf.reduce_sum(loss) / tf.reduce_sum(labels) def get_normalized_weights(self, propensity): """Computes listwise softmax loss with propensity weighting. Args: propensity: (tf.Tensor) A tensor of the same shape as `output` containing the weight of each element.
tensorflow.reduce_sum
6,332
import tensorflow as tf 'maxls': 50, 'ftol' : 1.0 * np.finfo(float).eps}) self.optimizer_Adam = tf.train.AdamOptimizer() self.train_op_Adam = self.optimizer_Adam.minimize(self.loss) init = tf.global_variables_initializer() self.sess.run(init) def initialize_NN(self, layers): weights = [] biases = [] num_layers = len(layers) for l in range(0,num_layers-1): W = self.xavier_init(size=[layers[l], layers[l+1]]) b = tf.Variable(tf.zeros([1,layers[l+1]], dtype=tf.float32), dtype=tf.float32) weights.append(W) biases.append(b) return weights, biases def xavier_init(self, size): in_dim = size[0] out_dim = size[1] xavier_stddev = np.sqrt(2/(in_dim + out_dim)) return tf.Variable(tf.truncated_normal([in_dim, out_dim], stddev=xavier_stddev), dtype=tf.float32) def neural_net(self, X, weights, biases): num_layers = len(weights) + 1 H = 2.0*(X - self.lb)/(self.ub - self.lb) - 1.0
tensorflow.zeros
6,333
import tensorflow as tf from model_io import model_io from task_module import classifier import tensorflow as tf from metric import tf_metrics from optimizer import distributed_optimizer as optimizer from model_io import model_io from distillation import knowledge_distillation as distill def correlation(x, y): x = x - tf.reduce_mean(x, axis=-1, keepdims=True) y = y - tf.reduce_mean(y, axis=-1, keepdims=True) x = tf.nn.l2_normalize(x, -1) y = tf.nn.l2_normalize(y, -1) return -tf.reduce_sum(x*y, axis=-1) # higher the better def kd(x, y): x_prob = tf.nn.softmax(x) print(x_prob.get_shape(), y.get_shape(), tf.reduce_sum(x_prob * y, axis=-1).get_shape()) return -tf.reduce_sum(x_prob * y, axis=-1) # higher the better def mse(x, y): x = x - tf.reduce_mean(x, axis=-1, keepdims=True) y = y - tf.reduce_mean(y, axis=-1, keepdims=True) return tf.reduce_sum((x-y)**2, axis=-1) # lower the better def kd_distance(x, y, dist_type): if dist_type == "person": return correlation(x,y)
tensorflow.reduce_sum
6,334
import tensorflow as tf eval_input_fn = None ''' # Add hooks train_hooks = [ tf.train.StopAtStepHook(last_step=params.train_steps), tf.train.NanTensorHook(loss), # Monitors the loss tensor and stops training if loss is NaN tf.train.LoggingTensorHook( { "step": global_step, "loss": loss,
tensorflow.train.NanTensorHook
6,335
import tensorflow as tf """Trains model on train_data using optimizer.""" tf.train.get_or_create_global_step() def model_loss(labels, chars, sequence_length): predictions = model((chars, sequence_length), training=True) loss_value = loss(labels, predictions) tf.contrib.summary.scalar("loss", loss_value) return loss_value for (batch, (labels, chars, sequence_length)) in enumerate( tfe.Iterator(train_data)): with tf.contrib.summary.record_summaries_every_n_global_steps(log_interval): batch_model_loss = functools.partial(model_loss, labels, chars,
tensorflow.contrib.summary.scalar
6,336
from tensorflow.python.framework import ops if updates_collections: ops.add_to_collections(updates_collections, update_op)
tensorflow.python.framework.ops.add_to_collections
6,337
from tensorflow.python.client import device_lib class RevNetBenchmark(tf.test.Benchmark): """Eager and graph benchmarks for RevNet.""" def _train_batch_sizes(self): """Shamelessly copied from `resnet50_test.py`. Note: This is targeted towards ImageNet. CIFAR-10 should allow more aggressive batch sizes. Returns: A tuple of possible batch sizes """ for device in device_lib.list_local_devices(): if tf.DeviceSpec.from_string(device.name).device_type == "GPU": if "K20" in device.physical_device_desc: return (16,) if "P100" in device.physical_device_desc: return (16, 32, 64) if tf.DeviceSpec.from_string(device.name).device_type == "TPU": return (32,) return (16, 32) def _force_device_sync(self): """Shamelessly copied from `resnet50_test.py`."""
tensorflow.python.client.device_lib.list_local_devices
6,338
import tensorflow as tf features: an map of string to `Tensor` decode_length: an integer. How many additional timesteps to decode. beam_size: number of beams. top_beams: an integer. How many of the beams to return. alpha: Float that controls the length penalty. larger the alpha, stronger the preference for slonger translations. Returns: samples: an integer `Tensor`. Top samples from the beam search """ batch_size = common_layers.shape_list(features["inputs"])[0] def symbols_to_logits_fn(ids): """Go from ids to logits.""" ids = tf.expand_dims(tf.expand_dims(ids, axis=2), axis=3) ids = tf.pad(ids[:, 1:], [[0, 0], [0, 1], [0, 0], [0, 0]]) if "partial_targets" in features: pt = features["partial_targets"] pt_length = common_layers.shape_list(pt)[1] pt = tf.tile(pt, [1, beam_size]) pt = tf.reshape(pt, [batch_size * beam_size, pt_length, 1, 1]) ids = tf.concat([pt, ids], axis=1) features["targets"] = ids self._coverage = None logits, _ = self(features) # pylint: disable=not-callable # now self._coverage is a coverage tensor for the first datashard. # it has shape [batch_size] and contains floats between 0 and # source_length. if self._problem_hparams:
tensorflow.pad
6,339
from tensorflow.python.util import deprecation from tensorflow.python.training import saver as saver_lib from tensorflow.python.training import summary_io from tensorflow.python.util import deprecation # TODO(ptucker): Split each monitor class into a separate file. # TODO(ptucker): Fail if epoch or step does not monotonically increase? class BaseMonitor(object): """Base class for Monitors. Defines basic interfaces of Monitors. Monitors can either be run on all workers or, more commonly, restricted to run exclusively on the elected chief worker. """ @deprecation.deprecated( "2016-12-05", "Monitors are deprecated. Please use tf.train.SessionRunHook.") def __init__(self): self._begun = False self._current_epoch = None self._current_step = None self._max_steps = None self._estimator = None @property def run_on_all_workers(self): return False def set_estimator(self, estimator):
tensorflow.python.util.deprecation.deprecated
6,340
import tensorflow as tf self.validateKolmogorovSmirnov([10**5], 0.0, 0.1, 0.05, 0.10) class ParameterizedTruncatedNormalGpuTest(ParameterizedTruncatedNormalTest): _use_gpu = True # Benchmarking code def parameterized_vs_naive(shape, num_iters, use_gpu=False): np.random.seed(1618) # Make it reproducible. # No CSE/CF. optimizer_options = tf.OptimizerOptions(opt_level=tf.OptimizerOptions.L0) config = tf.ConfigProto( graph_options=tf.GraphOptions(optimizer_options=optimizer_options)) with tf.Session(config=config) as sess: with tf.device("/cpu:0" if not use_gpu else None): param_op = tf.group(random_ops.parameterized_truncated_normal(shape)) naive_op = tf.group(random_ops.truncated_normal(shape)) # Burn-in to avoid session setup costs in the timing. sess.run(param_op) sess.run(param_op) param_dt = timeit.timeit(lambda: sess.run(param_op), number=num_iters) sess.run(naive_op) sess.run(naive_op) naive_dt = timeit.timeit(lambda: sess.run(naive_op), number=num_iters)
tensorflow.GraphOptions
6,341
import tensorflow as tf self.assertEqual(logits_.shape, (batch_size, max_time)) # case 4 hparams = { "pretrained_model_name": None, "regr_strategy": "all_time", "max_seq_len": max_time } inputs = tf.placeholder(tf.int32, shape=[batch_size, 6]) regressor = XLNetRegressor(hparams=hparams) logits = regressor(inputs) with self.test_session() as sess: sess.run(tf.global_variables_initializer()) logits_ = sess.run( logits, feed_dict={inputs: np.random.randint(30521,
tensorflow.placeholder
6,342
import tensorflow as tf x = np.clip(x, 0, 1) # convert to RGB array x *= 255 if K.image_dim_ordering() == 'th': x = x.transpose((1, 2, 0)) x = np.clip(x, 0, 255).astype('uint8') return x def _compute_gradients(tensor, var_list): grads = tf.gradients(tensor, var_list) return [grad if grad is not None else tf.zeros_like(var) for var, grad in zip(var_list, grads)] def grad_cam(input_model, image, category_index, layer_name): nb_classes = 1000 target_layer = lambda x: target_category_loss(x, category_index, nb_classes) x = Lambda(target_layer, output_shape = target_category_loss_output_shape)(input_model.output) model = Model(inputs=input_model.input, outputs=x) #model.summary() loss = K.sum(model.output)
tensorflow.gradients
6,343
import tensorflow as tf def mean_pooling_for_unselected_head( unhead_org_idx, sl_unhead, rep_unhead_mask, dep_org_idx, sl_dep, rep_dep_mask, rep_dep_tensor, direction ): with tf.name_scope('pooling_for_un_head'): undep_idxs = tf.tile(tf.expand_dims(dep_org_idx, 1), [1, sl_unhead, 1]) # [bs, sluh, sld] unhead_idxs = tf.tile(tf.expand_dims(unhead_org_idx, 2), [1, 1, sl_dep]) # [bs, sluh, sld] if direction is None: direct_mask_un = tf.not_equal(unhead_idxs, undep_idxs) # [bs, sluh, sld] else: if direction == 'forward': direct_mask_un = tf.greater(unhead_idxs, undep_idxs) # [bs, sluh, sld] else: direct_mask_un = tf.less(unhead_idxs, undep_idxs) # [bs, sluh, sld] # [bs, sluh, sld] rep_mask_tile_un = tf.logical_and(tf.expand_dims(rep_dep_mask, 1), tf.expand_dims(rep_unhead_mask, 2)) pooling_mask = tf.logical_and(direct_mask_un, rep_mask_tile_un) # [bs, sluh, sld]
tensorflow.not_equal
6,344
import tensorflow as tf candidate_mask = tf.logical_and(candidate_ends < num_words, tf.equal(candidate_start_sentence_indices, candidate_end_sentence_indices)) # [num_words, max_span_width] flattened_candidate_mask = tf.reshape(candidate_mask, [-1]) # [num_words * max_span_width] candidate_starts = tf.boolean_mask(tf.reshape(candidate_starts, [-1]), flattened_candidate_mask) # [num_candidates] candidate_ends = tf.boolean_mask(tf.reshape(candidate_ends, [-1]), flattened_candidate_mask) # [num_candidates] candidate_sentence_indices = tf.boolean_mask(tf.reshape(candidate_start_sentence_indices, [-1]), flattened_candidate_mask) # [num_candidates] candidate_cluster_ids = self.get_candidate_labels(candidate_starts, candidate_ends, gold_starts, gold_ends, cluster_ids) # [num_candidates] candidate_span_emb = self.get_span_emb(flattened_head_emb, context_outputs, candidate_starts, candidate_ends) # [num_candidates, emb] candidate_mention_scores = self.get_mention_scores(candidate_span_emb) # [k, 1] candidate_mention_scores = tf.squeeze(candidate_mention_scores, 1) # [k] k = tf.to_int32(tf.floor(tf.to_float(tf.shape(context_outputs)[0]) * self.config["top_span_ratio"])) top_span_indices = coref_ops.extract_spans(tf.expand_dims(candidate_mention_scores, 0), tf.expand_dims(candidate_starts, 0), tf.expand_dims(candidate_ends, 0), tf.expand_dims(k, 0), util.shape(context_outputs, 0), True) # [1, k] top_span_indices.set_shape([1, None]) top_span_indices = tf.squeeze(top_span_indices, 0) # [k] top_span_starts = tf.gather(candidate_starts, top_span_indices) # [k] top_span_ends = tf.gather(candidate_ends, top_span_indices) # [k] top_span_emb = tf.gather(candidate_span_emb, top_span_indices) # [k, emb] top_span_cluster_ids = tf.gather(candidate_cluster_ids, top_span_indices) # [k] top_span_mention_scores = tf.gather(candidate_mention_scores, top_span_indices) # [k] top_span_sentence_indices = tf.gather(candidate_sentence_indices, top_span_indices) # [k] top_span_speaker_ids = tf.gather(speaker_ids, top_span_starts) # [k]
tensorflow.expand_dims
6,345
from tensorflow.python.ops import array_ops b_list = [b[i] for i in range(numTensors)] b_grads = b_module.bspmm(a_indices, a_values, a_shape, grad, adjoint_a=True, adjoint_b=False) bg_row=tf.shape(b_grads[0])[0] bg_col=tf.shape(b_grads[0])[1] b_grads = tf.reshape(b_grads, (numTensors * bg_row, bg_col)) if adj_b: b_grads = [array_ops.transpose(b_g) for b_g in b_grads] for t in range(numTensors): rows = a_indices[t][:, 0] cols = a_indices[t][:, 1] parts_a = array_ops.gather(grad[t], rows if not adj_a else cols) parts_b = array_ops.gather(b_list[t] if not adj_b else array_ops.transpose(b_list[t]), cols if not adj_a else rows) a_values_grads.append(math_ops.reduce_sum(parts_a * parts_b, reduction_indices=1))
tensorflow.python.ops.array_ops.transpose
6,346
import tensorflow as tf # for each key I get the collection of summary nodes # I set up a filewriter for each summary node self.summary_nodes = {sk: tf.get_collection(sk) for sk in self.summary_keys} for sk in self.summary_keys:
tensorflow.get_collection
6,347
import tensorflow as tf """Example sequence-to-sequence model that uses GRU cells.""" def GRUSeq2Seq(enc_inp, dec_inp): cell = tf.nn.rnn_cell.MultiRNNCell([tf.nn.rnn_cell.GRUCell(24)] * 2, state_is_tuple=True) return tf.nn.seq2seq.embedding_attention_seq2seq( enc_inp, dec_inp, cell, num_encoder_symbols=classes, num_decoder_symbols=classes, embedding_size=24, output_projection=(w, b)) targets = [dec_inp[i+1] for i in range(len(dec_inp) - 1)] + [0] def SampledLoss(labels, inputs): labels = tf.reshape(labels, [-1, 1]) return tf.nn.sampled_softmax_loss(w_t, b, inputs, labels, 8, classes) return tf.nn.seq2seq.model_with_buckets( enc_inp, dec_inp, targets, weights, buckets, GRUSeq2Seq, softmax_loss_function=SampledLoss) # Now we construct the copy model. batch_size = 8 inp = [tf.placeholder(tf.int32, shape=[None]) for _ in range(8)] out = [tf.placeholder(tf.int32, shape=[None]) for _ in range(8)]
tensorflow.reshape
6,348
import tensorflow as tf logits=logits, weights=inst_weights, onehot_labels=one_hot_labels) return loss src_loss = get_loss(src_logits, inst_weights, src_one_hot_labels) dst_loss = get_loss(dst_logits, 1., finetune_one_hot_labels) l2_loss = [] for v in tf.trainable_variables(): if 'batch_normalization' not in v.name and 'rl_controller' not in v.name: l2_loss.append(tf.nn.l2_loss(v)) l2_loss = FLAGS.dst_weight_decay * tf.add_n(l2_loss) enable_pretrain = tf.cast(
tensorflow.trainable_variables
6,349
import tensorflow as tf def _batch_padding(self, dataset: tf.data.Dataset, pad_id=0, **kwargs) -> tf.data.Dataset: pad_id = tf.constant(pad_id, dtype=tf.int32) # fmt: off padded_shapes = kwargs.get("padded_shapes", ([None, ], [None, ], [None, ], [None, ])) padding_values = kwargs.get("padding_values", (pad_id, pad_id, pad_id, pad_id)) # fmt: on dataset = utils.batching_and_padding(dataset, padded_shapes, padding_values, **kwargs) return dataset def _bucket_padding(self, dataset: tf.data.Dataset, pad_id=0, **kwargs) -> tf.data.Dataset: pad_id = tf.constant(pad_id, dtype=tf.int32) # fmt: off padded_shapes = kwargs.get("padded_shapes", ([None, ], [None, ], [None, ], [None, ])) padding_values = kwargs.get("padding_values", (pad_id, pad_id, pad_id, pad_id)) # fmt: on dataset = utils.bucketing_and_padding( dataset, bucket_fn=lambda a, b, c, y: tf.size(a), padded_shapes=padded_shapes, padding_values=padding_values, **kwargs,
tensorflow.constant
6,350
import tensorflow as tf v = tf.Variable(np.int64(-1), name="v") save = tf.train.Saver({"v": v})
tensorflow.train.Saver
6,351
import tensorflow as tf input_images = tf.reshape(x_input, [-1, 28, 28, 1]) generated_images = tf.reshape(decoder_output, [-1, 28, 28, 1]) # Tensorboard visualization tf.summary.scalar(name='Autoencoder Loss', tensor=autoencoder_loss) tf.summary.scalar(name='Discriminator gauss Loss', tensor=dc_g_loss) tf.summary.scalar(name='Discriminator categorical Loss', tensor=dc_c_loss) tf.summary.scalar(name='Generator Loss', tensor=generator_loss) tf.summary.scalar(name='Supervised Encoder Loss', tensor=supervised_encoder_loss) tf.summary.histogram(name='Encoder Gauss Distribution', values=encoder_output_latent) tf.summary.histogram(name='Real Gauss Distribution', values=real_distribution) tf.summary.histogram(name='Encoder Categorical Distribution', values=encoder_output_label) tf.summary.histogram(name='Real Categorical Distribution', values=categorial_distribution) tf.summary.image(name='Input Images', tensor=input_images, max_outputs=10) tf.summary.image(name='Generated Images', tensor=generated_images, max_outputs=10) summary_op = tf.summary.merge_all() # Saving the model saver = tf.train.Saver() step = 0 with tf.Session() as sess: if train_model: tensorboard_path, saved_model_path, log_path = form_results() sess.run(init) writer = tf.summary.FileWriter(logdir=tensorboard_path, graph=sess.graph) x_l, y_l = mnist.test.next_batch(n_labeled)
tensorflow.summary.image
6,352
import tensorflow as tf with self.assertRaisesWithPredicateMatch( IOError, lambda e: "does not exist"): tf.train.import_meta_graph(filename) def testSliceVariable(self): test_dir = self._TestDir("slice_saver") filename = os.path.join(test_dir, "metafile") with self.test_session(): v1 = tf.Variable([20.0], name="v1") v2 = tf.Variable([20.0], name="v2") v2._set_save_slice_info(tf.Variable.SaveSliceInfo("v1", [1], [0], [1])) # The names are different and will work. slice_saver = tf.train.Saver({"first": v1, "second": v2}) tf.initialize_all_variables().run() # Exports to meta_graph
tensorflow.Variable
6,353
import tensorflow as tf eval_metrics=(eval_metrics_fn, logits), loss=loss) else: return tf.contrib.tpu.TPUEstimatorSpec( tf.estimator.ModeKeys.EVAL, eval_metrics=(eval_metrics_fn, [logits, labels]),
tensorflow.contrib.tpu.TPUEstimatorSpec
6,354
import tensorflow as tf else: cols = width hparams = tf.contrib.training.HParams( hidden_size=2,
tensorflow.contrib.training.HParams
6,355
import tensorflow as tf for time_step in range(self.num_steps): if time_step > 0: tf.get_variable_scope().reuse_variables() (cell_output, state) = cell(inputs[:, time_step, :], state) outputs.append(cell_output) output = tf.reshape(tf.concat(outputs, 1), [-1, config.hidden_size]) return output, state def assign_lr(self, session, lr_value):
tensorflow.concat
6,356
import tensorflow as tf cells.append(cell) if len(cells) == 1: return cells[0] else: return CellWrapper(MultiRNNCell(cells)) def look(time, state, input_, prev_weights=None, pos=None, context=None): prev_weights_ = [prev_weights if i == align_encoder_id else None for i in range(len(encoders))] pos_ = None if decoder.pred_edits: pos_ = [pos if i == align_encoder_id else None for i in range(len(encoders))] if decoder.attn_prev_word: state = tf.concat([state, input_], axis=1) if decoder.attn_prev_attn and context is not None: state = tf.concat([state, context], axis=1) if decoder.hidden_state_scaling: attention_states_ = [states * decoder.hidden_state_scaling for states in attention_states] else: attention_states_ = attention_states parameters = dict(hidden_states=attention_states_, encoder_input_length=encoder_input_length, encoders=encoders, aggregation_method=decoder.aggregation_method) context, new_weights = multi_attention(state, time=time, pos=pos_, prev_weights=prev_weights_, **parameters)
tensorflow.concat
6,357
from tensorflow.python.framework import ops A `Tensor` of the same type as `a`. """ with ops.op_scope([a, b], name, "MatMul") as name: a = ops.convert_to_tensor(a, name="a")
tensorflow.python.framework.ops.op_scope
6,358
import tensorflow as tf return ( tf.identity(self._moving_mean), tf.identity(self._moving_variance), tf.identity(self._moving_second_moment),
tensorflow.identity
6,359
import tensorflow as tf # print(avg_loss) # exit() return avg_loss def compute_contra_loss(pred1, pred2, tgt1, tgt2, hard_ratio=1.0): geq = tf.cast((tgt1 - tgt2) > 0, tf.bool) tgt_larg = tf.where(geq, tgt1, tgt2) tgt_small = tf.where(geq, tgt2, tgt1) pred_larg = tf.where(geq, pred1, pred2) pred_small = tf.where(geq, pred2, pred1) loss = tf.maximum(0., (tgt_larg - tgt_small) - (pred_larg - pred_small)) if hard_ratio < 1.0: hard_num = tf.cast(tools.shape(pred1)[0] * hard_ratio, tf.int32) loss = tf.reshape(loss, [-1]) hard_loss, _ = tf.math.top_k(loss, k=hard_num) return hard_loss return loss
tensorflow.where
6,360
import tensorflow as tf scaffold_fn = tpu_scaffold else: tf.train.init_from_checkpoint(init_checkpoint, assignment_map) tf.logging.info("**** Trainable Variables ****") for var in tvars: init_string = "" if var.name in initialized_variable_names: init_string = ", *INIT_FROM_CKPT*" tf.logging.info(" name = %s, shape = %s%s", var.name, var.shape, init_string) output_spec = None if mode == tf.estimator.ModeKeys.TRAIN: train_op = optimization.create_optimizer( total_loss, learning_rate, num_train_steps, num_warmup_steps, use_tpu)
tensorflow.logging.info
6,361
import tensorflow as tf """ normalizer_fn = slim.batch_norm normalizer_fn_args = { 'is_training': is_training, 'zero_debias_moving_mean': True, 'fused': fused_batch_norm, } _validate_image_inputs(inputs) inp_shape = inputs.get_shape().as_list()[1] end_points = {} with tf.compat.v1.variable_scope(scope, values=[inputs], reuse=reuse) as scope: with slim.arg_scope([normalizer_fn], **normalizer_fn_args): with slim.arg_scope([slim.conv2d], stride=2, kernel_size=4, activation_fn=tf.nn.leaky_relu): net = inputs for i in xrange(int(log(inp_shape, 2))): scope = 'conv%i' % (i + 1) current_depth = depth * 2**i normalizer_fn_ = None if i == 0 else normalizer_fn net = slim.conv2d( net, current_depth, normalizer_fn=normalizer_fn_, scope=scope)
tensorflow.compat.v1.variable_scope
6,362
import tensorflow as tf tf.split(1, max_sequence_len, embeddings)] # Need to prepare a mask to zero out the padding symbols. # Make a batch_size x max_sequence_len matrix where each # row contains the length repeated max_sequence_len times. lengths_transposed = tf.expand_dims(tf.to_int32(self.seq_lens), 1) lengths_tiled = tf.tile(lengths_transposed, [1, max_sequence_len]) # Make a matrix where each row contains [0, 1, ..., max_sequence_len] r = tf.range(0, max_sequence_len, 1) range_row = tf.expand_dims(r, 0) range_tiled = tf.tile(range_row, [batch_size, 1]) # Use the logical operations to create a mask indicator = tf.less(range_tiled, lengths_tiled) sz = [batch_size, max_sequence_len] self._mask = tf.select(indicator, tf.ones(sz), tf.zeros(sz)) def _DoPredictions(self, in_size, mats, class_weights=None):
tensorflow.range
6,363
import tensorflow as tf # intermediate projection to embedding size (before projecting to vocabulary size) # this is useful to reduce the number of parameters, and # to use the output embeddings for output projection (tie_embeddings parameter) output_ = dense(output_, decoder.embedding_size, use_bias=False, name='softmax0') if decoder.tie_embeddings and (decoder.pred_embed_proj or decoder.pred_deep_layer): bias = get_variable('softmax1/bias', shape=[decoder.vocab_size]) output_ = tf.matmul(output_, tf.transpose(embedding)) + bias else: output_ = dense(output_, decoder.vocab_size, use_bias=True, name='softmax1') return output_ if decoder.use_dropout: # FIXME: why no pervasive dropout here? initial_state = tf.nn.dropout(initial_state, keep_prob=decoder.initial_state_keep_prob)
tensorflow.transpose
6,364
import tensorflow as tf iteration_op = tfe.define_output(model_owner.player_name, aggregated_model_grads, model_owner.update_model) with tfe.Session(target=session_target) as sess: sess.run(tf.global_variables_initializer(), tag='init') for i in range(model_owner.ITERATIONS):
tensorflow.global_variables_initializer
6,365
import tensorflow as tf def update(self, state, target, a_his, sess=None): sess = sess or tf.get_default_session() feed_dict = { self.state: state, self.target: target, self.a_his: a_his } _, loss = sess.run([self.train_op, self.loss], feed_dict) return loss class ValueEstimator_Pendulum(): def __init__(self, learning_rate=0.1, par_idx=0,scope="value_estimator"): w_init = tf.random_normal_initializer(0.,.1); with tf.variable_scope(scope+"_"+str(par_idx)): # state and target self.state = tf.placeholder(tf.float32, [None,num_state], "state") self.target = tf.placeholder(tf.float32, [None,1], name="target") # layers l_c = tf.layers.dense(self.state, 100, tf.nn.relu6, kernel_initializer=w_init, name='lc')
tensorflow.random_normal_initializer
6,366
from tensorflow.contrib.data import Iterator temp_val_data['X'][i * 2 + 1, :, :, :] = self.val_data['X'][i, :, sh[2] // 2:, :] temp_val_data['Y'][i * 2, :, :] = self.val_data['Y'][i, :, :sh[2] // 2] temp_val_data['Y'][i * 2 + 1, :, :] = self.val_data['Y'][i, :, sh[2] // 2:] self.val_data = temp_val_data def init_tfdata(self, batch_size, main_dir, resize_shape, mode='train'): self.data_session = tf.Session() print("Creating the iterator for training data") with tf.device('/cpu:0'): segdl = SegDataLoader(main_dir, batch_size, (resize_shape[0], resize_shape[1]), resize_shape, # * 2), resize_shape, 'data/cityscapes_tfdata/train.txt') iterator = Iterator.from_structure(segdl.data_tr.output_types, segdl.data_tr.output_shapes) next_batch = iterator.get_next() self.init_op = iterator.make_initializer(segdl.data_tr) self.data_session.run(self.init_op) print("Loading Validation data in memoryfor faster training..") self.val_data = {'X': np.load(self.args.data_dir + "X_val.npy"), 'Y': np.load(self.args.data_dir + "Y_val.npy")} # self.crop() # import cv2 # cv2.imshow('crop1', self.val_data['X'][0,:,:,:]) # cv2.imshow('crop2', self.val_data['X'][1,:,:,:])
tensorflow.contrib.data.Iterator.from_structure
6,367
import tensorflow as tf def encode(self, x, encode_params): """See base class.""" del encode_params # Unused. signs = tf.sign(x) abs_vals = tf.abs(x) ints = tf.floor(abs_vals) floats = abs_vals - ints return { self.ENCODED_SIGNS_KEY: signs, self.ENCODED_INTS_KEY: ints, self.ENCODED_FLOATS_KEY: floats
tensorflow.floor
6,368
from tensorflow.python.ops import array_ops """_TargetColumn for regression.""" def __init__(self, loss_fn, label_name, weight_column_name, target_dimension): super(_RegressionTargetColumn, self).__init__( loss_fn=loss_fn, num_label_columns=target_dimension, label_name=label_name, weight_column_name=weight_column_name) def logits_to_predictions(self, logits, proba=False): if self.num_label_columns == 1: return array_ops.squeeze(logits, squeeze_dims=[1]) return logits def get_eval_ops(self, features, logits, targets, metrics=None): loss = self.loss(logits, targets, features) result = {"loss": metrics_lib.streaming_mean(loss)} if metrics: predictions = self.logits_to_predictions(logits, proba=False) result.update(_run_metrics(predictions, targets, metrics, self.get_weight_tensor(features))) return result
tensorflow.python.ops.array_ops.squeeze
6,369
import tensorflow as tf """ mu, var = self.build_prior_mean_var(test_points, num_latent, True) jitter = tfhacks.eye(tf.shape(mu)[0], var.dtype) * 1e-06 L = tf.batch_cholesky(tf.transpose(var, (2, 0, 1)) + jitter)
tensorflow.shape
6,370
import tensorflow as tf total_loss_dict, total_losses = self.loss_dict(loss_dict, num_gpu) if i == num_gpu - 1: regularization_losses = tf.get_collection( tf.GraphKeys.REGULARIZATION_LOSSES) # weight_decay_loss = tf.add_n(slim.losses.get_regularization_losses()) total_losses = total_losses + tf.add_n(regularization_losses) tf.get_variable_scope().reuse_variables() grads = optimizer.compute_gradients(total_losses) if cfgs.GRADIENT_CLIPPING_BY_NORM is not None: grads = slim.learning.clip_gradient_norms(grads, cfgs.GRADIENT_CLIPPING_BY_NORM) tower_grads.append(grads) self.log_printer(r3det_dcl, optimizer, global_step, tower_grads, total_loss_dict, num_gpu, graph) if __name__ == '__main__':
tensorflow.get_variable_scope
6,371
import tensorflow as tf # samples_world = grid.generate( # (-5.0, -5.0, -5.0), # (5.0, 5.0, 5.0), # [self.resolution, self.resolution, self.resolution]) samples_world = tf.reshape(samples_world, [-1, 3]) ious = [] status = False if status: _, axs = plt.subplots(labeled_translations.shape[0], 5) fig_obj_count = 0 for class_id in range(self.max_num_classes): # Do the same for the ground truth and predictions sdf_values = tf.zeros_like(samples_world)[:, 0:1] for mtype, (classes, sdfs, poses) in enumerate([ (labeled_classes, labeled_sdfs, labeled_poses), (predicted_classes, predicted_sdfs, predicted_poses)]): for i in range(classes.shape[0]): if class_id == classes[i]: sdf = tf.expand_dims(sdfs[i], -1) sdf = sdf * -1.0 # inside positive, outside zero samples_object = centernet_utils.transform_pointcloud( tf.reshape(samples_world, [1, 1, -1, 3]), tf.reshape(poses[2][i], [1, 1, 3]), tf.reshape(poses[0][i], [1, 1, 3, 3]), tf.reshape(poses[1][i], [1, 1, 3]), inverse=True) * 2.0
tensorflow.zeros_like
6,372
import tensorflow as tf with tf.variable_scope(name, reuse=reuse): layer_c1 = tf.layers.dense(state_in, 512, tf.nn.relu, kernel_regularizer=reg)
tensorflow.layers.dense
6,373
import tensorflow as tf for var, perturbed_var in zip(all_vars, all_perturbed_vars): if param_noise_filter_func(perturbed_var): # Perturb this variable. op = tf.assign(perturbed_var, var + tf.random_normal(shape=tf.shape(var), mean=0., stddev=param_noise_scale)) else: # Do not perturb, just assign.
tensorflow.shape
6,374
import tensorflow as tf h0 = tf.nn.dropout(tf.reshape(z_, [-1, s_h3, s_w3, nf3]), keep_prob) import IPython IPython.embed() h1 = lrelu(deconv2d(tf.concat([h0, skip_h3], 3), [self.batch_size, s_h2, s_w2, nf2], name='d_h1', d_h=ns3, d_w=ns3)) h2 = lrelu(deconv2d(tf.concat([h1, skip_h2], 3), [self.batch_size, s_h1, s_w1, nf1], name='d_h2', d_h=ns2, d_w=ns2)) h3 = lrelu(deconv2d(tf.concat([h2, skip_h1], 3), [self.batch_size, s_h0, s_w0, nf0], name='d_h3', d_h=ns1, d_w=ns1)) print(h3.get_shape()) h4 = deconv2d(tf.concat([h3, skip_h0], 3), [self.batch_size, s_h, s_w, self.c_dim], name='d_h4', d_h=ns0, d_w=ns0) return h4 with tf.variable_scope("deconv") as scope:
tensorflow.concat
6,375
import tensorflow as tf # source_length. if self._problem_hparams: modality = self._problem_hparams.target_modality if modality.top_is_pointwise: return tf.squeeze(logits, axis=[1, 2, 3]) # -1 due to the pad above. current_output_position = common_layers.shape_list(ids)[1] - 1 logits = logits[:, current_output_position, :, :]
tensorflow.squeeze
6,376
import tensorflow as tf def avg_pool(self, bottom, kernal_size = 2, stride = 2, name = "avg"): return tf.nn.avg_pool(bottom, ksize=[1, kernal_size, kernal_size, 1], strides=[1, stride, stride, 1], padding='VALID', name=name) def max_pool(self, bottom, kernal_size = 2, stride = 2, name = "max"): return tf.nn.max_pool(bottom, ksize=[1, kernal_size, kernal_size, 1], strides=[1, stride, stride, 1], padding='SAME', name=name) def conv_layer(self, bottom, kernal_size, in_channels, out_channels, stride, name): with tf.variable_scope(name): filt, conv_biases = self.get_conv_var(kernal_size, in_channels, out_channels, name) conv = tf.nn.conv2d(bottom, filt, [1,stride,stride,1], padding='SAME') bias = tf.nn.bias_add(conv, conv_biases) tf.summary.histogram('weight', filt) tf.summary.histogram('bias', conv_biases) return bias
tensorflow.variable_scope
6,377
import tensorflow as tf [0, 1]], dtype=tf.float32) mask1 = tf.constant([[1, 1],
tensorflow.constant
6,378
import tensorflow as tf # fixed folder saved_model_dir = "tf_cnn_model/1/" target_dir = "tflite_cnn_model" def convert_tflite(): if not os.path.exists(target_dir): os.makedirs(target_dir) converter = tf.lite.TFLiteConverter.from_saved_model(saved_model_dir) #converter.optimizations = [tf.lite.Optimize.DEFAULT] converter.optimizations = [tf.lite.Optimize.OPTIMIZE_FOR_LATENCY] tflite_model = converter.convert() with open(f"{target_dir}/tflite_model.tflite", "wb") as f: f.write(tflite_model) def validation():
tensorflow.lite.TFLiteConverter.from_saved_model
6,379
from tensorflow.contrib.tensorboard.plugins import projector self.embedding_test_ph = tf.placeholder(tf.float32, embedding_shape, name='embedding') self.embedding_test = tf.Variable(tf.random_normal(embedding_shape), name='test_embedding', trainable=False) self.embedding_assign = self.embedding_test.assign(self.embedding_test_ph) self.embedding_saver = tf.train.Saver(var_list=[self.embedding_test]) config = projector.ProjectorConfig() embedding = config.embeddings.add() embedding.tensor_name = self.embedding_test.name embedding.sprite.image_path = './sprite.png' embedding.sprite.single_image_dim.extend([80, 80])
tensorflow.contrib.tensorboard.plugins.projector.ProjectorConfig
6,380
import tensorflow as tf raise ValueError('depth=%g is a not a valid setting!' % depth) # input tensors self.input_x = tf.placeholder(tf.int32, [None, sequence_max_length], name="input_x") self.input_tags = tf.placeholder(tf.int32, [None, sequence_max_length], name="input_tags") self.input_deps = tf.placeholder(tf.int32, [None, sequence_max_length], name="input_dependency") self.input_head = tf.placeholder(tf.int32, [None, sequence_max_length], name="input_head") self.input_y = tf.placeholder(tf.float32, [None, num_classes], name="input_y") self.is_training = tf.placeholder(tf.bool) initializer = tf.contrib.layers.variance_scaling_initializer() # Embedding Lookup 16 with tf.device('/cpu:0'), tf.name_scope("embedding"): if use_he_uniform: self.embedding_W = tf.get_variable(name='lookup_W', shape=[num_quantized_chars, embedding_size], initializer=tf.contrib.layers.variance_scaling_initializer()) else: self.embedding_W = tf.Variable(tf.random_uniform([num_quantized_chars, embedding_size], -1.0, 1.0),name="embedding_W") self.embedded_characters = tf.nn.embedding_lookup(self.embedding_W, self.input_x) embedded_text_expand = tf.expand_dims(self.embedded_characters, -1) with tf.device('/cpu:0'), tf.name_scope("embedding_tags"): W_tags = tf.get_variable("embed_W_tags", [tags_vocab_size, embedding_size], initializer=initializer) embedded_tags = tf.nn.embedding_lookup(W_tags, self.input_tags) embedded_tags_expanded = tf.expand_dims(embedded_tags, -1)
tensorflow.device
6,381
import tensorflow as tf network = resnet_model.imagenet_resnet_v2( resnet_size=18, num_classes=class_num, mode='se', data_format=None) inputs= network(inputs=inputs, is_training=training) feat = tf.nn.l2_normalize(inputs, 1, 1e-10, name='feat') inputs = tf.layers.dense(inputs=inputs, units=class_num) # inputs = tf.layers.dense(inputs=feat, units=class_num) inputs = tf.identity(inputs, 'final_dense') return inputs, feat # image_size = 32, img_channels = 3, class_num = 10 in cifar10 x = tf.placeholder(tf.float32, shape=[None, image_size, image_size, img_channels]) label = tf.placeholder(tf.float32, shape=[None,]) one_hot_labels = tf.one_hot(indices=tf.cast(label, tf.int32), depth=class_num) training_flag = tf.placeholder(tf.bool) learning_rate = tf.placeholder(tf.float32, name='learning_rate') logits, feat = resnet_model_fn(x, training=training_flag) cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=one_hot_labels, logits=logits)) Focal_loss = tf.reduce_mean(focal_loss(one_hot_labels, logits, alpha=0.5)) l2_loss = weight_decay * tf.add_n([tf.nn.l2_loss(v) for v in tf.trainable_variables()]) Center_loss, Centers = center_loss(feat, tf.cast(label, dtype=tf.int32), 0.95, class_num)
tensorflow.placeholder
6,382
import tensorflow as tf return out def intprod(x): return int(np.prod(x)) def numel(x): return intprod(var_shape(x)) def flatgrad(loss, var_list, clip_norm=None): grads = tf.gradients(loss, var_list) if clip_norm is not None: grads = [tf.clip_by_norm(grad, clip_norm=clip_norm) for grad in grads] return tf.concat(axis=0, values=[ tf.reshape(grad if grad is not None else tf.zeros_like(v), [numel(v)]) for (v, grad) in zip(var_list, grads) ]) class SetFromFlat(object): def __init__(self, var_list, dtype=tf.float32): assigns = [] shapes = list(map(var_shape, var_list)) total_size = np.sum([intprod(shape) for shape in shapes]) self.theta = theta = tf.placeholder(dtype, [total_size])
tensorflow.clip_by_norm
6,383
import tensorflow as tf def evaluate_legendre_polynomial(degree_l: TensorLike, order_m: TensorLike, x: TensorLike) -> TensorLike: degree_l = tf.convert_to_tensor(value=degree_l) order_m = tf.convert_to_tensor(value=order_m) x = tf.convert_to_tensor(value=x)
tensorflow.convert_to_tensor
6,384
import tensorflow as tf """ SHAPE = 256 BATCH = 1 TEST_BATCH = 32 NF = 64 # channel size def INReLU(x, name=None): x = InstanceNorm('inorm', x) return tf.nn.relu(x, name=name) def INLReLU(x, name=None): x = InstanceNorm('inorm', x) return LeakyReLU(x, name=name) class Model(GANModelDesc): def _get_inputs(self):
tensorflow.nn.relu
6,385
import tensorflow as tf self.W_out_train = params.get('W_out_train', True) self.b_rec_train = params.get('b_rec_train', True) self.b_out_train = params.get('b_out_train', True) self.init_state_train = params.get('init_state_train', True) # Tensorflow initializations self.x = tf.placeholder("float", [N_batch, N_steps, N_in]) self.y = tf.placeholder("float", [N_batch, N_steps, N_out]) self.output_mask = tf.placeholder("float", [N_batch, N_steps, N_out]) # trainable variables with tf.variable_scope("model"): # ------------------------------------------------ # Random initialization Load weights from weights path # for Initial state, Weight matrices, and bias weights # ------------------------------------------------ if self.load_weights_path is None: # random initializations init_state_initializer = tf.random_normal_initializer(mean=0.1, stddev=0.01) W_in_initializer = tf.constant_initializer( 0.1 * np.random.uniform(-1, 1, size=(self.N_rec, self.N_in)))
tensorflow.variable_scope
6,386
import tensorflow as tf import layers as L import vat FLAGS = tf.app.flags.FLAGS tf.app.flags.DEFINE_string('device', '/gpu:0', "device") tf.app.flags.DEFINE_string('dataset', 'cifar10', "{cifar10, svhn}") tf.app.flags.DEFINE_string('log_dir', "", "log_dir") tf.app.flags.DEFINE_integer('seed', 1, "initial random seed") tf.app.flags.DEFINE_bool('validation', False, "") tf.app.flags.DEFINE_integer('batch_size', 32, "the number of examples in a batch")
tensorflow.app.flags.DEFINE_string
6,387
import tensorflow as tf with tf.variable_scope("evaluation"): accuracy_1 = tf.reduce_mean(tf.cast(tf.equal( tf.argmax(output_1, axis=-1), tf.argmax(y_1, axis=-1)), tf.float32), name="accuracy_1") accuracy_2 = tf.reduce_mean(tf.cast(tf.equal( tf.argmax(output_2, axis=-1), tf.argmax(y_2, axis=-1)), tf.float32), name="accuracy_2") accuracy = tf.divide(accuracy_1 + accuracy_2, 2.0, name="accuracy") with tf.variable_scope("train"): global_step = tf.get_variable("global_step", shape=(), dtype=tf.int32, trainable=False) train_op = tf.train.AdamOptimizer(learning_rate=lr).minimize(loss_total, global_step=global_step) with tf.variable_scope("summary"): summary_loss_total = tf.summary.scalar("loss_total", loss_total) summary_accuracy_test = tf.summary.scalar("accuracy_test", accuracy) summary_accuracy_train = tf.summary.scalar("accuracy_train", accuracy) # standardization train_X_reshaped = train_X.reshape([train_X.shape[0], -1]) train_X_means = np.mean(train_X_reshaped, axis=0, keepdims=True) train_X_stds = np.std(train_X_reshaped, axis=0, keepdims=True) def standardization(x): x_reshaped = x.reshape([x.shape[0], -1]) result = (x_reshaped - train_X_means) / (train_X_stds + 1e-9) return result.reshape(x.shape)
tensorflow.summary.scalar
6,388
import tensorflow as tf reader=tf.TFRecordReader() _,serialized_example=reader.read(filename_queue) features=tf.parse_single_example(serialized_example, features={ 'label':tf.FixedLenFeature([], tf.int64), 'img_raw' : tf.FixedLenFeature([], tf.string), }) image=tf.decode_raw(features['img_raw'],tf.uint8) label=tf.cast(features['label'],tf.int32) image=tf.reshape(image,[4096,1]) return image,label def get_batch(image,label,batch_size,crop_size): #print(image.shape) #print(label.shape) images,labels=tf.train.shuffle_batch([image,label], batch_size=batch_size,num_threads=10,capacity=10000,min_after_dequeue=200) return tf.reshape(images,[batch_size,4096]),tf.reshape(labels,[batch_size]) def get_test_batch(image,label,batch_size): images,labels=tf.train.batch([image,label],batch_size=batch_size) return tf.reshape(images,[batch_size,4096]),tf.reshape(labels,[batch_size]) def get_valid_batch(image,label,batch_size): images,labels=tf.train.batch([image,label],batch_size=batch_size) return tf.reshape(images,[batch_size,4096]),tf.reshape(labels,[batch_size]) class trainwork(object): def __init__(self): with tf.variable_scope('scop'):
tensorflow.train.shuffle_batch
6,389
import tensorflow as tf fc3_1 = contrib.layers.fully_connected(dropout2_1, 32, scope="fc3_1") fc3_2 = contrib.layers.fully_connected(dropout2_2, 32, scope="fc3_2") if cross_stitch_enabled: with tf.variable_scope("cross_stitch_3"): stitch3_1, stitch3_2 = apply_cross_stitch(fc3_1, fc3_2) else: stitch3_1, stitch3_2 = fc3_1, fc3_2
tensorflow.variable_scope
6,390
import tensorflow as tf self.report_benchmark( name="eager_train_%s%s_%d" % ("gpu" if tf.test.is_gpu_available() else "cpu", "_defun" if defun else "", sample_size), iters=hparams.n_iters, extras={"examples_per_sec": examples_per_sec}, wall_time=wall_time) del dynamics if __name__ == "__main__": tf.enable_eager_execution() tf.test.main()
tensorflow.test.main
6,391
import tensorflow as tf output_bias = tf.get_variable( "output_bias", [num_labels], initializer=tf.zeros_initializer()) with tf.variable_scope("loss"): if is_training: # I.e., 0.1 dropout output_layer = tf.nn.dropout(output_layer, keep_prob=0.9) logits = tf.matmul(output_layer, output_weights, transpose_b=True) logits = tf.nn.bias_add(logits, output_bias) if task_name != "sts-b": probabilities = tf.nn.softmax(logits, axis=-1) predictions = tf.argmax(probabilities, axis=-1, output_type=tf.int32) log_probs = tf.nn.log_softmax(logits, axis=-1) one_hot_labels = tf.one_hot(labels, depth=num_labels, dtype=tf.float32) per_example_loss = -tf.reduce_sum(one_hot_labels * log_probs, axis=-1) else: probabilities = logits logits = tf.squeeze(logits, [-1]) predictions = logits per_example_loss = tf.square(logits - labels) loss = tf.reduce_mean(per_example_loss) return (loss, per_example_loss, probabilities, logits, predictions) def model_fn_builder(config, num_labels, init_checkpoint, learning_rate, num_train_steps, num_warmup_steps, use_tpu,
tensorflow.one_hot
6,392
import tensorflow as tf # Step-wise contrastive loss horizon_pred, horizon_tgt = horizon_sumV2(pred, tgt, horizon) # pred1, pred2 = tf.split(horizon_pred, 2, axis=0) # tgt1, tgt2 = tf.split(horizon_tgt, 2, axis=0) even = [2 * i for i in range(25)] odd = [2 * i + 1 for i in range(25)] pred1 = tf.gather(horizon_pred, even) pred2 = tf.gather(horizon_pred, odd) tgt1 = tf.gather(horizon_tgt, even) tgt2 = tf.gather(horizon_tgt, odd) geq = tf.cast((tgt1 - tgt2) > 0, tf.bool) tgt_larg = tf.where(geq, tgt1, tgt2) tgt_small = tf.where(geq, tgt2, tgt1) pred_larg = tf.where(geq, pred1, pred2) pred_small = tf.where(geq, pred2, pred1) loss = tf.maximum(0.0, ((tgt_larg - tgt_small) - (pred_larg - pred_small))) loss = tf.reduce_mean(loss) return loss def apply_optimizers(objectives, trainer, config): # Make sure all losses are computed and apply loss scales. processed = [] values = [ob.value for ob in objectives]
tensorflow.where
6,393
import tensorflow as tf mus, log_sigmas = params[:,:,:,0::2], params[:,:,:,1::2] x2, ldj = log_gaussianize(z2, mus, log_sigmas, inverse=tf.constant(True)) x2 = tf.where(z2 > self.epsilon, x2, z2) ldj = tf.where(z2 > self.epsilon, ldj, tf.zeros_like(ldj)) return x2, tf.math.reduce_sum(ldj, axis=[1,2,3]) def half_gaussianize(x, log_sigmas, inverse=tf.constant(False)): if inverse: z = tf.math.exp(log_sigmas)*x ldj = tf.math.reduce_sum(log_sigmas, axis=[1,2,3]) else: z = x*tf.math.exp(-log_sigmas) ldj = -tf.math.reduce_sum(log_sigmas, axis=[1,2,3]) return z, ldj class HalfGaussianize(Parameterize):
tensorflow.math.exp
6,394
import tensorflow as tf expected_labels_0_n = tf.constant([[-1, 2, 3], [0, 4, 1]], dtype=tf.int32) self.assertAllEqual(labels_0_n.numpy(), expected_labels_0_n.numpy()) def test_map_labels_to_0_to_n2(self): labels = tf.constant([[-1, 1, 2], [1, 1, 2]], dtype=tf.int32) labels_0_n = isu.map_labels_to_0_to_n(labels) expected_labels_0_n = tf.constant([[-1, 0, 1], [0, 0, 1]], dtype=tf.int32)
tensorflow.constant
6,395
import tensorflow as tf self.c_grads, _ = tf.clip_by_global_norm(self.c_grads, 20.0) opt = tf.train.AdamOptimizer(self.LR) self.update_a_op = opt.apply_gradients(zip(self.a_grads, self.pi_params)) self.update_c_op = opt.apply_gradients(zip(self.c_grads, self.vf_params)) self.sess.run(tf.global_variables_initializer()) # Tensorboard if summary_dir is not None: self.writer = tf.summary.FileWriter(summary_dir) tf.summary.scalar('Loss/Policy', loss_pg) tf.summary.scalar('Loss/Value', loss_vf) tf.summary.scalar('Loss/Entropy', - 0.01 * tf.reduce_mean(pi.entropy())) tf.summary.scalar('Var/Policy Mode', tf.reduce_mean(pi.mode())) tf.summary.scalar('Var/Policy Sigma', tf.reduce_mean(pi.stddev())) tf.summary.scalar('Var/Value', tf.reduce_mean(self.vf)) self.summarise = tf.summary.merge(tf.get_collection(tf.GraphKeys.SUMMARIES))
tensorflow.summary.FileWriter
6,396
from tensorflow.python.ops import math_ops values = math_ops.to_float(values) if weights is not None: weights = math_ops.to_float(weights) values = math_ops.mul(values, weights) value_tensor = array_ops.identity(count) update_op = state_ops.assign_add(count, math_ops.reduce_sum(values)) if metrics_collections: ops.add_to_collections(metrics_collections, value_tensor) if updates_collections: ops.add_to_collections(updates_collections, update_op)
tensorflow.python.ops.math_ops.reduce_sum
6,397
import tensorflow as tf h = tf.zeros([config.num_layers, self.batch_size, config.hidden_size], tf.float32) self._initial_state = (tf.contrib.rnn.LSTMStateTuple(h=h, c=c),) outputs, h, c = self._cell(inputs, h, c, self._rnn_params, is_training) outputs = tf.transpose(outputs, [1, 0, 2]) outputs = tf.reshape(outputs, [-1, config.hidden_size]) return outputs, (tf.contrib.rnn.LSTMStateTuple(h=h, c=c),) def _get_lstm_cell(self, config, is_training): if config.rnn_mode == BASIC:
tensorflow.reshape
6,398
import tensorflow as tf make_tensors_fn=lambda: {'x': tf.compat.v1.placeholder(tf.string, (None,))},
tensorflow.compat.v1.placeholder
6,399