seed
stringlengths
25
2.89k
seed_api
stringlengths
14
102
index
int64
0
14.8k
import tensorflow as tf conv_outputs_ = encoder_inputs_ if encoder.conv_lstm_size: cell = BasicConvLSTMCell([feature_size, channels], encoder.conv_lstm_size, 1) encoder_inputs_, _ = tf.nn.bidirectional_dynamic_rnn( cell, cell, encoder_inputs_, dtype=tf.float32 ) encoder_inputs_ = tf.concat(encoder_inputs_, axis=2) if encoder.convolutions: if encoder.binary: raise NotImplementedError pad = tf.nn.embedding_lookup(embeddings, utils.BOS_ID) pad = tf.expand_dims(tf.expand_dims(pad, axis=0), axis=1)
tensorflow.concat
6,500
from tensorflow.python.ops import math_ops false_negatives, math_ops.reduce_sum(is_false_negative, 1)) true_negatives_update_op = state_ops.assign_add( true_negatives, math_ops.reduce_sum(is_true_negative, 1)) false_positives_update_op = state_ops.assign_add(
tensorflow.python.ops.math_ops.reduce_sum
6,501
import tensorflow as tf embedding_size=2) sess.run([tf.global_variables_initializer()]) res = sess.run(dec) self.assertEqual(3, len(res)) self.assertEqual((2, 3), res[0].shape) # Test externally provided output projection. w = tf.get_variable("proj_w", [2, 5]) b = tf.get_variable("proj_b", [5]) with tf.variable_scope("proj_seq2seq"): dec, _ = tf.nn.seq2seq.embedding_tied_rnn_seq2seq( enc_inp, dec_inp, cell, num_symbols=5, embedding_size=2, output_projection=(w, b)) sess.run([tf.global_variables_initializer()]) res = sess.run(dec) self.assertEqual(3, len(res)) self.assertEqual((2, 2), res[0].shape) # Test that previous-feeding model ignores inputs after the first. dec_inp2 = [tf.constant(0, tf.int32, shape=[2])] * 3 with tf.variable_scope("other"): d3, _ = tf.nn.seq2seq.embedding_tied_rnn_seq2seq( enc_inp, dec_inp2, cell, num_symbols=5, embedding_size=2, feed_previous=tf.constant(True)) sess.run([tf.global_variables_initializer()]) tf.get_variable_scope().reuse_variables()
tensorflow.global_variables_initializer
6,502
import tensorflow as tf # now to upscale to actual image size deconv_shape1 = image_net["pool4"].get_shape() W_t1 = utils.weight_variable([4, 4, deconv_shape1[3].value, NUM_OF_CLASSESS], name="W_t1") b_t1 = utils.bias_variable([deconv_shape1[3].value], name="b_t1") conv_t1 = utils.conv2d_transpose_strided(conv8, W_t1, b_t1, output_shape=tf.shape(image_net["pool4"])) fuse_1 = tf.add(conv_t1, image_net["pool4"], name="fuse_1") deconv_shape2 = image_net["pool3"].get_shape() W_t2 = utils.weight_variable([4, 4, deconv_shape2[3].value, deconv_shape1[3].value], name="W_t2") b_t2 = utils.bias_variable([deconv_shape2[3].value], name="b_t2") conv_t2 = utils.conv2d_transpose_strided(fuse_1, W_t2, b_t2, output_shape=tf.shape(image_net["pool3"])) fuse_2 = tf.add(conv_t2, image_net["pool3"], name="fuse_2") shape = tf.shape(image) deconv_shape3 = tf.stack([shape[0], shape[1], shape[2], NUM_OF_CLASSESS]) W_t3 = utils.weight_variable([16, 16, NUM_OF_CLASSESS, deconv_shape2[3].value], name="W_t3") b_t3 = utils.bias_variable([NUM_OF_CLASSESS], name="b_t3") conv_t3 = utils.conv2d_transpose_strided(fuse_2, W_t3, b_t3, output_shape=deconv_shape3, stride=8) annotation_pred = tf.argmax(conv_t3, dimension=3, name="prediction") return tf.expand_dims(annotation_pred, dim=3), conv_t3 def train(loss_val, var_list): optimizer = tf.train.AdamOptimizer(FLAGS.learning_rate) grads = optimizer.compute_gradients(loss_val, var_list=var_list) if FLAGS.debug: # print(len(var_list))
tensorflow.stack
6,503
import tensorflow as tf max_timescale: a float Returns: a Tensor of timing signals [batch, seq_len, channels] """ num_timescales = channels // 2 log_timescale_increment = ( math.log(float(max_timescale) / float(min_timescale)) / (tf.to_float(num_timescales) - 1)) inv_timescales = min_timescale * tf.exp( tf.to_float(tf.range(num_timescales)) * -log_timescale_increment) scaled_time = ( tf.expand_dims(tf.to_float(position), 2) * tf.expand_dims( tf.expand_dims(inv_timescales, 0), 0)) signal = tf.concat([tf.sin(scaled_time), tf.cos(scaled_time)], axis=2) signal = tf.pad(signal, [[0, 0], [0, 0], [0, tf.mod(channels, 2)]]) return signal def embedding_lookup(input_ids, vocab_size, embedding_size=128, initializer_range=0.02, word_embedding_name="word_embeddings", use_one_hot_embeddings=False): """Looks up words embeddings for id tensor.
tensorflow.expand_dims
6,504
import tensorflow as tf elif len(shape) == 4: # assumes NHWC flat_shape = (np.prod(shape[:-1]), shape[-1]) else: raise NotImplementedError a = np.random.normal(0.0, 1.0, flat_shape) u, _, v = np.linalg.svd(a, full_matrices=False) q = u if u.shape == flat_shape else v # pick the one with the correct shape q = q.reshape(shape) return (scale * q[:shape[0], :shape[1]]).astype(np.float32) return _ortho_init def get_session(): return tf.get_default_session() def var_shape(x): out = x.get_shape().as_list() return out def intprod(x): return int(np.prod(x)) def numel(x):
tensorflow.get_default_session
6,505
import tensorflow as tf method=1, is_csl=True) tf.summary.image('Compare/final_detection_gpu:%d' % i, detections_in_img)
tensorflow.summary.image
6,506
import tensorflow as tf num_classes = 1000 inputs = tf.random_uniform((batch_size, height, width, 3)) _, end_points = mobilenet_v1.mobilenet_v1(inputs, num_classes)
tensorflow.random_uniform
6,507
import tensorflow as tf def __init__(self, learning_rate=0.1, par_idx=0,scope="value_estimator"): w_init = tf.random_normal_initializer(0.,.1); with tf.variable_scope(scope+"_"+str(par_idx)): # state and target self.state = tf.placeholder(tf.float32, [None,num_state], "state") self.target = tf.placeholder(tf.float32, [None,1], name="target") # layers
tensorflow.placeholder
6,508
from tensorflow.python.ops import variable_scope decoder_state: Tuple of [batch_size, gen_hidden_size] encoder_states: [batch_size, passage_len, encoder_dim] encoder_features: [batch_size,passage_len,attention_vec_size] passage_mask: [batch_size, passage_len] v: [1,1, attention_vec_size] w_c: [1,1, attention_vec_size] coverage: [batch_size, passage_len] ''' with variable_scope.variable_scope("Attention"): # Equation (11) in the paper state_features = linear(decoder_state, attention_vec_size, True) # [batch_size, attention_vec_size] state_features = tf.expand_dims(state_features, 1) # [batch_size, 1, attention_vec_size] all_features = encoder_features + state_features # [batch_size,passage_len,attention_vec_size] if use_coverage and coverage is not None: coverage_features = tf.expand_dims(coverage, axis=-1) * w_c # [batch_size, passage_len, attention_vec_size] all_features += coverage_features
tensorflow.python.ops.variable_scope.variable_scope
6,509
import tensorflow as tf log_prob_tf = tf.nn.log_softmax(pi.logits) prob_tf = tf.nn.softmax(pi.logits) # the "policy gradients" loss: its derivative is precisely the policy gradient # notice that self.ac is a placeholder that is provided externally. # adv will contain the advantages, as calculated in process_rollout pi_loss = - tf.reduce_sum(tf.reduce_sum(log_prob_tf * self.ac, [1]) * self.adv) # loss of value function vf_loss = 0.5 * tf.reduce_sum(tf.square(pi.vf - self.r)) entropy = - tf.reduce_sum(prob_tf * log_prob_tf) bs = tf.to_float(tf.shape(pi.x)[0]) self.loss = pi_loss + 0.5 * vf_loss - entropy * 0.01 # 20 represents the number of "local steps": the number of timesteps # we run the policy before we update the parameters. # The larger local steps is, the lower is the variance in our policy gradients estimate # on the one hand; but on the other hand, we get less frequent parameter updates, which # slows down learning. In this code, we found that making local steps be much
tensorflow.reduce_sum
6,510
import tensorflow as tf ### Metrics global_step = tf.compat.v1.train.get_or_create_global_step() orig_indices = tf.range( self._sample_batch_size, dtype=relabel_indices.dtype) with tf.name_scope("relabelling"): # How often are the originally commanded goals most optimal? opt_indices = tf.argmax(logits_vec, axis=1) orig_is_opt = opt_indices == orig_indices orig_opt_frac = tf.reduce_mean(tf.cast(orig_is_opt, tf.float32)) tf.compat.v2.summary.scalar( name="orig_task_optimal", data=orig_opt_frac, step=global_step) # How often is the relabelled goal optimal? # The relabel_indices are [B, 1], so we need to remove the extra dim. relabel_is_opt = tf.squeeze(relabel_indices) == orig_indices relabel_opt_frac = tf.reduce_mean(tf.cast(relabel_is_opt, tf.float32)) tf.compat.v2.summary.scalar( name="relabel_task_optimal", data=relabel_opt_frac, step=global_step)
tensorflow.compat.v2.summary.scalar
6,511
import tensorflow as tf eps = tf.random_normal(tf.shape(mean), dtype=settings.float_type) # N x P if cov_structure == "diag": sample = mean + tf.sqrt(cov) * eps # N x P elif cov_structure == "full": cov = cov + (tf.eye(tf.shape(mean)[1], dtype=settings.float_type) * settings.numerics.jitter_level)[None, ...] # N x P x P chol = tf.cholesky(cov) # N x P x P return mean + (tf.matmul(chol, eps[..., None])[..., 0]) # N x P else: raise NotImplementedError # pragma: no cover return sample # N x P
tensorflow.matmul
6,512
import tensorflow as tf self._weight_contrastive_loss_d = weight_contrastive_loss_d self._aug_color_jitter_prob = aug_color_jitter_prob self._aug_color_drop_prob = aug_color_drop_prob # To safe memory ModularGAN supports feeding real and fake samples # separately through the discriminator. CLGAN does not support this to # avoid additional additional complexity in create_loss(). assert not self._deprecated_split_disc_calls, \ "Splitting discriminator calls is not supported in CLGAN." def _latent_projections(self, latents): bs, dim = latents.get_shape().as_list() with tf.variable_scope("discriminator_z_projection", reuse=tf.AUTO_REUSE) as scope: k1 = tf.get_variable("kernel1", [dim, dim * 4]) k2 = tf.get_variable("kernel2", [dim * 4, dim]) z_proj = tf.matmul(tf.nn.leaky_relu(tf.matmul(latents, k1), name=scope.name), k2) z_proj = z_proj / tf.reshape(tf.norm(z_proj, ord=2, axis=-1), [bs, 1]) return z_proj def create_loss(self, features, labels, params, is_training=True): """Build the loss tensors for discriminator and generator. This method will set self.d_loss and self.g_loss. Args: features: Optional dictionary with inputs to the model ("images" should contain the real images and "z" the noise for the generator). labels: Tensor will labels. These are class indices. Use self._get_one_hot_labels(labels) to get a one hot encoded tensor.
tensorflow.get_variable
6,513
from tensorflow.examples.tutorials.mnist import input_data tf.reset_default_graph() # Import MNIST dataset self.mnist = input_data.read_data_sets("/tmp/data/", one_hot=True)
tensorflow.examples.tutorials.mnist.input_data.read_data_sets
6,514
import tensorflow as tf src_loss = get_loss(src_logits, inst_weights, src_one_hot_labels) dst_loss = get_loss(dst_logits, 1., finetune_one_hot_labels) l2_loss = [] for v in tf.trainable_variables(): if 'batch_normalization' not in v.name and 'rl_controller' not in v.name: l2_loss.append(tf.nn.l2_loss(v)) l2_loss = FLAGS.dst_weight_decay * tf.add_n(l2_loss) enable_pretrain = tf.cast( tf.greater_equal(global_step, FLAGS.first_pretrain_steps), tf.float32) loss = src_loss * tf.stop_gradient(loss_weights) * enable_pretrain loss += dst_loss + l2_loss return tf.identity(loss), src_loss, dst_loss def train_model_fn(features, labels, mode, params): # pylint: disable=unused-argument """Defines the model function."""
tensorflow.greater_equal
6,515
import tensorflow as tf next_sentence_log_probs, next_sentence_labels ]) output_spec = tf.contrib.tpu.TPUEstimatorSpec( mode=mode,
tensorflow.contrib.tpu.TPUEstimatorSpec
6,516
import tensorflow as tf ema_op = self.var_ema.apply(tf.trainable_variables()) with tf.control_dependencies([ema_op]): self.loss = tf.identity(self.loss) self.shadow_vars = [] self.global_vars = [] for var in tf.global_variables(): v = self.var_ema.average(var) if v: self.shadow_vars.append(v) self.global_vars.append(var) self.assign_vars = [] for g, v in zip(self.global_vars, self.shadow_vars): self.assign_vars.append(tf.assign(g, v)) def _create_train_op(self): # self.lr = tf.minimum(self.learning_rate, self.learning_rate / tf.log(999.) * tf.log(tf.cast(self.global_step, tf.float32) + 1)) self.lr = self.learning_rate if self.optim_type == 'adagrad': self.optimizer = tf.train.AdagradOptimizer(self.lr) elif self.optim_type == 'adam': self.optimizer = tf.train.AdamOptimizer(learning_rate=self.lr) elif self.optim_type == 'rprop': self.optimizer = tf.train.RMSPropOptimizer(self.lr) elif self.optim_type == 'sgd':
tensorflow.assign
6,517
import tensorflow as tf out_height = out_size[1] out_width = out_size[2] zero = tf.zeros([], dtype='int32') # 0 <= z < depth, 0 <= y < height & 0 <= x < width.
tensorflow.zeros
6,518
import tensorflow as tf drop_remainder): """Creates an `input_fn` closure to be passed to TPUEstimator.""" name_to_features = { "input_ids": tf.FixedLenFeature([seq_length], tf.int64), "input_mask": tf.FixedLenFeature([seq_length], tf.int64), "segment_ids": tf.FixedLenFeature([seq_length], tf.int64), "label_ids": tf.FixedLenFeature([seq_length], tf.int64), "is_real_example": tf.FixedLenFeature([1], tf.int64), } def _decode_record(record, name_to_features):
tensorflow.FixedLenFeature
6,519
import tensorflow as tf from neorl.rl.baselines.shared import ActorCriticRLModel, tf_util, SetVerbosity, TensorboardWriter from neorl.rl.baselines.shared.runners import AbstractEnvRunner from neorl.rl.baselines.shared.policies import ActorCriticPolicy, RecurrentActorCriticPolicy # Filter tensorflow version warnings import os # https://stackoverflow.com/questions/40426502/is-there-a-way-to-suppress-the-messages-tensorflow-prints/40426709 os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' # or any {'0', '1', '2'} import warnings # https://stackoverflow.com/questions/15777951/how-to-suppress-pandas-future-warning warnings.simplefilter(action='ignore', category=FutureWarning) warnings.simplefilter(action='ignore', category=Warning) import tensorflow as tf tf.get_logger().setLevel('INFO') tf.autograph.set_verbosity(0) import logging tf.get_logger().setLevel(logging.ERROR) # For ACER def get_by_index(input_tensor, idx): """ Return the input tensor, offset by a certain value :param input_tensor: (TensorFlow Tensor) The input tensor :param idx: (int) The index offset :return: (TensorFlow Tensor) the offset tensor
tensorflow.get_logger
6,520
import tensorflow as tf # ul_u = random_sphere(ul_images.shape) # ul_u_eval_train = random_sphere(ul_images_eval_train.shape) # ul_u_eval_test = random_sphere(images_eval_test.shape) ul_u = placeholder_like(ul_images, "ul_u") ul_u_eval_train = placeholder_like(ul_images_eval_train, "ul_u_eval_train") ul_u_eval_test = placeholder_like(images_eval_test, "ul_u_eval_test") with tf.device(FLAGS.device): lr = tf.placeholder(tf.float32, shape=[], name="learning_rate") mom = tf.placeholder(tf.float32, shape=[], name="momentum") with tf.variable_scope("CNN") as scope: # Build training graph loss, train_op, global_step, ul_u_updated = build_training_graph( images, labels, ul_images, ul_u, lr, mom) scope.reuse_variables() # Build eval graph losses_eval_train = build_eval_graph(images_eval_train, labels_eval_train, ul_images_eval_train, ul_u_eval_train) losses_eval_test = build_eval_graph(images_eval_test, labels_eval_test, images_eval_test, ul_u_eval_test)
tensorflow.placeholder
6,521
from tensorflow.python.ops import math_ops Returns: tf.Tensor with dtype=int32 giving the next array size. """ exponent = math_ops.ceil( math_ops.log(math_ops.cast(required_size, dtypes.float32)) / math_ops.log(math_ops.cast(growth_factor, dtypes.float32))) return math_ops.cast(math_ops.ceil(growth_factor ** exponent), dtypes.int32)
tensorflow.python.ops.math_ops.cast
6,522
import tensorflow as tf # Compute the policy loss # Alternative: policy_kl_loss = tf.reduce_mean(logp_pi - min_qf_pi) policy_kl_loss = tf.reduce_mean((self.ent_coef * logp_pi - min_qf_pi)*self.weight_ph) actor_for_priority = tf.reduce_mean(self.ent_coef * logp_pi - min_qf_pi,1)
tensorflow.reduce_mean
6,523
from tensorflow.python.framework import ops return func(x, y, name=name) ops.Tensor._override_operator("__%s__" % op_name, binary_op_wrapper) del binary_op_wrapper def r_binary_op_wrapper(y, x): with ops.op_scope([x, y], None, op_name) as name: assert isinstance(y, ops.Tensor) x = ops.convert_to_tensor(x, dtype=y.dtype.base_dtype, name="x") return func(x, y, name=name) ops.Tensor._override_operator("__r%s__" % op_name, r_binary_op_wrapper) del r_binary_op_wrapper # Conversion table for __truediv__. None entries mean no conversion required. _TRUEDIV_TABLE = { types.uint8: types.float32, types.int8: types.float32, types.int16: types.float32, types.int32: types.float64, types.int64: types.float64,
tensorflow.python.framework.ops.Tensor._override_operator
6,524
import tensorflow as tf stochastic_ph = tf.placeholder(tf.bool, (), name="stochastic") update_eps_ph = tf.placeholder(tf.float32, (), name="update_eps") update_param_noise_threshold_ph = tf.placeholder(tf.float32, (), name="update_param_noise_threshold") update_param_noise_scale_ph = tf.placeholder(tf.bool, (), name="update_param_noise_scale")
tensorflow.placeholder
6,525
import tensorflow as tf class ModelOwner: LEARNING_RATE = 0.1 ITERATIONS = 60000 // 30 def __init__(self, player_name): self.player_name = player_name with tf.device(tfe.get_config().get_player(player_name).device_name): self._initialize_weights() def _initialize_weights(self): with tf.name_scope('parameters'): self.w0 = tf.Variable(tf.random_normal([28 * 28, 512])) self.b0 = tf.Variable(tf.zeros([512])) self.w1 = tf.Variable(tf.random_normal([512, 10])) self.b1 = tf.Variable(tf.zeros([10])) def _build_model(self, x, y): w0 = self.w0.read_value() b0 = self.b0.read_value() w1 = self.w1.read_value() b1 = self.b1.read_value() params = (w0, b0, w1, b1) layer0 = tf.matmul(x, w0) + b0 layer1 = tf.nn.sigmoid(layer0)
tensorflow.random_normal
6,526
from tensorflow.python.ops import array_ops or `updates_collections` are not a list or tuple. """ if sensitivity < 0 or sensitivity > 1: raise ValueError('`sensitivity` must be in the range [0, 1].') with variable_scope.variable_scope(name, 'specificity_at_sensitivity', [predictions, labels]): kepsilon = 1e-7 # to account for floating point imprecisions thresholds = [(i + 1) * 1.0 / (num_thresholds - 1) for i in range(num_thresholds-2)] thresholds = [0.0 - kepsilon] + thresholds + [1.0 - kepsilon] (tp, fn, tn, fp, tp_update_op, fn_update_op, tn_update_op, fp_update_op) = _tp_fn_tn_fp(predictions, labels, thresholds, weights) assert array_ops.squeeze(fp).get_shape().as_list()[0] == num_thresholds def compute_specificity_at_sensitivity(name): """Computes the specificity at the given sensitivity. Args: name: The name of the operation. Returns: The specificity using the aggregated values. """ sensitivities = math_ops.div(tp, tp + fn + kepsilon) # We'll need to use this trick until tf.argmax allows us to specify # whether we should use the first or last index in case of ties.
tensorflow.python.ops.array_ops.squeeze
6,527
import tensorflow as tf with tf.control_dependencies(update_ops): self.trainer = opt.apply_gradients( gradvars, global_step=self.global_step) def _eval_graph(self, data): tower_metrics = self._gpu_tower(data, Mode.EVAL) with tf.device('/cpu:0'): self.metrics = {m: tf.reduce_mean(tf.stack([t[m] for t in tower_metrics])) for m in tower_metrics[0]} def _pred_graph(self, data): with tf.name_scope('pred'): with tf.device('/gpu:0'): pred_out = self._model(data, Mode.PRED, **self.config) self.pred_out = {n: tf.identity(p, name=n) for n, p in pred_out.items()} def _build_graph(self): # Training and evaluation network, if tf datasets provided if self.datasets: # Generate iterators for the given tf datasets self.dataset_iterators = {} with tf.device('/cpu:0'): for n, d in self.datasets.items(): if n == 'training':
tensorflow.device
6,528
import tensorflow as tf tf.flags.DEFINE_string( "tpu_zone", None, "[Optional] GCE zone where the Cloud TPU is located in. If not " "specified, we will attempt to automatically detect the GCE project from " "metadata.") tf.flags.DEFINE_string( "gcp_project", None, "[Optional] Project name for the Cloud TPU-enabled project. If not " "specified, we will attempt to automatically detect the GCE project from " "metadata.") tf.flags.DEFINE_string("master", None, "[Optional] TensorFlow master URL.") flags.DEFINE_integer( "num_tpu_cores", 8, "Only used if `use_tpu` is True. Total number of TPU cores to use.") class InputExample(object): """A single training/test example for simple sequence classification.""" def __init__(self, guid, text_a, text_b=None, label=None): """Constructs a InputExample.
tensorflow.flags.DEFINE_string
6,529
import tensorflow as tf tf_sparse_demo = TFDemo(vocabulary_size=args.max_vocabulary_size_per_gpu * args.gpu_num, embedding_vec_size=args.embedding_vec_size, combiner=args.combiner, slot_num=args.slot_num, max_nnz=args.max_nnz, use_hashtable=args.use_hashtable, num_of_dense_layers=0) optimizer = utils.get_dense_optimizer(args.optimizer)(learning_rate=0.1) loss_fn = tf.keras.losses.BinaryCrossentropy(from_logits=True) def _train_step(inputs, labels, training): logit, embedding_vector = tf_sparse_demo(inputs, training=training) loss = loss_fn(labels, logit) grads = tf.gradients(loss, tf_sparse_demo.trainable_variables, colocate_gradients_with_ops=True, unconnected_gradients=tf.UnconnectedGradients.NONE) train_op = optimizer.apply_gradients(zip(grads, tf_sparse_demo.trainable_variables)) with tf.control_dependencies([train_op]): loss = tf.identity(loss)
tensorflow.keras.losses.BinaryCrossentropy
6,530
from tensorflow.python.ops import math_ops Loss tensor. """ target = target[self.name] if isinstance(target, dict) else target loss_unweighted = self._loss_fn(logits, target) weight_tensor = self.get_weight_tensor(features) if weight_tensor is None: return math_ops.reduce_mean(loss_unweighted, name="loss") loss_weighted = self._weighted_loss(loss_unweighted, weight_tensor) return math_ops.div(math_ops.reduce_sum(loss_weighted), math_ops.to_float(math_ops.reduce_sum(weight_tensor)), name="loss")
tensorflow.python.ops.math_ops.reduce_mean
6,531
import tensorflow as tf updates.append(mean.submit(value)) with tf.control_dependencies(updates):
tensorflow.control_dependencies
6,532
import tensorflow as tf if self.batch_norm: with tf.variable_scope(
tensorflow.variable_scope
6,533
import tensorflow as tf if isinstance(scale, numbers.Integral): raise ValueError('scale cannot be an integer: %s' % (scale,)) if isinstance(scale, numbers.Real): if scale < 0.: raise ValueError('Setting a scale less than 0 on a regularizer: %g.' % scale) if scale == 0.: return lambda _: None def l2(weights, name='l2_regularizer'): """Applies l2 regularization to weights.""" with tf.name_scope(name): my_scale = tf.convert_to_tensor(scale, dtype=weights.dtype.base_dtype, name='scale') return tf.multiply(my_scale, nn.l2_loss(weights), name=name) return l2 def discretized_mix_logistic_loss(inputs, predictions, sum_all=True,
tensorflow.name_scope
6,534
from tensorflow.python.framework import ops if updates_collections: ops.add_to_collections(updates_collections, update_op)
tensorflow.python.framework.ops.add_to_collections
6,535
from tensorflow.python.training import summary_io `merge_all_summaries`. save_steps: `int`, save summaries every N steps. See `EveryN`. output_dir: `string`, the directory to save the summaries to. Only used if no `summary_writer` is supplied. summary_writer: `SummaryWriter`. If `None` and an `output_dir` was passed, one will be created accordingly. scaffold: `Scaffold` to get summary_op if it's not provided. """ # TODO(ipolosukhin): Implement every N seconds. super(SummarySaver, self).__init__(every_n_steps=save_steps) self._summary_op = summary_op self._summary_writer = summary_writer if summary_writer is None and output_dir: self._summary_writer = summary_io.SummaryWriter(output_dir) self._scaffold = scaffold # TODO(mdan): Throw an error if output_dir and summary_writer are None. def set_estimator(self, estimator): super(SummarySaver, self).set_estimator(estimator) # TODO(mdan): This line looks redundant. if self._summary_writer is None: self._summary_writer = summary_io.SummaryWriter(estimator.model_dir) def every_n_step_begin(self, step): super(SummarySaver, self).every_n_step_begin(step) if self._summary_op is None and self._scaffold is not None:
tensorflow.python.training.summary_io.SummaryWriter
6,536
import tensorflow as tf def batch_to_seq(h, nbatch, nsteps, flat=False): if flat: h = tf.reshape(h, [nbatch, nsteps]) else: h = tf.reshape(h, [nbatch, nsteps, -1])
tensorflow.reshape
6,537
import tensorflow as tf if len(shape) == 5: # FC 3D size = shape[1].value*shape[2].value*shape[3].value*shape[4].value elif len(shape) == 4: size = shape[1].value*shape[2].value*shape[3].value else: size = shape[-1].value with tf.variable_scope(layer_name): w = tf.get_variable(name='weight', shape=[size, out_nodes], initializer=tf.constant_initializer(0.0)) b = tf.get_variable(name='bias', shape=[out_nodes], initializer=tf.constant_initializer(0.0)) # batch? flat_x = tf.reshape(x, [-1,size]) x = tf.nn.bias_add(tf.matmul(flat_x,w), b) x = tf.nn.relu(x) return x def lstm(): ''' Build LSTM cell '''
tensorflow.constant_initializer
6,538
import tensorflow as tf ValueError If input tensor is not 2D. """ if weight_init is None: num_features = tensor.get_shape()[-1].value weight_init = tf.truncated_normal([num_features, size], stddev=0.01) if bias_init is None: bias_init = tf.zeros([size]) with tf.name_scope(name, 'fully_connected', [tensor]): w = tf.Variable(weight_init, name='w', dtype=tf.float32) b = tf.Variable(bias_init, name='b', dtype=tf.float32) return tf.nn.xw_plus_b(tensor, w, b) def weight_decay(penalty_type, penalty): """Add weight decay. Args: model: TensorflowGraph. Returns: A scalar tensor containing the weight decay cost.
tensorflow.nn.xw_plus_b
6,539
import tensorflow as tf Returns: A transformed tensor (tf.float32). """ with tf.variable_scope('_interpolate'): num_batch = im.get_shape().as_list()[0] depth = im.get_shape().as_list()[1] height = im.get_shape().as_list()[2] width = im.get_shape().as_list()[3] channels = im.get_shape().as_list()[4] x = tf.to_float(x) y = tf.to_float(y) z = tf.to_float(z) depth_f = tf.to_float(depth) height_f = tf.to_float(height) width_f = tf.to_float(width) # Number of disparity interpolated. out_depth = out_size[0] out_height = out_size[1] out_width = out_size[2] zero = tf.zeros([], dtype='int32') # 0 <= z < depth, 0 <= y < height & 0 <= x < width. max_z = tf.to_int32(tf.shape(im)[1] - 1) max_y = tf.to_int32(tf.shape(im)[2] - 1) max_x = tf.to_int32(tf.shape(im)[3] - 1)
tensorflow.to_float
6,540
import tensorflow as tf token_type_table = tf.get_variable( name=token_type_embedding_name, shape=[token_type_vocab_size, width], initializer=create_initializer(initializer_range)) # This vocab will be small so we always do one-hot here, since it is always # faster for a small vocabulary. flat_token_type_ids = tf.reshape(token_type_ids, [-1]) one_hot_ids = tf.one_hot(flat_token_type_ids, depth=token_type_vocab_size) token_type_embeddings = tf.matmul(one_hot_ids, token_type_table) token_type_embeddings = tf.reshape(token_type_embeddings, [batch_size, seq_length, width]) output += token_type_embeddings if use_position_embeddings: assert_op = tf.assert_less_equal(seq_length, max_position_embeddings) with tf.control_dependencies([assert_op]): full_position_embeddings = tf.get_variable( name=position_embedding_name, shape=[max_position_embeddings, width], initializer=create_initializer(initializer_range)) # Since the position embedding table is a learned variable, we create it # using a (long) sequence length `max_position_embeddings`. The actual # sequence length might be shorter than this, for faster training of # tasks that do not have long sequences. # # So `full_position_embeddings` is effectively an embedding table # for position [0, 1, 2, ..., max_position_embeddings-1], and the current # sequence has positions [0, 1, 2, ... seq_length-1], so we can just
tensorflow.assert_less_equal
6,541
import tensorflow as tf if reader is None: reader = tf.TFRecordReader # Features in Pascal VOC TFRecords. keys_to_features = { 'image/encoded': tf.FixedLenFeature((), tf.string, default_value=''), 'image/format': tf.FixedLenFeature((), tf.string, default_value='jpeg'), 'image/height': tf.FixedLenFeature([1], tf.int64), 'image/width': tf.FixedLenFeature([1], tf.int64), 'image/channels': tf.FixedLenFeature([1], tf.int64), 'image/shape': tf.FixedLenFeature([3], tf.int64), 'image/object/bbox/xmin': tf.VarLenFeature(dtype=tf.float32), 'image/object/bbox/ymin': tf.VarLenFeature(dtype=tf.float32), 'image/object/bbox/xmax': tf.VarLenFeature(dtype=tf.float32), 'image/object/bbox/ymax': tf.VarLenFeature(dtype=tf.float32), 'image/object/bbox/label': tf.VarLenFeature(dtype=tf.int64), 'image/object/bbox/difficult': tf.VarLenFeature(dtype=tf.int64), 'image/object/bbox/truncated': tf.VarLenFeature(dtype=tf.int64), } items_to_handlers = { 'image': slim.tfexample_decoder.Image('image/encoded', 'image/format'), 'shape': slim.tfexample_decoder.Tensor('image/shape'), 'object/bbox': slim.tfexample_decoder.BoundingBox( ['xmin', 'ymin', 'xmax', 'ymax'], 'image/object/bbox/'), 'object/label': slim.tfexample_decoder.Tensor('image/object/bbox/label'), 'object/difficult': slim.tfexample_decoder.Tensor('image/object/bbox/difficult'), 'object/truncated': slim.tfexample_decoder.Tensor('image/object/bbox/truncated'),
tensorflow.VarLenFeature
6,542
from tensorflow.python.framework import ops with ops.device(device): return array_ops.unstack(values) else: with ops.device(tensors[0].device): sizes = array_ops.stack( [array_ops.shape(tensor)[0] for tensor in tensors]) values = array_ops.concat(tensors, axis=0) with ops.device(device): sizes = array_ops.unstack(sizes) return list(array_ops.split(values, sizes, axis=0)) def _scheduled_stamp_resource_op_runner(batch, stamp): """Runs a batch operation on a stamped resource."""
tensorflow.python.framework.ops.device
6,543
from tensorflow.python.ops import random_ops def _get_batch_shape(self): return array_ops.broadcast_static_shape( self.alpha.get_shape(), self.beta.get_shape()) def _event_shape(self): return constant_op.constant([], dtype=dtypes.int32) def _get_event_shape(self): return tensor_shape.scalar() def _sample_n(self, n, seed=None): """See the documentation for tf.random_gamma for more details.""" return 1. / random_ops.random_gamma([n], self.alpha, beta=self.beta, dtype=self.dtype, seed=seed) def _log_prob(self, x): x = control_flow_ops.with_dependencies([check_ops.assert_positive(x)] if self.validate_args else [], x) return (self.alpha * math_ops.log(self.beta) - math_ops.lgamma(self.alpha) - (self.alpha + 1.) * math_ops.log(x) - self.beta / x) def _prob(self, x): return math_ops.exp(self._log_prob(x))
tensorflow.python.ops.random_ops.random_gamma
6,544
import tensorflow as tf logits += self.b_soft_no_learn op_id = tf.multinomial(logits, 1)
tensorflow.multinomial
6,545
import tensorflow as tf """See base class.""" del num_summands # Unused. del decode_params # Unused. return tf.tile(encoded_tensors[self.ENCODED_VALUES_KEY], shape)
tensorflow.tile
6,546
from tensorflow import keras dataset = dataset.repeat(num_epochs).batch(batch_size) iterator = dataset.make_one_shot_iterator() batch_features, batch_labels = iterator.get_next() return batch_features, batch_labels return _input_fn # Create inference model using Keras # The model here is a dnn regressor def make_keras_estimator(output_dir): from tensorflow import keras model = keras.models.Sequential() model.add(keras.layers.Dense(32, input_shape=(N_INPUTS,), name=TIMESERIES_INPUT_LAYER)) model.add(keras.layers.Activation('relu')) model.add(keras.layers.Dense(1)) model.compile(loss = 'mean_squared_error', optimizer = 'adam', metrics = ['mae', 'mape']) # mean absolute [percentage] error return keras.estimator.model_to_estimator(model, model_dir=output_dir) # Create the inference model def simple_rnn(features, labels, mode): # 0. Reformat input shape to become a sequence x = tf.split(features[TIMESERIES_COL], N_INPUTS, 1)
tensorflow.keras.layers.Dense
6,547
import tensorflow as tf # If channel counts finally don't match, convert channel counts with 1x1 conv if ch != ch_out: with tf.variable_scope('convert_conv'): X = self._do_conv(X, w, h, ch, ch_out, filter_size=1, is_train=is_train) X = tf.reshape(X, (-1, w_out, h_out, ch_out)) # Sanity shape check return X def _add_fully_connected(self, X, in_shape, out_ch, no_reg=False): ch = np.prod(in_shape) X = tf.reshape(X, (-1, ch)) W = self._make_var('W', (ch, out_ch), no_reg=no_reg) X = tf.matmul(X, W) X = tf.reshape(X, (-1, out_ch)) # Sanity shape check return X def _add_factorized_reduction(self, X, in_w, in_h, in_ch, out_ch, is_train=False): ''' Output is of shape (in_w // 2, in_h // 2, out_ch) '''
tensorflow.reshape
6,548
import tensorflow as tf antecedents_mask = antecedent_offsets >= 1 # [k, k] fast_antecedent_scores = tf.expand_dims(top_span_mention_scores, 1) + tf.expand_dims(top_span_mention_scores, 0) # [k, k]
tensorflow.expand_dims
6,549
import tensorflow as tf output, state = update(state, input_) elif decoder.update_first: output, state = update(state, input_, None, input_symbol) context, new_weights = look(time, output, input_, pos=pos, prev_weights=prev_weights, context=context) if decoder.conditional_rnn: with tf.variable_scope('conditional_2'): output, state = update(state, context) elif not decoder.generate_first: output, state = update(state, input_, context, input_symbol) output_ = generate(output, input_, context)
tensorflow.variable_scope
6,550
import tensorflow as tf return res # build a one hot representation corresponding to the integer tensor # the one-hot dimension is appended to the integer tensor shape def as_one_hot(input_, n_indices): """Convert indices to one-hot.""" shape = input_.get_shape().as_list() n_elem = numpy.prod(shape) indices = tf.range(n_elem) indices = tf.cast(indices, tf.int64) indices_input = tf.concat(axis=0, values=[indices, tf.reshape(input_, [-1])]) indices_input = tf.reshape(indices_input, [2, -1]) indices_input = tf.transpose(indices_input) res = tf.sparse_to_dense( indices_input, [n_elem, n_indices], 1., 0., name="flat_one_hot") res = tf.reshape(res, [elem for elem in shape] + [n_indices]) return res def squeeze_2x2(input_): """Squeezing operation: reshape to convert space to channels."""
tensorflow.reshape
6,551
import tensorflow as tf scope: optional name scope for summary tags. Returns: a scalar tensor representing the correlation loss value. """ with tf.name_scope(name): source_samples -= tf.reduce_mean(source_samples, 0) target_samples -= tf.reduce_mean(target_samples, 0) source_samples = tf.nn.l2_normalize(source_samples, 1) target_samples = tf.nn.l2_normalize(target_samples, 1)
tensorflow.name_scope
6,552
import tensorflow as tf def build_cnet(self, state_in, name, reuse=False): reg = tf.contrib.layers.l2_regularizer(1e-3) with tf.variable_scope(name, reuse=reuse):
tensorflow.contrib.layers.l2_regularizer
6,553
import tensorflow as tf Fetches experiences for given indices. Args: indices: Index tensor Returns: Batch of experiences """ states = dict() for name in sorted(self.states_memory): states[name] = tf.gather(params=self.states_memory[name], indices=indices) internals = dict() for name in sorted(self.internals_memory): internals[name] = tf.gather(params=self.internals_memory[name], indices=indices) actions = dict() for name in sorted(self.actions_memory): actions[name] = tf.gather(params=self.actions_memory[name], indices=indices) terminal = tf.gather(params=self.terminal_memory, indices=indices) reward = tf.gather(params=self.reward_memory, indices=indices) if self.include_next_states: assert util.rank(indices) == 1 next_indices = (indices + 1) % self.capacity
tensorflow.gather
6,554
import tensorflow as tf import tensorflow as tf import random from tensorflow.contrib import slim from npu_bridge.estimator import npu_ops from tensorflow.core.protobuf.rewriter_config_pb2 import RewriterConfig tf.app.flags.DEFINE_integer('input_size', 512, '') tf.app.flags.DEFINE_integer('batch_size_per_gpu', 14, '') tf.app.flags.DEFINE_integer('num_readers', 16, '') tf.app.flags.DEFINE_float('learning_rate', 0.0001, '') tf.app.flags.DEFINE_integer('max_steps', 100000, '') tf.app.flags.DEFINE_integer('loss_scale', 1024, '') tf.app.flags.DEFINE_float('moving_average_decay', 0.997, '') tf.app.flags.DEFINE_string('gpu_list', '1', '') tf.app.flags.DEFINE_string('checkpoint_path', '/tmp/east_resnet_v1_50_rbox/', '') tf.app.flags.DEFINE_boolean('restore', False, 'whether to resotre from checkpoint') tf.app.flags.DEFINE_integer('save_checkpoint_steps', 1000, '') tf.app.flags.DEFINE_integer('save_summary_steps', 100, '') tf.app.flags.DEFINE_string('pretrained_model_path', None, '') tf.app.flags.DEFINE_boolean('allow_mix_precision', False, 'whether to allow mix precision') tf.app.flags.DEFINE_boolean('auto_tune', False, 'whether to autotune')
tensorflow.app.flags.DEFINE_integer
6,555
from tensorflow.python.ops import state_ops with ops.control_dependencies([v_diff]): # run v_diff operation before scatter_add scaled_grad = scatter_add(vstar, indices, grad) var_update = state_ops.assign_sub(var, lr_t * (scaled_grad + gold)) return control_flow_ops.group(*[var_update, ])
tensorflow.python.ops.state_ops.assign_sub
6,556
import tensorflow as tf train_op, _, _ = graphs.VatxtModel().language_model_training() with self.test_session() as sess: sess.run(tf.global_variables_initializer()) tf.train.start_queue_runners(sess) sess.run(train_op)
tensorflow.train.start_queue_runners
6,557
import tensorflow as tf shape=[2], initializer=tf.random_normal_initializer()) l1, l2 = tf.nn.sigmoid(hyp_params[0]), tf.exp(hyp_params[1]) epsilon = tf.sinh(epsilon*l2)/tf.cosh(epsilon*l2)**l1/l2 # Compute A_{h+1} A = tf.tile(alpha_mean+epsilon*alpha_std, [1, tf.shape(X)[0], 1, 1]) # Compute z_{h}A_{h+1} Z1 = tf.matmul(Z, A[:,:,:n_basis//2,:])/tf.sqrt(n_basis*.5) Z2 = tf.matmul(Z, A[:,:,n_basis//2:,:])/tf.sqrt(n_basis*.5) # Compute u_{h+1} and v_{h+1} U, V = tf.cos(Z1)+tf.cos(Z2), tf.sin(Z1)+tf.sin(Z2) Z = tf.concat([U, V], 3)/tf.sqrt(n_out*1.) KL += tf.reduce_mean(alpha_std**2+alpha_mean**2-2*alpha_logstd-1)/2. # Output layer
tensorflow.sqrt
6,558
from tensorflow.python.framework import constant_op class OpsTest(test.TestCase): """Ops tests.""" def test_softmax_classifier(self): with self.cached_session() as session: features = array_ops.placeholder(dtypes.float32, [None, 3]) labels = array_ops.placeholder(dtypes.float32, [None, 2]) weights = constant_op.constant([[0.1, 0.1], [0.1, 0.1], [0.1, 0.1]]) biases = constant_op.constant([0.2, 0.3]) class_weight = constant_op.constant([0.1, 0.9]) prediction, loss = ops.softmax_classifier(features, labels, weights, biases, class_weight) self.assertEqual(prediction.get_shape()[1], 2) self.assertEqual(loss.get_shape(), []) value = session.run(loss, {features: [[0.2, 0.3, 0.2]], labels: [[0, 1]]}) self.assertAllClose(value, 0.55180627) def test_embedding_lookup(self):
tensorflow.python.framework.constant_op.constant
6,559
import tensorflow as tf cls_index = tf.one_hot(cls_index, seq_len, axis=-1, dtype=tf.float32) cls_feature = tf.einsum("lbh,bl->bh", output, cls_index) # get the representation of START start_p = tf.nn.softmax(start_logits_masked, axis=-1, name="softmax_start") start_feature = tf.einsum("lbh,bl->bh", output, start_p) # note(zhiliny): no dependency on end_feature so that we can obtain # one single `cls_logits` for each sample ans_feature = tf.concat([start_feature, cls_feature], -1) ans_feature = tf.layers.dense(
tensorflow.einsum
6,560
import tensorflow as tf start_positions = tf.reshape(features["start_positions"], [-1]) start_index = tf.one_hot(start_positions, depth=seq_len, axis=-1, dtype=tf.float32) start_features = tf.einsum("lbh,bl->bh", output, start_index) start_features = tf.tile(start_features[None], [seq_len, 1, 1]) end_logits = tf.layers.dense( tf.concat([output, start_features], axis=-1), xlnet_config.d_model, kernel_initializer=initializer, activation=tf.tanh, name="dense_0") end_logits = tf.contrib.layers.layer_norm( end_logits, begin_norm_axis=-1) end_logits = tf.layers.dense( end_logits, 1, kernel_initializer=initializer, name="dense_1") end_logits = tf.transpose(tf.squeeze(end_logits, -1), [1, 0]) end_logits_masked = end_logits * (1 - p_mask) - 1e30 * p_mask end_log_probs = tf.nn.log_softmax(end_logits_masked, -1) else: # during inference, compute the end logits based on beam search start_top_log_probs, start_top_index = tf.nn.top_k( start_log_probs, k=FLAGS.start_n_top) start_index = tf.one_hot(start_top_index, depth=seq_len, axis=-1, dtype=tf.float32) start_features = tf.einsum("lbh,bkl->bkh", output, start_index) end_input = tf.tile(output[:, :, None], [1, 1, FLAGS.start_n_top, 1]) start_features = tf.tile(start_features[None], [seq_len, 1, 1, 1])
tensorflow.squeeze
6,561
import tensorflow as tf num_dec_timesteps = 3 def TestModel(seq2seq): with self.test_session(graph=tf.Graph()) as sess: tf.set_random_seed(111) random.seed(111)
tensorflow.Graph
6,562
import tensorflow as tf if "is_real_example" in features: is_real_example = tf.cast(features["is_real_example"], dtype=tf.float32)
tensorflow.cast
6,563
import tensorflow as tf 'keep_checkpoint_max': 100, } config = tf.contrib.tpu.RunConfig(**run_config_args) if FLAGS.warm_start_ckpt_path: var_names = [] checkpoint_path = FLAGS.warm_start_ckpt_path reader = tf.train.NewCheckpointReader(checkpoint_path) for key in reader.get_variable_to_shape_map(): keep_str = 'Momentum|global_step|finetune_global_step' if not re.findall('({})'.format(keep_str,), key): var_names.append(key) tf.logging.info('Warm-starting tensors: %s', sorted(var_names))
tensorflow.train.NewCheckpointReader
6,564
from tensorflow.contrib.learn.python.learn import ops ids = np.random.randint(0, n_embed, ids_shape) with self.cached_session(): embed_np = embeds[ids] embed_tf = ops.embedding_lookup(embeds, ids).eval() self.assertEqual(embed_np.shape, embed_tf.shape) self.assertAllClose(embed_np, embed_tf)
tensorflow.contrib.learn.python.learn.ops.embedding_lookup
6,565
import tensorflow as tf features = {'member/name': tf.io.FixedLenFeature([], tf.string), 'member/encoded': tf.io.FixedLenFeature([], tf.string), 'member/age': tf.io.FixedLenFeature([], tf.int64), 'member/height': tf.io.VarLenFeature(tf.float32),
tensorflow.io.FixedLenFeature
6,566
import tensorflow as tf def N0(mean, variance): return 1.0/(tf.sqrt(2.0 * m.pi * variance)) * tf.exp((-(mean**2))/(2*variance)) N = tf.cast(tf.shape(X)[0], tf.float32) if y is None: y = silverman_rule_of_thumb(N) A = tf.subtract(tf.expand_dims(X, 0), tf.expand_dims(X, 1)) return (1.0/(N*N)) * tf.reduce_sum(N0(A, 2*y)) + N0(0.0, 2.0 + 2*y) - (2/N) * tf.reduce_sum(N0(X, 1.0 + 2*y)) def cw_2d(X, y=None): def __phi(x): def __phi_f(s): t = s/7.5
tensorflow.expand_dims
6,567
import tensorflow as tf # pylint: disable=unused-variable,invalid-name def testDynamicAttentionDecoderStateIsTuple(self): with self.test_session() as sess: with tf.variable_scope( "root", initializer=tf.constant_initializer(0.5)): cell = tf.nn.rnn_cell.BasicLSTMCell(2, state_is_tuple=True) cell = tf.nn.rnn_cell.MultiRNNCell(cells=[cell] * 2, state_is_tuple=True) inp = tf.constant(0.5, shape=[2, 2, 2]) enc_outputs, enc_state = tf.nn.rnn(cell, inp, dtype=tf.float32) attn_states = tf.concat(1, [tf.reshape(e, [-1, 1, cell.output_size]) for e in enc_outputs]) dec_inp = [tf.constant(0.4, shape=[2, 2])] * 3 dec, mem = tf.nn.seq2seq.attention_decoder( dec_inp, enc_state, attn_states, cell, output_size=4) sess.run([tf.global_variables_initializer()]) res = sess.run(dec) self.assertEqual(3, len(res)) self.assertEqual((2, 4), res[0].shape) res = sess.run([mem]) self.assertEqual(2, len(res[0])) self.assertEqual((2, 2), res[0][0].c.shape) self.assertEqual((2, 2), res[0][0].h.shape) self.assertEqual((2, 2), res[0][1].c.shape) self.assertEqual((2, 2), res[0][1].h.shape)
tensorflow.nn.seq2seq.attention_decoder
6,568
import tensorflow as tf self.assertAllClose(res1, res2) self.assertAllClose(res1, res3) def testEmbeddingTiedRNNSeq2Seq(self): with self.test_session() as sess: with tf.variable_scope("root", initializer=tf.constant_initializer(0.5)): enc_inp = [tf.constant(1, tf.int32, shape=[2]) for i in range(2)] dec_inp = [tf.constant(i, tf.int32, shape=[2]) for i in range(3)] cell = tf.nn.rnn_cell.BasicLSTMCell(2, state_is_tuple=True) dec, mem = tf.nn.seq2seq.embedding_tied_rnn_seq2seq( enc_inp, dec_inp, cell, num_symbols=5, embedding_size=2) sess.run([tf.global_variables_initializer()]) res = sess.run(dec) self.assertEqual(3, len(res)) self.assertEqual((2, 5), res[0].shape) res = sess.run([mem]) self.assertEqual((2, 2), res[0].c.shape)
tensorflow.nn.seq2seq.embedding_tied_rnn_seq2seq
6,569
import tensorflow as tf lr=FLAGS.learning_rate)) def weight_variable(shape): """weight_variable generates a weight variable of a given shape.""" initial = tf.truncated_normal(shape, stddev=0.1) return tf.Variable(initial, name='weights') def bias_variable(shape):
tensorflow.truncated_normal
6,570
import tensorflow as tf masked_lm_weights = tf.reshape(masked_lm_weights, [-1]) masked_lm_accuracy = tf.metrics.accuracy( labels=masked_lm_ids, predictions=masked_lm_predictions, weights=masked_lm_weights) masked_lm_mean_loss = tf.metrics.mean( values=masked_lm_example_loss, weights=masked_lm_weights) next_sentence_log_probs = tf.reshape( next_sentence_log_probs, [-1, next_sentence_log_probs.shape[-1]]) next_sentence_predictions = tf.argmax( next_sentence_log_probs, axis=-1, output_type=tf.int32) next_sentence_labels = tf.reshape(next_sentence_labels, [-1]) next_sentence_accuracy = tf.metrics.accuracy( labels=next_sentence_labels, predictions=next_sentence_predictions) next_sentence_mean_loss = tf.metrics.mean( values=next_sentence_example_loss) return { "masked_lm_accuracy": masked_lm_accuracy, "masked_lm_loss": masked_lm_mean_loss, "next_sentence_accuracy": next_sentence_accuracy, "next_sentence_loss": next_sentence_mean_loss, }
tensorflow.reshape
6,571
from tensorflow.python.framework import ops false_negatives_compute_op]): update_op = compute_recall('update_op') if metrics_collections: ops.add_to_collections(metrics_collections, recall) if updates_collections: ops.add_to_collections(updates_collections, update_op) return recall, update_op def _at_k_name(name, k=None, class_id=None): if k is not None:
tensorflow.python.framework.ops.add_to_collections
6,572
from tensorflow.python.ops import variable_scope # Run the decoder RNN cell. cell_output = decoder state cell_output, state_t = self.cell(x, state_t_1) context_t, attn_dist, coverage_t = self.attention(state_t, options.attention_vec_size, encoder_states, encoder_features, passage_mask, v, w_c=w_c, use_coverage=options.use_coverage, coverage=coverage_t_1) # Calculate p_gen, Equation (8) if options.pointer_gen: with tf.variable_scope('calculate_pgen'): p_gen = linear([context_t, state_t.c, state_t.h, x], 1, True) # [batch_size, 1] p_gen = tf.sigmoid(p_gen) # Concatenate the cell_output (= decoder state) and the context vector, and pass them through a linear layer # This is V[s_t, h*_t] + b in the paper with variable_scope.variable_scope("AttnOutputProjection"): output_t = linear([cell_output] + [context_t], options.gen_hidden_size, True) with tf.variable_scope('output_projection'): w = tf.get_variable('w', [options.gen_hidden_size, vocab.vocab_size+1], dtype=tf.float32) b = tf.get_variable('b', [vocab.vocab_size +1], dtype=tf.float32) # vocab_scores is the vocabulary distribution before applying softmax. # Each entry on the list corresponds to one decoder step vocab_score_t = tf.nn.xw_plus_b(output_t, w, b) # apply the linear layer vocab_score_t = tf.nn.softmax(vocab_score_t) # For pointer-generator model, calc final distribution from copy distribution and vocabulary distribution if options.pointer_gen: vocab_score_t = self.merge_prob_dist_for_one_step(vocab_score_t, attn_dist, p_gen, passage_word_idx, passage_mask)
tensorflow.python.ops.variable_scope.variable_scope
6,573
from tensorflow.python.client import timeline if not FLAGS.forward_only: lossval = results[1] else: lossval = 0. train_time = time.time() - start_time step_train_times.append(train_time) if step >= 0 and (step == 0 or (step + 1) % FLAGS.display_every == 0): log_fn('%i\t%s\t%.3f' % ( step + 1, get_perf_timing_str(batch_size, step_train_times), lossval)) if trace_filename is not None and step == -1: log_fn('Dumping trace to', trace_filename) trace = timeline.Timeline(step_stats=run_metadata.step_stats) with open(trace_filename, 'w') as trace_file: trace_file.write(trace.generate_chrome_trace_format(show_memory=True)) return summary_str def get_perf_timing_str(batch_size, step_train_times, scale=1): times = np.array(step_train_times) speeds = batch_size / times speed_mean = scale * batch_size / np.mean(times) if scale == 1: speed_uncertainty = np.std(speeds) / np.sqrt(float(len(speeds))) speed_madstd = 1.4826 * np.median(np.abs(speeds - np.median(speeds))) speed_jitter = speed_madstd
tensorflow.python.client.timeline.Timeline
6,574
from tensorflow.python.framework import ops return [tensor_shape.unknown_shape(ndims=4)] @ops.RegisterShape("Conv2DBackpropInput") def _Conv2DBackpropInputShape(op): """Shape function for the Conv2DBackpropInput op."""
tensorflow.python.framework.ops.RegisterShape
6,575
import tensorflow as tf gt_boxes: BS x MaxNumGTs x 4 orig_gt_counts: BS Returns: list of length BS, each element is output of pairwise_iou: N x M (where N is number of boxes for image and M is number of GTs for image) """ prefix = "pairwise_iou_batch" # For each image index, extract a ?x4 boxlist and gt_boxlist per_images_iou = [] for batch_idx in range(batch_size): box_mask_for_image = tf.equal(proposal_boxes[:, 0], batch_idx) single_image_boxes = tf.boolean_mask(proposal_boxes, box_mask_for_image) single_image_boxes = single_image_boxes[:, 1:] single_image_gt_boxes = gt_boxes[batch_idx, 0:orig_gt_counts[batch_idx], :] single_image_iou = pairwise_iou(single_image_boxes, single_image_gt_boxes) per_images_iou.append(single_image_iou) return per_images_iou
tensorflow.equal
6,576
import tensorflow as tf click_feature[i] = tf.expand_dims(tf.ones_like(self.labels[i]) , -1) # click_feature[list_size:]=[tf.expand_dims(tf.zeros_like(self.labels[i]) , -1) for _ in range(3*list_size)] click_feature[list_size:list_size+i] =[tf.expand_dims(self.labels[k] , -1) for k in range(i-1,-1,-1)] click_feature[2*list_size:2*list_size+i+1]=[tf.expand_dims(self.types[k] , -1) for k in range(i,-1,-1)] click_feature[3*list_size:3*list_size+list_size-i-1]=[tf.expand_dims(self.types[k] , -1) for k in range(i+1,list_size)] # Predict propensity with a simple network output_propensity_list.append(propensity_network(tf.concat(click_feature, 1), i)) self.click_show=[click_feature[h][0] for h in range(4*list_size)] return tf.concat(output_propensity_list,1) def step(self, session, input_feed, forward_only): """Run a step of the model feeding the given inputs. Args: session: (tf.Session) tensorflow session to use. input_feed: (dictionary) A dictionary containing all the input feed data.
tensorflow.concat
6,577
import tensorflow as tf var_shape = var.get_shape().as_list() if var_shape == saved_shapes[name]: restored.append(var) else: shape_conflicts.add(name) found_names -= shape_conflicts return (restored, sorted(found_names), sorted(missing_names), sorted(shape_conflicts)) def load(self, checkpoint_path, flexible_restore=True): if tf.gfile.IsDirectory(checkpoint_path): checkpoint_path = tf.train.latest_checkpoint(checkpoint_path) if checkpoint_path is None: raise ValueError('Checkpoint directory is empty.') if flexible_restore: var_list, found, missing, conflicts = self._checkpoint_var_search( checkpoint_path) tf.logging.info('Restoring variables: \n\t{}'.format( '\n\t'.join(found))) if len(missing) > 0:
tensorflow.gfile.IsDirectory
6,578
from tensorflow.python.ops import math_ops weights_tiled = array_ops.tile(array_ops.reshape( _broadcast_weights(weights, predictions), [1, -1]), [num_thresholds, 1]) thresh_tiled.get_shape().assert_is_compatible_with( weights_tiled.get_shape()) is_true_positive *= weights_tiled is_false_negative *= weights_tiled is_false_positive *= weights_tiled is_true_negative *= weights_tiled true_positives_update_op = state_ops.assign_add( true_positives, math_ops.reduce_sum(is_true_positive, 1)) false_negatives_update_op = state_ops.assign_add( false_negatives, math_ops.reduce_sum(is_false_negative, 1)) true_negatives_update_op = state_ops.assign_add( true_negatives, math_ops.reduce_sum(is_true_negative, 1)) false_positives_update_op = state_ops.assign_add( false_positives, math_ops.reduce_sum(is_false_positive, 1)) return (true_positives, false_negatives, true_negatives, false_positives, true_positives_update_op, false_negatives_update_op,
tensorflow.python.ops.math_ops.reduce_sum
6,579
import tensorflow as tf self.dropout_mask = [] for layer in range(num_layers): input_size_ = input_size if layer == 0 else 2 * num_units gru_fw = tf.contrib.cudnn_rnn.CudnnGRU(1, num_units) gru_bw = tf.contrib.cudnn_rnn.CudnnGRU(1, num_units) init_fw = tf.tile(tf.Variable( tf.zeros([1, 1, num_units])), [1, batch_size, 1]) init_bw = tf.tile(tf.Variable(
tensorflow.contrib.cudnn_rnn.CudnnGRU
6,580
import tensorflow as tf gru_fw, gru_bw = self.grus[layer] init_fw, init_bw = self.inits[layer] mask_fw, mask_bw = self.dropout_mask[layer] with tf.variable_scope("fw_{}".format(layer)): out_fw, _ = tf.nn.dynamic_rnn( gru_fw, outputs[-1] * mask_fw, seq_len, initial_state=init_fw, dtype=tf.float32) with tf.variable_scope("bw_{}".format(layer)): inputs_bw = tf.reverse_sequence( outputs[-1] * mask_bw, seq_lengths=seq_len, seq_dim=1, batch_dim=0) out_bw, _ = tf.nn.dynamic_rnn( gru_bw, inputs_bw, seq_len, initial_state=init_bw, dtype=tf.float32) out_bw = tf.reverse_sequence( out_bw, seq_lengths=seq_len, seq_dim=1, batch_dim=0) outputs.append(tf.concat([out_fw, out_bw], axis=2)) if concat_layers: res = tf.concat(outputs[1:], axis=2) else: res = outputs[-1] return res class ptr_net:
tensorflow.reverse_sequence
6,581
import tensorflow as tf # Trainable parameters mask = tf.equal(mask, tf.ones_like(mask)) facts_size = facts.get_shape().as_list()[-1] # D value - hidden size of the RNN layer querry_size = query.get_shape().as_list()[-1] query = tf.layers.dense(query, facts_size, activation=None, name='f1' + stag) query = prelu(query) queries = tf.tile(query, [1, tf.shape(facts)[1]]) queries = tf.reshape(queries, tf.shape(facts)) din_all = tf.concat([queries, facts, queries-facts, queries*facts], axis=-1) d_layer_1_all = tf.layers.dense(din_all, 80, activation=tf.nn.sigmoid, name='f1_att' + stag) d_layer_2_all = tf.layers.dense(d_layer_1_all, 40, activation=tf.nn.sigmoid, name='f2_att' + stag) d_layer_3_all = tf.layers.dense(d_layer_2_all, 1, activation=None, name='f3_att' + stag) d_layer_3_all = tf.reshape(d_layer_3_all, [-1, 1, tf.shape(facts)[1]]) scores = d_layer_3_all # Mask # key_masks = tf.sequence_mask(facts_length, tf.shape(facts)[1]) # [B, T] key_masks = tf.expand_dims(mask, 1) # [B, 1, T] paddings = tf.ones_like(scores) * (-2 ** 32 + 1) if not forCnn: scores = tf.where(key_masks, scores, paddings) # [B, 1, T] # Scale # scores = scores / (facts.get_shape().as_list()[-1] ** 0.5)
tensorflow.shape
6,582
import tensorflow as tf name='example_weights') embeddings = c2v.GetEmbeddings(self.x) self._inputs = [tf.squeeze(input_, [1]) for input_ in tf.split(1, max_sequence_len, embeddings)] # Need to prepare a mask to zero out the padding symbols.
tensorflow.split
6,583
from tensorflow.contrib.distributions.python.ops import distribution_util def _batch_shape_tensor(self): return array_ops.shape(self.rate) def _batch_shape(self): return self.rate.get_shape() def _event_shape_tensor(self): return constant_op.constant([], dtype=dtypes.int32) def _event_shape(self): return tensor_shape.scalar() @distribution_util.AppendDocstring(_poisson_sample_note) def _log_prob(self, x): return self._log_unnormalized_prob(x) - self._log_normalization() @distribution_util.AppendDocstring(_poisson_sample_note) def _prob(self, x): return math_ops.exp(self._log_prob(x)) @distribution_util.AppendDocstring(_poisson_sample_note) def _log_cdf(self, x): return math_ops.log(self.cdf(x))
tensorflow.contrib.distributions.python.ops.distribution_util.AppendDocstring
6,584
import tensorflow as tf a = tf.constant_initializer([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[2, 3], name='a') b = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[3, 2], name='b') c = tf.matmul(a, b) # Runs the op.
tensorflow.matmul
6,585
import tensorflow as tf current_image_id_ph = tf.placeholder(tf.int32, []) progress = networks.compute_progress( current_image_id_ph, stable_stage_num_images, transition_stage_num_images, num_blocks=3) x = tf.random_normal([2, 16, 16, 3]) logits, _ = networks.discriminator( x, progress, _num_filters_stub, networks.ResolutionSchedule( start_resolutions=(4, 4), scale_base=2, num_resolutions=3)) fake_loss = tf.reduce_sum(tf.square(logits))
tensorflow.random_normal
6,586
import tensorflow as tf with tf.variable_scope("stats") as scope: for i in range(hparams.tacotron_num_gpus): tf.summary.histogram("mel_outputs %d" % i, model.tower_mel_outputs[i]) tf.summary.histogram("mel_targets %d" % i, model.tower_mel_targets[i]) tf.summary.scalar("before_loss", model.before_loss) tf.summary.scalar("after_loss", model.after_loss) if hparams.predict_linear: tf.summary.scalar("linear_loss", model.linear_loss) for i in range(hparams.tacotron_num_gpus): tf.summary.histogram("mel_outputs %d" % i, model.tower_linear_outputs[i]) tf.summary.histogram("mel_targets %d" % i, model.tower_linear_targets[i]) tf.summary.scalar("regularization_loss", model.regularization_loss) tf.summary.scalar("stop_token_loss", model.stop_token_loss) tf.summary.scalar("loss", model.loss) tf.summary.scalar("learning_rate", model.learning_rate) # Control learning rate decay speed if hparams.tacotron_teacher_forcing_mode == "scheduled": tf.summary.scalar("teacher_forcing_ratio", model.ratio) # Control teacher forcing # ratio decay when mode = "scheduled" gradient_norms = [tf.norm(grad) for grad in model.gradients] tf.summary.histogram("gradient_norm", gradient_norms) tf.summary.scalar("max_gradient_norm", tf.reduce_max(gradient_norms)) # visualize # gradients (in case of explosion) return tf.summary.merge_all()
tensorflow.summary.scalar
6,587
import tensorflow as tf filter_h, filter_w, num_channels_out = filter_dims stride_h, stride_w = stride_dims with tf.variable_scope(scope): conv_weight = tf.Variable( tf.truncated_normal([filter_h, filter_w, num_channels_in, num_channels_out], stddev=0.1, dtype=tf.float32)) conv_bias = tf.Variable(tf.zeros([num_channels_out], dtype=tf.float32)) map = tf.nn.conv2d(input, conv_weight, strides=[1, stride_h, stride_w, 1], padding=padding, dilations=dilation) if bias is True:
tensorflow.truncated_normal
6,588
import tensorflow as tf eval_drop_remainder = True if FLAGS.use_tpu else False eval_input_fn = file_based_input_fn_builder( input_file=eval_file, seq_length=FLAGS.max_seq_length, is_training=False, drop_remainder=eval_drop_remainder) result = estimator.evaluate(input_fn=eval_input_fn, steps=eval_steps) output_eval_file = os.path.join(FLAGS.output_dir, "eval_results.txt") with tf.gfile.GFile(output_eval_file, "w") as writer: tf.logging.info("***** Eval results *****") for key in sorted(result.keys()): tf.logging.info(" %s = %s", key, str(result[key])) writer.write("%s = %s\n" % (key, str(result[key]))) if FLAGS.do_predict: predict_examples = processor.get_test_examples(FLAGS.data_dir) num_actual_predict_examples = len(predict_examples) if FLAGS.use_tpu: # TPU requires a fixed batch size for all batches, therefore the number # of examples must be a multiple of the batch size, or else examples # will get dropped. So we pad with fake examples which are ignored
tensorflow.logging.info
6,589
import tensorflow as tf def post_cbhg(inputs, input_dim, is_training, depth): return cbhg( inputs, None, is_training, scope='post_cbhg', K=8, projections=[256, input_dim], depth=depth) def cbhg(inputs, input_lengths, is_training, scope, K, projections, depth): with tf.variable_scope(scope): with tf.variable_scope('conv_bank'): # Convolution bank: concatenate on the last axis to stack channels from all convolutions conv_outputs = tf.concat( [conv1d(inputs, k, 128, tf.nn.relu, is_training, 'conv1d_%d' % k) for k in range(1, K + 1)], axis=-1 ) # Maxpooling: maxpool_output = tf.layers.max_pooling1d( conv_outputs, pool_size=2,
tensorflow.variable_scope
6,590
import tensorflow as tf for state in states: dJr = tf.matmul(tf.nn.relu(state), tf.matmul(tf.abs(self.W_rec) * self.rec_Connectivity, self.Dale_rec)) reg += tf.reduce_sum(tf.square(dJr)) return reg / (self.N_steps * self.N_batch) # train the model using Adam def train(self, sess, generator, learning_rate=.001, training_iters=50000, batch_size=64, display_step=10,weight_save_step=100, save_weights_path= None, generator_function= None, training_weights_path = None): # train with gradient clipping optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate) grads = optimizer.compute_gradients(self.loss) clipped_grads = [(tf.clip_by_norm(grad, 1.0), var) if grad is not None else (grad, var) for grad, var in grads] # add vanishing gradient regularizer #out, test = self.dOmega_dWrec() #clipped_grads[0] = (tf.add(out[0], clipped_grads[0][0]), clipped_grads[0][1]) #clipped_grads[0] = (tf.Print(clipped_grads[0][0], [clipped_grads[0][0]], "gw_rec"), clipped_grads[0][1]) optimize = optimizer.apply_gradients(clipped_grads) # run session sess.run(tf.global_variables_initializer())
tensorflow.train.AdamOptimizer
6,591
import tensorflow as tf d_layer_3_all = tf.layers.dense(d_layer_2_all, 1, activation=None, name='f3_att' + stag) d_layer_3_all = tf.reshape(d_layer_3_all, [-1, 1, tf.shape(facts)[1]]) scores = d_layer_3_all if mask is not None: mask = tf.equal(mask, tf.ones_like(mask)) key_masks = tf.expand_dims(mask, 1) # [B, 1, T] paddings = tf.ones_like(scores) * (-2 ** 32 + 1) scores = tf.where(key_masks, scores, paddings) # [B, 1, T]
tensorflow.ones_like
6,592
import tensorflow as tf """Dataset for iterating over text.""" import collections import numpy as np import tensorflow as tf def _split_string(string): """Splits a byte string into an array of character bytes.""" text = tf.compat.as_text(string) ret = np.empty(len(text), dtype=np.object) for i, char in enumerate(text): ret[i] = tf.compat.as_bytes(char) return ret def vocabulary(filename, max_size=None, num_oov_buckets=1): """Builds vocabulary and ID lookup tables from the given file."""
tensorflow.compat.as_text
6,593
import tensorflow as tf # overall pruning ratios of trainable & maskable variables pr_trainable = calc_prune_ratio(self.trainable_vars) pr_maskable = calc_prune_ratio(self.maskable_vars) tf.summary.scalar('pr_trainable', pr_trainable) tf.summary.scalar('pr_maskable', pr_maskable) # build masks and corresponding operations for weight sparsification self.masks, self.prune_op = self.__build_masks() # optimizer & gradients optimizer_base = tf.train.MomentumOptimizer(lrn_rate, FLAGS.momentum) if not FLAGS.enbl_multi_gpu: optimizer = optimizer_base else: optimizer = mgw.DistributedOptimizer(optimizer_base) grads_origin = optimizer.compute_gradients(loss, self.trainable_vars) grads_pruned = self.__calc_grads_pruned(grads_origin) # TF operations & model saver self.sess_train = sess
tensorflow.train.MomentumOptimizer
6,594
import tensorflow as tf tensor_dict = { fields.InputDataFields.image: tf.constant(np_image), fields.InputDataFields.groundtruth_classes: tf.constant(np.array([3, 1], np.int32)) } def mul_two_model_preprocessor_fn(image): return (image * 2, tf.expand_dims(tf.shape(image)[1:], axis=0)) def add_five_to_image_data_augmentation_fn(tensor_dict): tensor_dict[fields.InputDataFields.image] += 5 return tensor_dict num_classes = 4 input_transformation_fn = functools.partial(
tensorflow.shape
6,595
import tensorflow as tf threads = [self.checkedThread(target=run_assign, args=(assign_op,)) for assign_op in assigns] for t in threads: t.start() for t in threads: t.join() vals = p.eval() # Assert every element is taken from one of the assignments. self.assertTrue((vals > 0).all()) self.assertTrue((vals <= 20).all()) if __name__ == "__main__": tf.test.main()
tensorflow.test.main
6,596
import tensorflow as tf with self.test_session() as sess: var = tf.Variable(var_value, name=var_name) save = tf.train.Saver({var_name: var}) var.initializer.run()
tensorflow.train.Saver
6,597
import tensorflow as tf if decoder.cell_type.lower() == 'lstm' and decoder.use_lstm_full_state: initial_output = initial_state else: # Last layer's state is the right-most part. Output is the left-most part of an LSTM's state. initial_output = initial_state[:, -cell_output_size:] time = tf.constant(0, dtype=tf.int32, name='time') outputs = tf.TensorArray(dtype=tf.float32, size=time_steps) samples = tf.TensorArray(dtype=tf.int64, size=time_steps) inputs = tf.TensorArray(dtype=tf.int64, size=time_steps).unstack(tf.to_int64(tf.transpose(decoder_inputs))) states = tf.TensorArray(dtype=tf.float32, size=time_steps) weights = tf.TensorArray(dtype=tf.float32, size=time_steps) attns = tf.TensorArray(dtype=tf.float32, size=time_steps) initial_symbol = inputs.read(0) # first symbol is BOS initial_input = embed(initial_symbol) initial_pos = tf.zeros([batch_size], tf.float32) initial_weights = tf.zeros(tf.shape(attention_states[align_encoder_id])[:2]) zero_context = tf.zeros(shape=tf.shape(attention_states[align_encoder_id][:,0])) # FIXME with tf.variable_scope('decoder_{}'.format(decoder.name)): initial_context, _ = look(0, initial_output, initial_input, pos=initial_pos, prev_weights=initial_weights, context=zero_context) initial_data = tf.concat([initial_state, initial_context, tf.expand_dims(initial_pos, axis=1), initial_weights], axis=1) context_size = initial_context.shape[1].value
tensorflow.TensorArray
6,598
from tensorflow.python.framework import tensor_util Returns: sample_dims: `Tensor` (1D, `int32`). batch_dims: `Tensor` (1D, `int32`). event_dims: `Tensor` (1D, `int32`). """ with self._name_scope(name, values=[x]): def make_dims(start_sum, size, name): """Closure to make dims range.""" start_sum = start_sum if start_sum else ( array_ops.zeros((), dtype=dtypes.int32, name="zero"),) if self._is_all_constant_helper(size, *start_sum): start = sum(tensor_util.constant_value(s) for s in start_sum) stop = start + tensor_util.constant_value(size) return ops.convert_to_tensor( list(range(start, stop)), dtype=dtypes.int32, name=name) else: start = sum(start_sum) return math_ops.range(start, start + size) sample_ndims = self.get_sample_ndims(x, name=name) return (make_dims((), sample_ndims, name="sample_dims"), make_dims((sample_ndims,), self.batch_ndims, name="batch_dims"), make_dims((sample_ndims, self.batch_ndims), self.event_ndims, name="event_dims"))
tensorflow.python.framework.tensor_util.constant_value
6,599