seed
stringlengths
25
2.89k
seed_api
stringlengths
14
102
index
int64
0
14.8k
import tensorflow as tf org_ivec = rep_tensor.get_shape().as_list()[2] ivec = hn or org_ivec with tf.variable_scope(scope or 'directional_attention_%s' % direction or 'diag'): # non-linear rep_map = bn_dense_layer(rep_tensor, ivec, True, 0., 'bn_dense_map', activation, False, wd, keep_prob, is_train) # ensure the seletion is right dep_selection = tf.logical_and(rep_mask, dep_selection) head_selection = tf.logical_and(rep_mask, head_selection) rep_dep_tensor, rep_dep_mask, dep_org_idx = reduce_data_rep_max_len(rep_map, dep_selection) rep_head_tensor,rep_head_mask, head_org_idx = reduce_data_rep_max_len(rep_map, head_selection) sl_dep, sl_head = tf.shape(rep_dep_tensor)[1], tf.shape(rep_head_tensor)[1] if keep_unselected: unhead_selection = tf.logical_and(rep_mask, tf.logical_not(head_selection)) rep_unhead_tensor, rep_unhead_mask, unhead_org_idx = reduce_data_rep_max_len(rep_map, unhead_selection) sl_unhead = tf.shape(rep_unhead_tensor)[1]
tensorflow.logical_and
6,200
import tensorflow as tf self.u0_tf = tf.placeholder(tf.float32, shape=(None, self.u0.shape[1])) self.u1_tf = tf.placeholder(tf.float32, shape=(None, self.u1.shape[1])) self.dummy_x0_tf = tf.placeholder(tf.float32, shape=(None, self.q)) # dummy variable for fwd_gradients self.dummy_x1_tf = tf.placeholder(tf.float32, shape=(None, self.q)) # dummy variable for fwd_gradients self.U0_pred = self.net_U0(self.x0_tf) # N0 x q self.U1_pred = self.net_U1(self.x1_tf) # N1 x q self.loss = tf.reduce_sum(tf.square(self.u0_tf - self.U0_pred)) + \ tf.reduce_sum(tf.square(self.u1_tf - self.U1_pred)) self.optimizer = tf.contrib.opt.ScipyOptimizerInterface(self.loss, method = 'L-BFGS-B', options = {'maxiter': 50000, 'maxfun': 50000, 'maxcor': 50, 'maxls': 50, 'ftol' : 1.0 * np.finfo(float).eps})
tensorflow.square
6,201
import tensorflow as tf tile_multiples = [1, t, w, h] tile_multiples.insert(index_c, 1) weights = tf.tile(weights, tile_multiples) weights = tf.nn.sigmoid(weights) return tf.multiply(weights, input_tensor) def s3dg_base(inputs, first_temporal_kernel_size=3,
tensorflow.multiply
6,202
import tensorflow as tf with self.assertRaisesOpError("Condition x > 0"): pareto = tfd.Pareto(concentration, scale, validate_args=True) self.evaluate(pareto.concentration) def testParetoLogPdf(self): batch_size = 6 scale = tf.constant([3.] * batch_size) scale_v = 3. concentration = tf.constant([2.]) concentration_v = 2. x = [3., 3.1, 4., 5., 6., 7.] pareto = tfd.Pareto(concentration, scale) log_prob = pareto.log_prob(x) self.assertEqual(log_prob.shape, (6,)) self.assertAllClose( self.evaluate(log_prob),
tensorflow.constant
6,203
import tensorflow as tf with tf.variable_scope("translate") as scope: trans_h0 = lrelu(linear(tf.nn.dropout(tf.concat([srcimg_z, tgtctx_z], 1), keep_prob), featsize, 'trans_h0')) trans_z = linear(tf.nn.dropout(trans_h0, keep_prob), featsize, 'trans_z') self.translated_z = trans_z s_h, s_w = self.output_height, self.output_width s_h0, s_h1, s_h2, s_h3 = \ int(s_h/ns0), int(s_h/ns0/ns1), int(s_h/ns0/ns1/ns2), int(s_h/ns0/ns1/ns2/ns3) s_w0, s_w1, s_w2, s_w3 = \ int(s_w/ns0), int(s_w/ns0/ns1), int(s_w/ns0/ns1/ns2), int(s_w/ns0/ns1/ns2/ns3) def decode(z, skip_h3, skip_h2, skip_h1, skip_h0): z_ = lrelu(linear(tf.nn.dropout(z, keep_prob), nf3*s_h3*s_w3, 'd_h0_lin')) h0 = tf.nn.dropout(tf.reshape(z_, [-1, s_h3, s_w3, nf3]), keep_prob) h1 = lrelu(deconv2d(tf.concat([h0, skip_h3], 3), [self.batch_size, s_h2, s_w2, nf2], name='d_h1', d_h=ns3, d_w=ns3)) h2 = lrelu(deconv2d(tf.concat([h1, skip_h2], 3), [self.batch_size, s_h1, s_w1, nf1], name='d_h2', d_h=ns2, d_w=ns2)) h3 = lrelu(deconv2d(tf.concat([h2, skip_h1], 3), [self.batch_size, s_h0, s_w0, nf0], name='d_h3', d_h=ns1, d_w=ns1)) print(h3.get_shape()) h4 = deconv2d(tf.concat([h3, skip_h0], 3), [self.batch_size, s_h, s_w, self.c_dim], name='d_h4', d_h=ns0, d_w=ns0) return h4 with tf.variable_scope("deconv") as scope: output_h4 = decode(trans_z, tgtctx_h3, tgtctx_h2, tgtctx_h1, tgtctx_h0) scope.reuse_variables() truthoutput_h4 = decode(tgtimg_z, tgtctx_h3, tgtctx_h2, tgtctx_h1, tgtctx_h0)
tensorflow.concat
6,204
import tensorflow as tf direct_mask_tile = tf.tile( tf.expand_dims(tf.expand_dims(direct_mask, 0), 0), [bs, bn, 1, 1]) # bs,bn,bl,bl rep_mask_tile_1 = tf.tile(tf.expand_dims(rep_mask_split, 2), [1, 1, bl, 1]) # bs,bn,bl,bl rep_mask_tile_2 = tf.tile(tf.expand_dims(rep_mask_split, 3), [1, 1, 1, bl]) # bs,bn,bl,bl rep_mask_tile = tf.logical_and(rep_mask_tile_1, rep_mask_tile_2) attn_mask = tf.logical_and(direct_mask_tile, rep_mask_tile, name='attn_mask') # bs,bn,bl,bl # attention f_bias = tf.get_variable('f_bias', [ivec], tf.float32, tf.constant_initializer(0.)) dependent_head = linear( rep_map, 2 * ivec, False, 0., 'linear_dependent_head', False, wd, keep_prob, is_train) # bs,bn,bl,2vec dependent, head = tf.split(dependent_head, 2, 3) dependent_etd = tf.expand_dims(dependent, 2) # bs,bn,1,bl,vec head_etd = tf.expand_dims(head, 3) # bs,bn,bl,1,vec logits = scaled_tanh(dependent_etd + head_etd + f_bias, 5.0) # bs,bn,bl,bl,vec logits_masked = exp_mask_for_high_rank(logits, attn_mask) attn_score = tf.nn.softmax(logits_masked, 3) # bs,bn,bl,bl,vec attn_score = mask_for_high_rank(attn_score, attn_mask) # bs,bn,bl,bl,vec self_attn_result = tf.reduce_sum(attn_score * rep_map_tile, 3) # bs,bn,bl,vec with tf.variable_scope('source2token_self_attn'): inter_block_logits = bn_dense_layer(self_attn_result, ivec, True, 0., 'bn_dense_map', 'linear', False, wd, keep_prob, is_train) # bs,bn,bl,vec inter_block_logits_masked = exp_mask_for_high_rank(inter_block_logits, rep_mask_split) # bs,bn,bl,vec inter_block_soft = tf.nn.softmax(inter_block_logits_masked, 2) # bs,bn,bl,vec inter_block_attn_output = tf.reduce_sum(self_attn_result * inter_block_soft, 2) # bs,bn,vec
tensorflow.expand_dims
6,205
import tensorflow as tf valid_image_batch,valid_label_batch=get_valid_batch(valid_image,valid_label,validnum) valid_inf=work.valid_inference(valid_image_batch) valid_labels=tf.one_hot(valid_label_batch,classnum) #train_step=tf.train.GradientDescentOptimizer(0.001).minimize(cross_entropy) valid_pre = tf.reshape(valid_inf, [validnum, classnum]) valid_correct_prediction=tf.equal(tf.argmax(valid_inf,1),tf.argmax(valid_labels,1)) valid_accuracy=tf.reduce_mean(tf.cast(valid_correct_prediction,tf.float32)) valid_pre = tf.argmax(valid_pre, 1) valid_true = tf.argmax(valid_labels, 1) target_names = ['class sg', 'class bm', 'class wd', 'class wt', 'class wj', 'class wo', 'class ym', 'class shq', 'class shj', 'class no', 'class yh', 'class fb'] init = tf.initialize_all_variables() config=tf.ConfigProto() config.gpu_options.allow_growth=True
tensorflow.argmax
6,206
import tensorflow as tf embedding = tf.matmul(embedding, W_proj_cnn) + b_proj_cnn # reshape back to (batch_size, tokens, dim) if use_highway or use_proj: shp = tf.concat([batch_size_n_tokens, [projection_dim]], axis=0) embedding = tf.reshape(embedding, shp) # at last assign attributes for remainder of the model
tensorflow.concat
6,207
import tensorflow as tf tf.app.flags.DEFINE_string('net', 'f100-f3', 'model configuration') tf.app.flags.DEFINE_string('model', 'noise', 'Type of the model to use: Autoencoder (ae)' 'WhatWhereAe (ww) U-netAe (u)') tf.app.flags.DEFINE_string('postfix', '', 'Postfix for the training folder') tf.app.flags.DEFINE_float('alpha', 10, 'Predictive reconstruction loss weight') tf.app.flags.DEFINE_float('beta', 0.0005, 'Reconstruction from noisy data loss weight') tf.app.flags.DEFINE_float('epsilon', 0.000001, 'Diameter of epsilon sphere comparing to distance to a neighbour. <= 0.5') tf.app.flags.DEFINE_float('gamma', 50., 'Loss weight for large distances') tf.app.flags.DEFINE_float('distance', 0.01, 'Maximum allowed interpoint distance') tf.app.flags.DEFINE_float('delta', 1., 'Loss weight for stacked objective') tf.app.flags.DEFINE_string('comment', '', 'Comment to leave by the model') tf.app.flags.DEFINE_float('test_max', 10000, 'max number of examples in the test set') tf.app.flags.DEFINE_integer('max_epochs', 0, 'Train for at most this number of epochs') tf.app.flags.DEFINE_integer('save_every', 250, 'Save model state every INT epochs') tf.app.flags.DEFINE_integer('eval_every', 25, 'Save encoding and visualizations every') tf.app.flags.DEFINE_integer('visualiza_max', 10, 'Max pairs to show on visualization') tf.app.flags.DEFINE_boolean('load_state', True, 'Load state if possible ') tf.app.flags.DEFINE_boolean('kill_depth', False, 'Ignore depth information') tf.app.flags.DEFINE_boolean('dev', False, 'Indicate development mode') tf.app.flags.DEFINE_integer('batch_size', 128, 'Batch size') tf.app.flags.DEFINE_float('learning_rate', 0.0001, 'Create visualization of ')
tensorflow.app.flags.DEFINE_string
6,208
import tensorflow as tf [6, 5, 4, 0, 1], # [6, 6, 5, 4, 0], # ] ] self.assertAllEqual( expected, relative_pos_gen.make_relative_att_ids( seq_len=5, batch_size=tf.shape(dummy_batch)[0])) def test_overwrite_relative_att_ids_outside_segments(self): # batch_size = 2, seq_len = 5, max_distance = 3 rel_att_ids = [ [
tensorflow.shape
6,209
import tensorflow as tf # Weighted sum if mode == 'SUM': output = tf.matmul(scores, facts) # [B, 1, H] # output = tf.reshape(output, [-1, tf.shape(facts)[-1]]) else: scores = tf.reshape(scores, [-1, tf.shape(facts)[1]]) output = facts * tf.expand_dims(scores, -1) output = tf.reshape(output, tf.shape(facts)) return output def din_fcn_attention(query, facts, attention_size, mask, stag='null', mode='SUM', softmax_stag=1, time_major=False, return_alphas=False, forCnn=False): if isinstance(facts, tuple): # In case of Bi-RNN, concatenate the forward and the backward RNN outputs. facts = tf.concat(facts, 2) if len(facts.get_shape().as_list()) == 2: facts = tf.expand_dims(facts, 1) if time_major: # (T,B,D) => (B,T,D) facts = tf.array_ops.transpose(facts, [1, 0, 2]) # Trainable parameters mask = tf.equal(mask, tf.ones_like(mask)) facts_size = facts.get_shape().as_list()[-1] # D value - hidden size of the RNN layer querry_size = query.get_shape().as_list()[-1] query = tf.layers.dense(query, facts_size, activation=None, name='f1' + stag) query = prelu(query) queries = tf.tile(query, [1, tf.shape(facts)[1]])
tensorflow.concat
6,210
import tensorflow as tf def dot_attention(inputs, memory, mask, hidden, keep_prob=1.0, is_train=None, scope="dot_attention"): with tf.variable_scope(scope): d_inputs = dropout(inputs, keep_prob=keep_prob, is_train=is_train) d_memory = dropout(memory, keep_prob=keep_prob, is_train=is_train) JX = tf.shape(inputs)[1] with tf.variable_scope("attention"): inputs_ = tf.nn.relu( dense(d_inputs, hidden, use_bias=False, scope="inputs")) memory_ = tf.nn.relu( dense(d_memory, hidden, use_bias=False, scope="memory")) outputs = tf.matmul(inputs_, tf.transpose( memory_, [0, 2, 1])) / (hidden ** 0.5) mask = tf.tile(tf.expand_dims(mask, axis=1), [1, JX, 1]) logits = tf.nn.softmax(softmax_mask(outputs, mask))
tensorflow.variable_scope
6,211
from tensorflow.python.framework import ops new_value = array_ops.zeros(next_shape, dtype=values.dtype) old_value = array.value() assign_op = state_ops.assign(array, new_value, validate_shape=False) with ops.control_dependencies([assign_op]): copy_op = array[:size].assign(old_value[:size]) # return value needs to be the same dtype as no_op() for cond with ops.control_dependencies([copy_op]): return control_flow_ops.no_op() new_size = size + batch_size array_size = array_ops.shape_internal(array, optimize=False)[0] maybe_reallocate_op = control_flow_ops.cond(
tensorflow.python.framework.ops.control_dependencies
6,212
import tensorflow as tf head_rel_mult = tf.batch_matmul(head_embed_row, rel_embed_square) # Output needs a squeeze into a 1d vector raw_output = tf.squeeze(tf.batch_matmul(head_rel_mult, tail_embed_col)) self.output, self.loss = self._create_output_and_loss(raw_output)
tensorflow.batch_matmul
6,213
import tensorflow as tf def __init__(self, env, summary_dir='./', gpu=False): self.LR = 1e-4 self.MINIBATCH = 64 self.EPOCHS = 8 self.EPSILON = 0.2 self.EPS_LEN = 100000 # GPU setup os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' config = tf.ConfigProto(allow_soft_placement=True, log_device_placement=False, device_count={'GPU': gpu}) config.gpu_options.allow_growth = True config.gpu_options.per_process_gpu_memory_fraction = 0.5 # Placeholders self.sess = tf.Session(config=config) self.s_dim, self.a_dim = env.observation_space.shape, env.action_space.shape[0] self.a_bound = (env.action_space.high - env.action_space.low) / 2 self.actions = tf.placeholder(tf.float32, [None, self.a_dim], 'action') self.state = tf.placeholder(tf.float32, [None, self.s_dim[0]], 'state')
tensorflow.ConfigProto
6,214
import tensorflow as tf features["label_ids"] = create_int_feature([feature.label_id]) features["is_real_example"] = create_int_feature( [int(feature.is_real_example)]) tf_example = tf.train.Example(features=tf.train.Features(feature=features)) writer.write(tf_example.SerializeToString()) writer.close() def file_based_input_fn_builder(input_file, seq_length, is_training, drop_remainder): """Creates an `input_fn` closure to be passed to TPUEstimator.""" name_to_features = { "input_ids": tf.FixedLenFeature([seq_length], tf.int64), "input_mask": tf.FixedLenFeature([seq_length], tf.int64), "segment_ids": tf.FixedLenFeature([seq_length], tf.int64), "label_ids": tf.FixedLenFeature([], tf.int64), "is_real_example": tf.FixedLenFeature([], tf.int64), } def _decode_record(record, name_to_features): """Decodes a record to a TensorFlow example.""" example = tf.parse_single_example(record, name_to_features) # tf.Example only supports tf.int64, but the TPU only supports tf.int32. # So cast all int64 to int32. for name in list(example.keys()): t = example[name] if t.dtype == tf.int64:
tensorflow.FixedLenFeature
6,215
import tensorflow as tf net = _blur_expand(net) FLAGS.blur = 0. return net def _init_optimizer(self): self.loss_total = tf.add_n(self.losses, 'loss_total') self.optimizer = self.optimizer_constructor(learning_rate=FLAGS.learning_rate) self._train = self.optimizer.minimize(self.loss_total, global_step=self.step)
tensorflow.add_n
6,216
import tensorflow as tf # key_masks = tf.expand_dims(mask, 1) # [B, 1, T] paddings = tf.ones_like(v_dot_tmp) * (-2 ** 32 + 1)
tensorflow.ones_like
6,217
import tensorflow as tf self.assertAllEqual(nms_masks2.numpy(), nms_masks_expected2.numpy()) self.assertAllClose(nms_scores2.numpy(), nms_scores_expected2.numpy()) self.assertAllEqual(nms_classes2.numpy(), nms_classes_expected2.numpy()) def test_instance_non_maximum_suppression_2d_scores(self): mask0 = tf.constant([[1, 0], [0, 1]], dtype=tf.float32) mask1 = tf.constant([[1, 1], [0, 1]], dtype=tf.float32) mask2 = tf.constant([[1, 0], [1, 1]], dtype=tf.float32) mask3 = tf.constant([[1, 1], [1, 1]], dtype=tf.float32) mask4 = tf.constant([[0, 0],
tensorflow.constant
6,218
import tensorflow as tf output_sizes = [ int((list_size+1)/2) + 1, int((list_size+1)/4) + 1, 1 ] for i in range(len(output_sizes)): expand_W = tf.get_variable("W_%d" % i, [current_size, output_sizes[i]]) expand_b = tf.get_variable("b_%d" % i, [output_sizes[i]]) output_data = tf.nn.bias_add(tf.matmul(output_data, expand_W), expand_b) output_data = tf.nn.elu(output_data) current_size = output_sizes[i] #expand_W = tf.get_variable("final_W", [current_size, 1])
tensorflow.get_variable
6,219
from tensorflow.python.ops import math_ops predictions, normalizer = tensor_util.remove_squeezable_dimensions( predictions, normalizer) predictions.get_shape().assert_is_compatible_with(normalizer.get_shape()) relative_errors = math_ops.select( math_ops.equal(normalizer, 0.0), array_ops.zeros_like(labels), math_ops.div(math_ops.abs(labels - predictions), normalizer)) return streaming_mean(relative_errors, weights, metrics_collections,
tensorflow.python.ops.math_ops.equal
6,220
import tensorflow as tf #from keras import backend as K def din_attention(query, facts, attention_size, mask=None, stag='null', mode='SUM', softmax_stag=1, time_major=False, return_alphas=False): if isinstance(facts, tuple): # In case of Bi-RNN, concatenate the forward and the backward RNN outputs. facts = tf.concat(facts, 2) print ("query_size mismatch") query = tf.concat(values = [ query, query,
tensorflow.concat
6,221
from tensorflow.python.framework import ops """ with ops.op_scope([x], name, "Tanh") as name: x = ops.convert_to_tensor(x, name="x") return gen_math_ops._tanh(x, name=name) ops.RegisterShape("Abs")(common_shapes.unchanged_shape) ops.RegisterShape("Ceil")(common_shapes.unchanged_shape) ops.RegisterShape("Conj")(common_shapes.unchanged_shape) ops.RegisterShape("Cos")(common_shapes.unchanged_shape) ops.RegisterShape("Exp")(common_shapes.unchanged_shape) ops.RegisterShape("Floor")(common_shapes.unchanged_shape) ops.RegisterShape("Imag")(common_shapes.unchanged_shape) ops.RegisterShape("Inv")(common_shapes.unchanged_shape) ops.RegisterShape("IsFinite")(common_shapes.unchanged_shape) ops.RegisterShape("IsInf")(common_shapes.unchanged_shape) ops.RegisterShape("IsNan")(common_shapes.unchanged_shape) ops.RegisterShape("Log")(common_shapes.unchanged_shape) ops.RegisterShape("LogicalNot")(common_shapes.unchanged_shape) ops.RegisterShape("Neg")(common_shapes.unchanged_shape) ops.RegisterShape("Real")(common_shapes.unchanged_shape) ops.RegisterShape("Rsqrt")(common_shapes.unchanged_shape) ops.RegisterShape("Sign")(common_shapes.unchanged_shape) ops.RegisterShape("Sin")(common_shapes.unchanged_shape)
tensorflow.python.framework.ops.RegisterShape
6,222
import tensorflow as tf h = h + b return h def deconv3d(x, shape, output_shape, name, bias=False, stride=2, padding='SAME'): with tf.variable_scope(name): W = weight_variable(shape) h = tf.nn.conv3d_transpose(x, W, output_shape, strides=[1, stride, stride, stride, 1], padding=padding) if bias: b = bias_variable([shape[-2]]) h = h + b return h def phase_shift_3d(x, r): batch_size, d, h, w, c = x.get_shape().as_list() x = tf.reshape(x, (batch_size, d, h, w, r, r, r)) for ns in [d, h, w]: x = tf.split(x, ns, 1) x = tf.concat([tf.squeeze(v, 1) for v in x], 3) return tf.reshape(x, (batch_size, d*r, h*r, w*r, 1)) def subpixel_conv3d(x, r, out_channels): x = tf.split(x, out_channels, 4) x = tf.concat([phase_shift_3d(v, r) for v in x], 4) return x def pixel_shuffler_3d(x, r, k, out_channels, name): in_channels = x.get_shape.as_list()[4] with tf.variable_scope(name):
tensorflow.reshape
6,223
import tensorflow as tf hparams["type"] = "natural_exp_decay" hparams["kwargs"] = { "decay_steps": 1, "decay_rate": 0.5 } ned_lr_decay_fn = opt.get_learning_rate_decay_fn(hparams) ned_lr = ned_lr_decay_fn(learning_rate=1., global_step=global_step) ned_lr_true = tf.train.natural_exp_decay( 1., global_step-hparams["start_decay_step"], hparams["kwargs"]["decay_steps"], hparams["kwargs"]["decay_rate"]) with self.test_session() as sess: sess.run(tf.global_variables_initializer()) pc_lr_, pc_lr_true_, ned_lr_, ned_lr_true_ = sess.run(
tensorflow.train.natural_exp_decay
6,224
import tensorflow as tf logit, = op.inputs if FLAGS.RCE_train==True: logit = -logit if tsne_logits==True: return logit,model.t_SNE_logits return logit def adv_craft_func(hps, images, method, eps=0.01,RCE_train=False, target_labels=None): if method=='fgsm': print('Attacking method is fgsm') adversarial_sample = attacks.fgsm.fgsm(models, images, hps, RCE_train, eps=eps, epochs=1, clip_min=-0.5, clip_max=0.5) elif method=='random': print('Attacking method is random') adversarial_sample = tf.clip_by_value(images + tf.random_uniform((hps.batch_size,image_size,image_size,num_channel), minval=-eps, maxval=eps), clip_value_min=-0.5, clip_value_max=0.5) elif method=='bim': print('Attacking method is bim') adversarial_sample = attacks.fgsm.fgsm(models, images, hps, RCE_train, eps=eps/10, epochs=10, clip_min=-0.5, clip_max=0.5) elif method=='tgsm': print('Attacking method is tgsm') adversarial_sample = attacks.tgsm.tgsm(models, images, hps, RCE_train, y=None, eps=eps/10, epochs=10, clip_min=-0.5, clip_max=0.5) elif method=='jsma': print('Attacking method is jsma') if target_labels==None:
tensorflow.random_uniform
6,225
import tensorflow as tf images,labels=tf.train.batch([image,label],batch_size=batch_size) return tf.reshape(images,[batch_size,4096]),tf.reshape(labels,[batch_size]) class trainwork(object): def __init__(self): with tf.variable_scope('scop'): self.w1=tf.get_variable('w1', [4096,2048],initializer=tf.contrib.layers.xavier_initializer_conv2d()) self.w2=tf.get_variable('w2', [2048,3072],initializer=tf.contrib.layers.xavier_initializer_conv2d()) self.w3=tf.get_variable('w3', [3072,512],initializer=tf.contrib.layers.xavier_initializer_conv2d()) self.w4=tf.get_variable('w4', [512,classnum],initializer=tf.contrib.layers.xavier_initializer_conv2d()) self.b1 = tf.get_variable('b1', [2048],initializer=tf.constant_initializer(0.0)) self.b2 = tf.get_variable('b2', [3072],initializer=tf.constant_initializer(0.0)) self.b3 = tf.get_variable('b3', [512],initializer=tf.constant_initializer(0.0)) self.b4 = tf.get_variable('b4', [classnum],initializer=tf.constant_initializer(0.0)) def inference(self,images): images=tf.cast(images,tf.float32)/255.0 l1 = tf.matmul(images, self.w1)+self.b1 l1=tf.nn.relu(l1) l2 = tf.matmul(l1, self.w2)+self.b2 l2=tf.nn.relu(l2) l3=tf.matmul(l2, self.w3)+self.b3 l3=tf.nn.relu(l3) out=tf.matmul(l3, self.w4)+self.b4
tensorflow.constant_initializer
6,226
import tensorflow as tf self.t_replace_counter += 1 def choose_action(self, s): s = s[np.newaxis, :] # single state return self.sess.run(self.a, feed_dict={S: s})[0] # single action def add_grad_to_graph(self, a_grads): with tf.variable_scope('policy_grads'): # ys = policy; # xs = policy's parameters; # self.a_grads = the gradients of the policy to get more Q # tf.gradients will calculate dys/dxs with a initial gradients for ys, so this is dq/da * da/dparams self.policy_grads_and_vars = tf.gradients(ys=self.a, xs=self.e_params, grad_ys=a_grads) with tf.variable_scope('A_train'): opt = tf.train.RMSPropOptimizer(-self.lr) # (- 1_tensorflow_new rate) for ascent policy self.train_op = opt.apply_gradients(zip(self.policy_grads_and_vars, self.e_params), global_step=GLOBAL_STEP) ############################### Critic #################################### class Critic(object): def __init__(self, sess, state_dim, action_dim, learning_rate, gamma, t_replace_iter, a, a_): self.sess = sess
tensorflow.gradients
6,227
import tensorflow as tf """Returns the loss function.""" loss = tf.losses.softmax_cross_entropy(
tensorflow.losses.softmax_cross_entropy
6,228
import tensorflow as tf features.append(feature) return features def serving_input_fn(): label_ids = tf.placeholder(tf.int32, [None], name='label_ids') input_ids = tf.placeholder(tf.int32, [None, FLAGS.max_seq_length], name='input_ids') input_mask = tf.placeholder(tf.int32, [None, FLAGS.max_seq_length], name='input_mask') segment_ids = tf.placeholder(tf.int32, [None, FLAGS.max_seq_length], name='segment_ids') input_fn = tf.estimator.export.build_raw_serving_input_receiver_fn({ 'label_ids': label_ids, 'input_ids': input_ids, 'input_mask': input_mask, 'segment_ids': segment_ids, })() return input_fn
tensorflow.estimator.export.build_raw_serving_input_receiver_fn
6,229
import tensorflow as tf ls = [-1] + l.get_shape().as_list()[1:] xs = ls[:-1] + [3] # unpack parameters logit_probs = l[:, :, :, :nr_mix] l = tf.reshape(l[:, :, :, nr_mix:], xs + [nr_mix * 3]) # sample mixture indicator from softmax sel = tf.one_hot(tf.argmax(logit_probs - tf.log(-tf.log(tf.random_uniform( tf.shape(logit_probs), minval=1e-5, maxval=1. - 1e-5))), 3), depth=nr_mix, dtype=tf.float32)
tensorflow.reshape
6,230
import tensorflow as tf with tf.variable_scope(name, reuse=reuse): layer_c1 = tf.layers.dense(state_in, 512, tf.nn.relu, kernel_regularizer=reg) layer_c2 = tf.layers.dense(layer_c1, 256, tf.nn.relu, kernel_regularizer=reg) lstm_c = tf.nn.rnn_cell.LSTMCell(num_units=256) lstm_c = tf.nn.rnn_cell.DropoutWrapper(lstm_c, output_keep_prob=self.keep_prob) state_init_c = lstm_c.zero_state(batch_size=batch_size, dtype=tf.float32) lstm_cin = tf.expand_dims(layer_c2, axis=1) out_c, state_final_c = tf.nn.dynamic_rnn(cell=lstm_c, inputs=lstm_cin, initial_state=state_init_c) cell_out_c = tf.reshape(out_c, [-1, 256]) vf = tf.layers.dense(cell_out_c, 1, kernel_regularizer=reg) params = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope=name) return vf, params, state_init_c, state_final_c # Update the network def train(self, rollout): start = time() self.sess.run([self.pi_new_params, self.vf_new_params]) for _ in range(self.EPOCHS):
tensorflow.layers.dense
6,231
import tensorflow as tf with tf.Graph().as_default() as graph, tf.device('/cpu:0'): num_gpu = len(cfgs.GPU_GROUP.strip().split(',')) global_step = slim.get_or_create_global_step() lr = self.warmup_lr(cfgs.LR, global_step, cfgs.WARM_SETP, num_gpu) tf.summary.scalar('lr', lr) optimizer = tf.train.MomentumOptimizer(lr, momentum=cfgs.MOMENTUM) r3det_gwd = build_whole_network.DetectionNetworkR3DetGWD(cfgs=self.cfgs, is_training=True) with tf.name_scope('get_batch'): if cfgs.IMAGE_PYRAMID: shortside_len_list = tf.constant(cfgs.IMG_SHORT_SIDE_LEN) shortside_len = tf.random_shuffle(shortside_len_list)[0] else: shortside_len = cfgs.IMG_SHORT_SIDE_LEN img_name_batch, img_batch, gtboxes_and_label_batch, num_objects_batch, img_h_batch, img_w_batch = \ self.reader.next_batch(dataset_name=cfgs.DATASET_NAME, batch_size=cfgs.BATCH_SIZE * num_gpu, shortside_len=shortside_len, is_training=True) # data processing inputs_list = [] for i in range(num_gpu):
tensorflow.random_shuffle
6,232
import tensorflow as tf Args: in_size: size of the hidden state vectors mats: list of hidden state vectors """ pred_mat = tf.get_variable('pred_mat', [in_size, self._out_vocab_size]) pred_bias = tf.get_variable('pred_bias', [self._out_vocab_size]) # Make a prediction on every word. def GetWordPred(o_): logits = tf.nn.xw_plus_b(o_, pred_mat, pred_bias) return tf.nn.softmax(logits) self.preds_by_word = tf.pack([GetWordPred(o_) for o_ in mats]) self.cs = self._mask / tf.reduce_sum(self._mask, 1, keep_dims=True) # The final prediction is the average of the predictions for each word # weighted by the individual confidence/utility scores. preds_weighted = tf.mul(tf.reshape(tf.transpose(self.cs), [-1, 1]), tf.reshape(self.preds_by_word, [-1, self._out_vocab_size]))
tensorflow.nn.xw_plus_b
6,233
import tensorflow as tf :return [Tensor] [N, H+Ph, W+Pw, C]. Padded input tensor. """ x_shape = tf.shape(x) if padding == 'SAME': pad_h0, pad_h1, pad_w0, pad_w1 = calc_padding_4d(x_shape, ksize, strides, padding) if bstrides is not None: # Here we do not use the standard padding on the right hand side. # If the convolution results is larger than expected, the scatter function will not use # out-of-boundary points. assert bsize is not None, 'Must pass in bsize and bstrides together.' h = x_shape[1] + pad_h0 + pad_h1 w = x_shape[2] + pad_w0 + pad_w1 pad_h1 += tf.mod(-h + bsize[1], bstrides[1]) pad_w1 += tf.mod(-w + bsize[2], bstrides[2]) return tf.pad(x, [[0, 0], [pad_h0, pad_h1], [pad_w0, pad_w1], [0, 0]]) else: if bstrides is not None: assert bsize is not None, 'Must pass in bsize and bstrides together.' h = x_shape[1] w = x_shape[2] pad_h1 = tf.mod(-h + bsize[1], bstrides[1]) pad_w1 = tf.mod(-w + bsize[2], bstrides[2]) return tf.cond( tf.logical_or(tf.greater(pad_h1, 0), tf.greater(pad_w1, 0)), lambda: tf.pad(x, [[0, 0], [0, pad_h1], [0, pad_w1], [0, 0]]), lambda: x) else: return x
tensorflow.mod
6,234
from tensorflow import keras iterator = dataset.make_one_shot_iterator() batch_features, batch_labels = iterator.get_next() return batch_features, batch_labels return _input_fn # Create inference model using Keras # The model here is a dnn regressor def make_keras_estimator(output_dir): from tensorflow import keras model = keras.models.Sequential() model.add(keras.layers.Dense(32, input_shape=(N_INPUTS,), name=TIMESERIES_INPUT_LAYER)) model.add(keras.layers.Activation('relu')) model.add(keras.layers.Dense(1)) model.compile(loss = 'mean_squared_error', optimizer = 'adam', metrics = ['mae', 'mape']) # mean absolute [percentage] error return keras.estimator.model_to_estimator(model, model_dir=output_dir) # Create the inference model def simple_rnn(features, labels, mode): # 0. Reformat input shape to become a sequence x = tf.split(features[TIMESERIES_COL], N_INPUTS, 1) # 1. Configure the RNN lstm_cell = rnn.BasicLSTMCell(LSTM_SIZE, forget_bias = 1.0)
tensorflow.keras.layers.Dense
6,235
import tensorflow as tf def euclidean_loss_layer(a, b, multiplier=100.0, use_l1=False, eps=0.01): """ Math: out = (action - mlp_out)'*precision*(action-mlp_out) = (u-uhat)'*A*(u-uhat)""" multiplier = tf.constant(multiplier, dtype='float') #for bc #10000 uP =a*multiplier-b*multiplier if use_l1: return tf.reduce_mean(eps*tf.square(uP) + tf.abs(uP)) return tf.reduce_mean(tf.square(uP)) def conv2d(img, w, b, strides=[1, 1, 1, 1], is_dilated=False): if is_dilated: layer = tf.nn.atrous_conv2d(img, w, rate=2, padding='SAME') + b else:
tensorflow.square
6,236
import tensorflow as tf out = tf.reshape(input_, [-1, np.prod(self.inp_modes)]) self.image_max_size = max(self.image_max_size, np.prod(self.inp_modes)) out = tf.transpose(out, [1, 0]) for i in range(dim): out = tf.reshape(out, [self.mat_ranks[i] * self.inp_modes[i], -1]) out = tf.matmul(self.mat_cores[i], out) out = tf.reshape(out, [self.out_modes[i], -1]) out = tf.transpose(out, [1, 0]) out = tf.reshape(out, [-1, np.prod(self.out_modes)]) # self.image_max_size = max(self.image_max_size, np.prod([val.value for val in out.get_shape()[1:]])) if self.use_bias: out = tf.add(out, self.bias, name='out')
tensorflow.transpose
6,237
import tensorflow as tf batch_size=batch_size,num_threads=10,capacity=10000,min_after_dequeue=200) return tf.reshape(images,[batch_size,4096]),tf.reshape(labels,[batch_size]) def get_test_batch(image,label,batch_size): images,labels=tf.train.batch([image,label],batch_size=batch_size) return tf.reshape(images,[batch_size,4096]),tf.reshape(labels,[batch_size]) def get_valid_batch(image,label,batch_size):
tensorflow.train.batch
6,238
import tensorflow as tf outputs.append(output) # The outputs of this layer are the inputs of the subsequent layer. chars = tf.stack(outputs, axis=0) if training:
tensorflow.stack
6,239
import tensorflow as tf h = h + b return h def deconv3d(x, shape, output_shape, name, bias=False, stride=2, padding='SAME'): with tf.variable_scope(name): W = weight_variable(shape) h = tf.nn.conv3d_transpose(x, W, output_shape, strides=[1, stride, stride, stride, 1], padding=padding) if bias: b = bias_variable([shape[-2]]) h = h + b return h
tensorflow.nn.conv3d_transpose
6,240
import tensorflow as tf ratio = tf.maximum(pi.prob(batch['actions']), 1e-6) / tf.maximum(pi_old.prob(batch['actions']), 1e-6) ratio = tf.clip_by_value(ratio, 0, 10) surr1 = batch['advantage'] * ratio surr2 = batch['advantage'] * tf.clip_by_value(ratio, 1 - epsilon_decay, 1 + epsilon_decay) loss_pg = - 2.0 * tf.reduce_mean(tf.minimum(surr1, surr2)) loss_vf = 0.5 * tf.reduce_mean(tf.square(batch['rewards'] - self.vf)) loss_entropy = - 0.01 * tf.reduce_mean(pi.entropy()) loss = loss_pg + loss_vf + loss_entropy opt = tf.train.AdamOptimizer(self.LR) self.train_op = opt.minimize(loss, global_step=self.global_step, var_list=pi_params + vf_params) self.pi_new_params = [oldp.assign(p) for p, oldp in zip(pi_params, pi_old_params)] self.vf_new_params = [oldp.assign(p) for p, oldp in zip(vf_params, vf_old_params)] self.sess.run(tf.global_variables_initializer()) # Tensorboard
tensorflow.train.AdamOptimizer
6,241
from tensorflow.python.framework import ops with ops.name_scope(name) as scope: with ops.device(v.device or ops.get_default_graph().get_default_device()): if callable(init): assert v.get_shape().is_fully_defined(), "Variable shape unknown." # TODO(mrry): Convert to v.shape when the property and # accessor are reconciled (and all initializers support # tf.TensorShape objects). value = init(v.get_shape().as_list(), v.dtype.base_dtype) value = ops.convert_to_tensor(value, name="value") return assign(v, value, name=scope) else: init = ops.convert_to_tensor(init, name="init") return assign(v, init, name=scope) @ops.RegisterShape("Assign")
tensorflow.python.framework.ops.convert_to_tensor
6,242
import tensorflow as tf if self._trg_lang_tag_position in ["src", "source"]: src = tf.concat([tf.expand_dims(batch_of_data["trg_lang"], axis=1), src], axis=1) if self._with_src_lang_tag: src = tf.concat([tf.expand_dims(batch_of_data["src_lang"], axis=1), src], axis=1) input_dict = {"src": src, "src_length": deduce_text_length(src, self._multilingual_dp.meta["pad_id"], self._multilingual_dp.meta["padding_mode"])} if self._trg_lang_tag_position in ["trg", "target"]: target_bos = batch_of_data["trg_lang"] else: target_bos = tf.tile([tf.convert_to_tensor( self._multilingual_dp.meta["bos_id"], dtype=tf.int64)], [tf.shape(src)[0]]) if mode == compat.ModeKeys.INFER: input_dict["trg_input"] = target_bos else: input_dict["trg"] = batch_of_data["label"] input_dict["trg_length"] = deduce_text_length(batch_of_data["label"], self._multilingual_dp.meta["pad_id"], self._multilingual_dp.meta["padding_mode"]) input_dict["trg_input"] = tf.concat([tf.expand_dims(target_bos, axis=1), batch_of_data["label"][:, :-1]], axis=1)
tensorflow.convert_to_tensor
6,243
import tensorflow as tf tf.GraphKeys.VARIABLES], initializer=tf.ones_initializer(), trainable=False) self._moving_variance = tf.sub(self._moving_second_moment, tf.square(self._moving_mean), name="moving_variance") def build_batch_stats(): """Builds the batch statistics calculation ops.""" # Copy for better stability. # We use the moving mean as an estimate of the mean in order to perform # a more numerically stable calculation of the batch mean. shift = tf.add(self._moving_mean, 0) counts, shifted_sum_x, shifted_sum_x2, _ = tf.nn.sufficient_statistics( input_batch, reduction_indices, keep_dims=True, shift=shift, name="batch_norm_ss") mean, variance = tf.nn.normalize_moments(counts, shifted_sum_x, shifted_sum_x2, shift, name="normalize_moments") second_moment = variance + tf.square(mean)
tensorflow.add
6,244
from tensorflow.python.eager import context initial_output = tf.slice(initial_output, [0, 0, 0, 0], common_layers.shape_list(initial_output)) target_modality = self._problem_hparams.target_modality if target_modality.is_class_modality: decode_length = 1 else: decode_length = common_layers.shape_list( features["inputs"])[1] + decode_length # Initial values of result, logits and loss. result = initial_output # tensor of shape [batch_size, time, 1, 1, vocab_size] logits = tf.zeros((batch_size, 0, 1, 1, target_modality.top_dimensionality)) if not context.in_eager_mode(): logits.set_shape([None, None, None, None, None]) loss = 0.0 def while_exit_cond(result, logits, loss): # pylint: disable=unused-argument """Exit the loop either if reach decode_length or EOS.""" length = common_layers.shape_list(result)[1] not_overflow = length < decode_length if self._problem_hparams.stop_at_eos:
tensorflow.python.eager.context.in_eager_mode
6,245
import tensorflow as tf inter = tf.reshape(values, [self.resolution, self.resolution, self.resolution]) inter = tf.transpose(tf.reduce_max(inter, axis=a)) im = axs[fig_obj_count, 4].matshow(inter.numpy()) plt.colorbar(im, ax=axs[fig_obj_count, 4]) print(mtype, fig_obj_count, 2) fig_obj_count += 1 intersection = tf.reduce_sum(tf.math.sign(tf.nn.relu(sdf_values - 1))) union = tf.reduce_sum(tf.math.sign(sdf_values)) iou = intersection / union if not tf.math.is_nan(iou): ious.append(iou) status3 = False if status3: _ = plt.figure(figsize=(5, 5)) plt.clf() # mask = (sdf_values.numpy() > 0)[:, 0] # plt.scatter(samples_world.numpy()[mask, 0], # samples_world.numpy()[mask, 1], # marker='.', c=sdf_values.numpy()[mask, 0]) plt.scatter(samples_world.numpy()[:, 0],
tensorflow.math.is_nan
6,246
import tensorflow as tf img = inputs_list[i][0] img_shape = inputs_list[i][-2:] img = tf.image.crop_to_bounding_box(image=img, offset_height=0, offset_width=0, target_height=tf.cast(img_shape[0], tf.int32), target_width=tf.cast(img_shape[1], tf.int32)) outputs = r3det_gwd.build_whole_detection_network(input_img_batch=img, gtboxes_batch_h=gtboxes_and_label_h, gtboxes_batch_r=gtboxes_and_label_r, gpu_id=i) gtboxes_in_img_h = self.drawer.draw_boxes_with_categories(img_batch=img,
tensorflow.cast
6,247
import tensorflow as tf valid_correct_prediction=tf.equal(tf.argmax(valid_inf,1),tf.argmax(valid_labels,1)) valid_accuracy=tf.reduce_mean(tf.cast(valid_correct_prediction,tf.float32)) valid_pre = tf.argmax(valid_pre, 1) valid_true = tf.argmax(valid_labels, 1) target_names = ['class sg', 'class bm', 'class wd', 'class wt', 'class wj', 'class wo', 'class ym', 'class shq', 'class shj', 'class no', 'class yh', 'class fb'] init = tf.initialize_all_variables() config=tf.ConfigProto() config.gpu_options.allow_growth=True #init=tf.initialize_all_variables() def train(train_num=64,test_num=32,lr=1e-4,loop_count=10000,report_step=100,save_step=1000,restore=False): with tf.Session(config=config) as sess: sess.run(init) coord = tf.train.Coordinator() threads = tf.train.start_queue_runners(coord=coord)
tensorflow.ConfigProto
6,248
import tensorflow as tf def cw_sampling(X, y=None): def phi_sampling(s, D): return tf.pow(1.0 + 4.0*s/(2.0*D-3), -0.5) D = tf.cast(tf.shape(X)[1], tf.float32) N = tf.cast(tf.shape(X)[0], tf.float32) D_int = tf.cast(D, tf.int32) N_int = tf.cast(N, tf.int32) if y is None: y = silverman_rule_of_thumb(N)
tensorflow.shape
6,249
import tensorflow as tf label_ids = tf.reshape(label_ids, [-1]) label_weights = tf.reshape(label_weights, [-1]) one_hot_labels = tf.one_hot( label_ids, depth=bert_config.vocab_size, dtype=tf.float32) # The `positions` tensor might be zero-padded (if the sequence is too # short to have the maximum number of predictions). The `label_weights` # tensor has a value of 1.0 for every real prediction and 0.0 for the # padding predictions. per_example_loss = -tf.reduce_sum(log_probs * one_hot_labels, axis=[-1]) numerator = tf.reduce_sum(label_weights * per_example_loss) denominator = tf.reduce_sum(label_weights) + 1e-5 loss = numerator / denominator return (loss, per_example_loss, log_probs) def get_next_sentence_output(bert_config, input_tensor, labels, clip): """Get loss and log probs for the next sentence prediction.""" # Simple binary classification. Note that 0 is "next sentence" and 1 is
tensorflow.reduce_sum
6,250
import tensorflow as tf flags.DEFINE_integer("iterations_per_loop", 1000, "How many steps to make in each estimator call.") flags.DEFINE_integer("max_eval_steps", None, "Maximum number of eval steps.") flags.DEFINE_bool("use_tpu", False, "Whether to use TPU or GPU/CPU.") tf.flags.DEFINE_string( "tpu_name", None, "The Cloud TPU to use for training. This should be either the name " "used when creating the Cloud TPU, or a grpc://ip.address.of.tpu:8470 " "url.") tf.flags.DEFINE_string( "tpu_zone", None,
tensorflow.flags.DEFINE_string
6,251
import tensorflow as tf Args: x: Batch of encoder continuous latent states sliced/projected into shape [-1, num_blocks, block_dim]. means: Embedding means of shape. Returns: Tensor with nearest element in mean encoded in one-hot notation. """ x_norm_sq = tf.reduce_sum(tf.square(x), axis=-1, keep_dims=True) means_norm_sq = tf.reduce_sum(tf.square(means), axis=-1, keep_dims=True) scalar_prod = tf.matmul( tf.transpose(x, perm=[1, 0, 2]), tf.transpose(means, perm=[0, 2, 1])) scalar_prod = tf.transpose(scalar_prod, perm=[1, 0, 2]) dist = x_norm_sq + tf.transpose( means_norm_sq, perm=[2, 0, 1]) - 2 * scalar_prod if self.hparams.soft_em: nearest_idx = tf.stack( [ tf.multinomial( -dist[:, i, :], num_samples=self.hparams.num_samples) for i in range(self.hparams.num_blocks)
tensorflow.transpose
6,252
import tensorflow as tf # with tf.variable_scope('q_target'): with tf.variable_scope('loss'): self.loss = tf.reduce_mean(tf.squared_difference(self.q_target, tf.squeeze(self.Q_tot), name='TD_error')) # self.loss = tf.reduce_mean(tf.squared_difference(self.q_target, self.Q_tot, name='TD_error')) with tf.variable_scope('train'): self._train_op = tf.train.RMSPropOptimizer(self.lr).minimize(self.loss) def act(self, state): if np.random.uniform() > self.epsilon :# pick the argmax action s = np.array(state)
tensorflow.variable_scope
6,253
import tensorflow as tf ch_emb = tf.reshape(ch_emb, [N * self.max_p_num, PL, -1]) qh_emb = tf.reshape(qh_emb, [N * self.max_p_num, QL, -1]) c_emb = tf.nn.dropout(tf.nn.embedding_lookup(self.word_mat, self.c), 1.0 - self.dropout) q_emb = tf.nn.dropout(tf.nn.embedding_lookup(self.word_mat, self.q), 1.0 - self.dropout) c_emb = tf.concat([c_emb, ch_emb], axis=2) q_emb = tf.concat([q_emb, qh_emb], axis=2) self.c_emb = highway(c_emb, size=d, scope="highway", dropout=self.dropout, reuse=None) self.q_emb = highway(q_emb, size=d, scope="highway", dropout=self.dropout, reuse=True) def _encode(self): N, PL, QL, CL, d, dc, nh = self._params()
tensorflow.concat
6,254
import tensorflow as tf def read_and_decode(filename_queue): reader = tf.TFRecordReader() _, serialized_example = reader.read(filename_queue) features = tf.parse_single_example( serialized_example, # Defaults are not specified since both keys are required. features={ 'image_raw': tf.FixedLenFeature([], tf.string), 'label': tf.FixedLenFeature([], tf.int64), }) if FLAGS.contrast_norm == 'areafactor': image = tf.decode_raw(features['image_raw'], tf.float32) else: image = tf.decode_raw(features['image_raw'], tf.uint8) image = tf.cast(image, tf.float32) * (1. / 255) image.set_shape(np.prod([FLAGS.num_scales, FLAGS.crop_size, FLAGS.crop_size])) image = tf.reshape(image, [FLAGS.num_scales, FLAGS.crop_size, FLAGS.crop_size, 1]) image = image - 0.5 # Convert label from a scalar uint8 tensor to an int32 scalar. label = tf.cast(features['label'], tf.int32) return image, label def inputs(name, batch_size, num_epochs): """Reads input data num_epochs times.
tensorflow.cast
6,255
import tensorflow as tf pct = tf.math.count_nonzero(loss, dtype=tf.float32) / tf.size(loss, out_type=tf.float32) p = tf.cond(tf.random_uniform((), dtype=tf.float32) < 1e-4, lambda: tf.print('csrt acc ', [pct]),
tensorflow.random_uniform
6,256
import tensorflow as tf features_flat = tf.reshape(features, [-1, self.D]) features_proj = tf.matmul(features_flat, w) features_proj = tf.reshape(features_proj, [-1, self.L, self.D]) return features_proj def _attention_layer(self, features, features_proj, h, reuse=False): with tf.variable_scope('attention_layer', reuse=reuse): w = tf.get_variable('w', [self.H, self.D], initializer=self.weight_initializer) b = tf.get_variable('b', [self.D], initializer=self.const_initializer) w_att = tf.get_variable('w_att', [self.D, 1], initializer=self.weight_initializer) h_att = tf.nn.relu(features_proj + tf.expand_dims(tf.matmul(h, w), 1) + b) # (N, L, D) out_att = tf.reshape(tf.matmul(tf.reshape(h_att, [-1, self.D]), w_att), [-1, self.L]) # (N, L) alpha = tf.nn.softmax(out_att) context = tf.reduce_sum(features * tf.expand_dims(alpha, 2), 1, name='context') #(N, D) return context, alpha
tensorflow.get_variable
6,257
import tensorflow as tf tmp2 = tf.tensordot(query, w2, axes=1) tmp2 = tf.reshape(tmp2, [-1, 1, tf.shape(tmp2)[-1]]) tmp = tf.tanh((tmp1 + tmp2) + b)
tensorflow.tanh
6,258
import tensorflow as tf self.summarise = tf.summary.merge(tf.get_collection(tf.GraphKeys.SUMMARIES)) # AC net def build_anet(self, state_in, name, reuse=False): reg = tf.contrib.layers.l2_regularizer(1e-3) with tf.variable_scope(name, reuse=reuse): layer_a1 = tf.layers.dense(state_in, 512, tf.nn.relu, kernel_regularizer=reg) layer_a2 = tf.layers.dense(layer_a1, 256, tf.nn.relu, kernel_regularizer=reg) mu = tf.layers.dense(layer_a2, self.a_dim, tf.nn.tanh, kernel_regularizer=reg) # sigma = tf.layers.dense(layer_a2, self.a_dim, tf.nn.softplus, kernel_regularizer=reg) sigma = tf.get_variable(name='pi_sigma', shape=self.a_dim, initializer=tf.constant_initializer(0.5)) sigma = tf.clip_by_value(sigma, 0.0, 1.0)
tensorflow.layers.dense
6,259
import tensorflow as tf # Restores from checkpoint. new_saver.restore(sess, saver0_ckpt) # Addes loss and train. labels = tf.constant(0, tf.int32, shape=[100], name="labels") batch_size = tf.size(labels) labels = tf.expand_dims(labels, 1) indices = tf.expand_dims(tf.range(0, batch_size), 1) concated = tf.concat(1, [indices, labels]) onehot_labels = tf.sparse_to_dense( concated, tf.pack([batch_size, 10]), 1.0, 0.0) logits = tf.get_collection("logits")[0] cross_entropy = tf.nn.softmax_cross_entropy_with_logits(logits, onehot_labels, name="xentropy") loss = tf.reduce_mean(cross_entropy, name="xentropy_mean") tf.scalar_summary(loss.op.name, loss) # Creates the gradient descent optimizer with the given learning rate. optimizer = tf.train.GradientDescentOptimizer(0.01)
tensorflow.get_collection
6,260
import tensorflow as tf top_fast_antecedent_scores = tf.expand_dims(top_span_mention_scores, 1) + tf.gather(top_span_mention_scores, top_antecedents) # [k, c] top_fast_antecedent_scores += tf.log(tf.to_float(top_antecedents_mask)) # [k, c] return top_antecedents, top_antecedents_mask, top_fast_antecedent_scores, top_antecedent_offsets def get_predictions_and_loss(self, tokens, context_word_emb, head_word_emb, lm_emb, char_index, text_len, speaker_ids, genre, is_training, gold_starts, gold_ends, cluster_ids): self.dropout = self.get_dropout(self.config["dropout_rate"], is_training) self.lexical_dropout = self.get_dropout(self.config["lexical_dropout_rate"], is_training) self.lstm_dropout = self.get_dropout(self.config["lstm_dropout_rate"], is_training) num_sentences = tf.shape(context_word_emb)[0] max_sentence_length = tf.shape(context_word_emb)[1] context_emb_list = [context_word_emb] head_emb_list = [head_word_emb] if self.config["char_embedding_size"] > 0: char_emb = tf.gather(tf.get_variable("char_embeddings", [len(self.char_dict), self.config["char_embedding_size"]]), char_index) # [num_sentences, max_sentence_length, max_word_length, emb] flattened_char_emb = tf.reshape(char_emb, [num_sentences * max_sentence_length, util.shape(char_emb, 2), util.shape(char_emb, 3)]) # [num_sentences * max_sentence_length, max_word_length, emb] flattened_aggregated_char_emb = util.cnn(flattened_char_emb, self.config["filter_widths"], self.config["filter_size"]) # [num_sentences * max_sentence_length, emb]
tensorflow.shape
6,261
import tensorflow as tf if mode == tf.estimator.ModeKeys.TRAIN: train_op = optimization.create_optimizer( total_loss, learning_rate, num_train_steps, num_warmup_steps, use_tpu) output_spec = tf.contrib.tpu.TPUEstimatorSpec( mode=mode, loss=total_loss, train_op=train_op, scaffold_fn=scaffold_fn) elif mode == tf.estimator.ModeKeys.EVAL: def metric_fn(per_example_loss, label_ids, logits, is_real_example): predictions = tf.argmax(logits, axis=-1, output_type=tf.int32) accuracy = tf.metrics.accuracy( labels=label_ids, predictions=predictions, weights=is_real_example) loss = tf.metrics.mean(values=per_example_loss, weights=is_real_example) return { "eval_accuracy": accuracy, "eval_loss": loss, } eval_metrics = (metric_fn, [per_example_loss, label_ids, logits, is_real_example]) output_spec = tf.contrib.tpu.TPUEstimatorSpec( mode=mode,
tensorflow.argmax
6,262
import tensorflow as tf # Get the binary representation num_bits = int(self.hparams.z_size // self.hparams.num_blocks) x_means_bits = self.int_to_bit(x_means_idx, num_bits=num_bits, base=2) x_discrete = self.bit_to_int( tf.to_int32(x_means_bits), num_bits=self.hparams.z_size, base=2) # Reshape x_discrete shape_x = common_layers.shape_list(x)
tensorflow.to_int32
6,263
import tensorflow as tf * images is a float tensor with shape [batch_size, FLAGS.num_scales, FLAGS.crop_size, FLAGS.crop_size] * labels is an int32 tensor with shape [batch_size] with the true label, a number in the range [0, NUM_CLASSES()). Note that an tf.train.QueueRunner is added to the graph, which must be run using e.g. tf.train.start_queue_runners(). """ if not num_epochs: num_epochs = None filename = os.path.join(FLAGS.train_dir, 'data', '{}_{}.tfrecords'.format(name, records.tfrecord_name())) with tf.name_scope('input'): filename_queue = tf.train.string_input_producer( [filename], num_epochs=num_epochs) # Even when reading in multiple threads, share the filename # queue. image, label = read_and_decode(filename_queue) # Shuffle the examples and collect them into batch_size batches. # (Internally uses a RandomShuffleQueue.) # We run this in two threads to avoid being a bottleneck. images, sparse_labels = tf.train.shuffle_batch(
tensorflow.train.string_input_producer
6,264
import tensorflow as tf cols[0] / width, cols[3] / height, cols[2] / width], axis=1) # add batch dimension (assume batch_size==1) #assert image.get_shape()[0] == 1 boxes = tf.expand_dims(boxes, dim=0) image = tf.image.draw_bounding_boxes(image, boxes) # 在image上画gt_truth return tf.summary.image('ground_truth', image)
tensorflow.expand_dims
6,265
import tensorflow as tf block_ct_res_tile = tf.tile(tf.expand_dims(block_ct_res, 2), [1, 1, bl, 1])#[bs,bn,vec]->[bs,bn,bl,vec] with tf.variable_scope('combination'): # input:1.rep_map[bs,bn,bl,vec]; 2.self_attn_result[bs,bn,bl,vec]; 3.rnn_res_tile[bs,bn,bl,vec] rep_tensor_with_ct = tf.concat([rep_map, self_attn_result, block_ct_res_tile], -1) # [bs,bn,bl,3vec] new_context_and_gate = linear(rep_tensor_with_ct, 2 * ivec, True, 0., 'linear_new_context_and_gate', False, wd, keep_prob, is_train) # [bs,bn,bl,2vec] new_context, gate = tf.split(new_context_and_gate, 2, 3) # bs,bn,bl,vec if activation == "relu": new_context_act = tf.nn.relu(new_context) elif activation == "elu": new_context_act = tf.nn.elu(new_context) elif activation == "linear": new_context_act = tf.identity(new_context) else: raise RuntimeError gate_sig = tf.nn.sigmoid(gate) combination_res = gate_sig * new_context_act + (1 - gate_sig) * rep_map # bs,bn,bl,vec
tensorflow.nn.relu
6,266
import tensorflow as tf conv1_bn = tf.nn.relu(tf.layers.batch_normalization(conv1, training=train)) pool1 = tf.layers.max_pooling2d(
tensorflow.layers.max_pooling2d
6,267
import tensorflow as tf embedding_output = modeling.embedding_postprocessor( input_tensor=word_embedding_output, use_token_type=True, token_type_ids=segment_ids, token_type_vocab_size=config.type_vocab_size, token_type_embedding_name="token_type_embeddings", use_position_embeddings=True, position_embedding_name="position_embeddings", initializer_range=config.initializer_range, max_position_embeddings=config.max_position_embeddings, dropout_prob=config.hidden_dropout_prob) with tf.variable_scope("bilstm"): sequence_output = modeling.bilstm_fused( inputs=embedding_output, sequence_lengths=_true_length, lstm_size=config.lstm_size, bilstm_dropout_rate=config.bilstm_dropout_rate, is_training=is_training, num_layers=config.num_bilstm) # with tf.variable_scope("bilstm"): # sequence_output, _ = modeling.cudnn_rnn( # inputs=embedding_output,
tensorflow.variable_scope
6,268
import tensorflow as tf def _init(): v_norm = tf.nn.l2_normalize(self.v,axis=[0,1,2]) t = tf.nn.conv2d(input_var,v_norm,self.strides,self.padding,data_format='NHWC') mu,var = tf.nn.moments(t,axes=[0,1,2]) std = tf.sqrt(var+self.epsilon) return [tf.assign(self.g,1/std),tf.assign(self.b,-1.*mu/std)] require_init = tf.reduce_any(tf.is_nan(self.g)) init_ops = tf.cond(require_init,_init,lambda : [self.g,self.b]) with tf.control_dependencies(init_ops): w = tf.reshape(self.g,[1,1,1,tf.shape(self.v)[-1]]) * tf.nn.l2_normalize(self.v,axis=[0,1,2]) return tf.nn.bias_add( tf.nn.conv2d(input_var, w,data_format='NHWC', strides=self.strides, padding=self.padding), self.b,data_format='NHWC',name=name)
tensorflow.cond
6,269
import tensorflow as tf l = tf.cast(l, dtype=var_type) m = tf.cast(m, dtype=var_type) numerator = (2.0 * l + 1.0) * factorial(l - tf.abs(m)) denominator = 4.0 * np.pi * factorial(l + tf.abs(m)) return tf.sqrt(numerator / denominator) def _evaluate_spherical_harmonics_branch(degree, order, theta, phi, sign_order, var_type=tf.float64): sqrt_2 = tf.constant(1.41421356237, dtype=var_type) order_float = tf.cast(order, dtype=var_type) tmp = sqrt_2 * _spherical_harmonics_normalization( degree, order, var_type) * evaluate_legendre_polynomial( degree, order, tf.cos(theta)) positive = tmp * tf.cos(order_float * phi) negative = tmp * tf.sin(order_float * phi) return tf.where(tf.greater(sign_order, 0), positive, negative) def evaluate_spherical_harmonics( degree_l: TensorLike, order_m: TensorLike,
tensorflow.constant
6,270
import tensorflow as tf if FLAGS.num_gpus > 1: soft_placement = True util.auto_parallel(metagraph, m) with tf.Graph().as_default(): tf.train.import_meta_graph(metagraph) for model in models.values(): model.import_ops() sv = tf.train.Supervisor(logdir=FLAGS.save_path) config_proto = tf.ConfigProto(allow_soft_placement=soft_placement) with sv.managed_session(config=config_proto) as session: for i in range(config.max_max_epoch): lr_decay = config.lr_decay ** max(i + 1 - config.max_epoch, 0.0) m.assign_lr(session, config.learning_rate * lr_decay) print("Epoch: %d Learning rate: %.3f" % (i + 1, session.run(m.lr)))
tensorflow.train.Supervisor
6,271
import tensorflow as tf n_valid = len(vaY) n_batch_train = n_batch*n_gpu n_updates_total = (n_train//n_batch_train)*n_iter X_train = tf.placeholder(tf.int32, [n_batch_train, 2, n_ctx, 2]) M_train = tf.placeholder(tf.float32, [n_batch_train, 2, n_ctx]) X = tf.placeholder(tf.int32, [None, 2, n_ctx, 2]) M = tf.placeholder(tf.float32, [None, 2, n_ctx]) Y_train = tf.placeholder(tf.int32, [n_batch_train]) Y = tf.placeholder(tf.int32, [None]) train, logits, clf_losses, lm_losses = mgpu_train(X_train, M_train, Y_train) clf_loss = tf.reduce_mean(clf_losses)
tensorflow.placeholder
6,272
from tensorflow.python.framework import ops ops.RegisterShape("Ceil")(common_shapes.unchanged_shape) ops.RegisterShape("Conj")(common_shapes.unchanged_shape) ops.RegisterShape("Cos")(common_shapes.unchanged_shape) ops.RegisterShape("Exp")(common_shapes.unchanged_shape) ops.RegisterShape("Floor")(common_shapes.unchanged_shape) ops.RegisterShape("Imag")(common_shapes.unchanged_shape) ops.RegisterShape("Inv")(common_shapes.unchanged_shape) ops.RegisterShape("IsFinite")(common_shapes.unchanged_shape) ops.RegisterShape("IsInf")(common_shapes.unchanged_shape) ops.RegisterShape("IsNan")(common_shapes.unchanged_shape) ops.RegisterShape("Log")(common_shapes.unchanged_shape) ops.RegisterShape("LogicalNot")(common_shapes.unchanged_shape) ops.RegisterShape("Neg")(common_shapes.unchanged_shape) ops.RegisterShape("Real")(common_shapes.unchanged_shape) ops.RegisterShape("Rsqrt")(common_shapes.unchanged_shape) ops.RegisterShape("Sign")(common_shapes.unchanged_shape) ops.RegisterShape("Sin")(common_shapes.unchanged_shape) ops.RegisterShape("Sqrt")(common_shapes.unchanged_shape) ops.RegisterShape("Square")(common_shapes.unchanged_shape) ops.RegisterShape("Sigmoid")(common_shapes.unchanged_shape) ops.RegisterShape("Tanh")(common_shapes.unchanged_shape) ops.RegisterShape("Cast")(common_shapes.unchanged_shape) ops.RegisterShape("ComplexAbs")(common_shapes.unchanged_shape) @ops.RegisterShape("Add")
tensorflow.python.framework.ops.RegisterShape
6,273
import tensorflow as tf w_z0_y0_x0 = tf.expand_dims(((x1_f - x) * (y1_f - y) * (z1_f - z) * x1_valid * y1_valid * z1_valid), 1) w_z0_y0_x1 = tf.expand_dims(((x - x0_f) * (y1_f - y) * (z1_f - z) * x0_valid * y1_valid * z1_valid), 1) w_z0_y1_x0 = tf.expand_dims(((x1_f - x) * (y - y0_f) * (z1_f - z) * x1_valid * y0_valid * z1_valid), 1) w_z0_y1_x1 = tf.expand_dims(((x - x0_f) * (y - y0_f) * (z1_f - z) * x0_valid * y0_valid * z1_valid), 1) w_z1_y0_x0 = tf.expand_dims(((x1_f - x) * (y1_f - y) * (z - z0_f) * x1_valid * y1_valid * z0_valid), 1) w_z1_y0_x1 = tf.expand_dims(((x - x0_f) * (y1_f - y) * (z - z0_f) * x0_valid * y1_valid * z0_valid), 1) w_z1_y1_x0 = tf.expand_dims(((x1_f - x) * (y - y0_f) * (z - z0_f) * x1_valid * y0_valid * z0_valid), 1) w_z1_y1_x1 = tf.expand_dims(((x - x0_f) * (y - y0_f) * (z - z0_f) * x0_valid * y0_valid * z0_valid), 1)
tensorflow.expand_dims
6,274
import tensorflow as tf return horizon_pred, horizon_tgt def contra_traj_lossV2(pred, tgt, horizon=9): # Step-wise contrastive loss horizon_pred = horizon_sumV1(pred, horizon) horizon_tgt = horizon_sumV1(tgt, horizon) pred1, pred2 = tf.split(horizon_pred, 2, axis=0) tgt1, tgt2 = tf.split(horizon_tgt, 2, axis=0) geq = tf.cast((tgt1 - tgt2) > 0, tf.bool) tgt_larg = tf.where(geq, tgt1, tgt2) tgt_small = tf.where(geq, tgt2, tgt1) pred_larg = tf.where(geq, pred1, pred2) pred_small = tf.where(geq, pred2, pred1) loss = tf.maximum(0.0, ((tgt_larg - tgt_small) - (pred_larg - pred_small))) loss = tf.reduce_mean(loss) return loss # randrom horizon def contra_traj_lossV3(pred, tgt, horizon=12): # Step-wise contrastive loss horizon_pred, horizon_tgt = horizon_sumV2(pred, tgt, horizon) # pred1, pred2 = tf.split(horizon_pred, 2, axis=0)
tensorflow.where
6,275
import tensorflow as tf }) return model_outputs if params['use_bfloat16']: with tf.contrib.tpu.bfloat16_scope(): model_outputs = _model_outputs() def cast_outputs_to_float(d): for k, v in sorted(six.iteritems(d)):
tensorflow.contrib.tpu.bfloat16_scope
6,276
import tensorflow as tf "input_ids": tf.constant( all_input_ids, shape=[num_examples, seq_length], dtype=tf.int32), "input_mask": tf.constant( all_input_mask, shape=[num_examples, seq_length], dtype=tf.int32), "segment_ids": tf.constant( all_segment_ids, shape=[num_examples, seq_length], dtype=tf.int32), "label_ids": tf.constant(all_label_ids, shape=[num_examples], dtype=tf.int32), }) if is_training: d = d.repeat()
tensorflow.constant
6,277
import tensorflow as tf # Embedding matrices for entities and relationship types head_init = tf.truncated_normal([head_cnt, self.embedding_size], stddev=init_sd) rel_init = tf.truncated_normal([rel_cnt, self.embedding_size], stddev=init_sd) tail_init = tf.truncated_normal([tail_cnt, self.embedding_size], stddev=init_sd) if self.maxnorm is not None: # Ensure maxnorm constraints are initially satisfied head_init = dense_maxnorm(head_init, self.maxnorm) rel_init = dense_maxnorm(rel_init, self.maxnorm) tail_init = dense_maxnorm(tail_init, self.maxnorm) self.head_embedding_vars = tf.Variable(head_init) self.rel_embedding_vars = tf.Variable(rel_init) self.tail_embedding_vars = tf.Variable(tail_init) # Embedding layer for each (head, rel, tail) triple being fed in as input head_embed = tf.nn.embedding_lookup(self.head_embedding_vars, self.head_input) rel_embed = tf.nn.embedding_lookup(self.rel_embedding_vars, self.rel_input) tail_embed = tf.nn.embedding_lookup(self.tail_embedding_vars, self.tail_input) # Model output raw_output = tf.reduce_sum(tf.mul(tf.mul(head_embed, rel_embed), tail_embed), 1)
tensorflow.Variable
6,278
import tensorflow as tf pred_x = pred_x * tf.cast(pred_max>0, tf.float32) + tf.cast(pred_max<=0, tf.float32) * (width / 2.) pred_y = pred_y * tf.cast(pred_max>0, tf.float32) + tf.cast(pred_max<=0, tf.float32) * (height / 2.)
tensorflow.cast
6,279
from tensorflow.python.ops import math_ops if self._num_label_columns == 1: return _get_default_binary_metrics_for_eval(thresholds=[.5]) return {} def get_eval_ops(self, features, logits, targets, metrics=None): loss = self.loss(logits, targets, features) result = {"loss": metrics_lib.streaming_mean(loss)} # Adds default metrics. if metrics is None: # TODO(b/29366811): This currently results in both an "accuracy" and an # "accuracy/threshold_0.500000_mean" metric for binary classification. metrics = {("accuracy", "classes"): metrics_lib.streaming_accuracy} predictions = math_ops.sigmoid(logits) targets_float = math_ops.to_float(targets) default_metrics = self._default_eval_metrics() for metric_name, metric_op in default_metrics.items(): result[metric_name] = metric_op(predictions, targets_float) class_metrics = {} proba_metrics = {} for name, metric_op in six.iteritems(metrics): if isinstance(name, tuple): if len(name) != 2: raise ValueError("Ignoring metric {}. It returned a tuple with " "len {}, expected 2.".format(name, len(name))) else: if name[1] not in ["classes", "probabilities"]:
tensorflow.python.ops.math_ops.to_float
6,280
import tensorflow as tf # define path to save the embeddings dirs = ["./emb/embeddings_AVspeech/"] for d in dirs: if not os.path.exists(d): os.makedirs(d) print("Folder created:", d) with tf.Graph().as_default(): with tf.Session() as sess: # Load the model facenet.load_model(args.model_dir) # Get input and output tensors
tensorflow.Graph
6,281
import tensorflow as tf best_target_per_prior = tf.math.reduce_max(ious, axis=1) best_target_per_prior_index = tf.math.argmax(ious, axis=1) # size: num_targets best_prior_per_target = tf.math.reduce_max(ious, axis=0) best_prior_per_target_index = tf.math.argmax(ious, axis=0) targets = tf.range(tf.shape(best_prior_per_target_index)[0], dtype='int64') best_target_per_prior_index = tf.tensor_scatter_nd_update(best_target_per_prior_index, tf.expand_dims(best_prior_per_target_index, 1), targets) # 2.0 is used to make sure every target has a prior assigned best_target_per_prior = tf.tensor_scatter_nd_update(best_target_per_prior, tf.expand_dims(best_prior_per_target_index, 1), tf.ones_like(best_prior_per_target_index, dtype=tf.float32)*2.0) # size: num_priors
tensorflow.shape
6,282
import tensorflow as tf [1, 1, 0, 0, 0, 0, 0, 0], [1, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0]], dtype=tf.float32) mask2 = tf.constant([[0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 1, 1, 1, 1, 1], [0, 1, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 1, 1, 1, 1], [0, 0, 0, 0, 1, 1, 1, 1]], dtype=tf.float32) masks = tf.stack([mask0, mask1, mask2]) return masks def test_map_labels_to_0_to_n1(self): labels = tf.constant([[-1, 2, 5], [0, 9, 1]], dtype=tf.int32) labels_0_n = isu.map_labels_to_0_to_n(labels) expected_labels_0_n = tf.constant([[-1, 2, 3], [0, 4, 1]], dtype=tf.int32) self.assertAllEqual(labels_0_n.numpy(), expected_labels_0_n.numpy())
tensorflow.stack
6,283
import tensorflow as tf pass else: tf.set_random_seed(i) np.random.seed(i)
tensorflow.set_random_seed
6,284
import tensorflow as tf import vat FLAGS = tf.app.flags.FLAGS tf.app.flags.DEFINE_string('device', '/gpu:0', "device") tf.app.flags.DEFINE_string('dataset', 'cifar10', "{cifar10, svhn}") tf.app.flags.DEFINE_string('log_dir', "", "log_dir") tf.app.flags.DEFINE_integer('seed', 1, "initial random seed") tf.app.flags.DEFINE_bool('validation', False, "") tf.app.flags.DEFINE_integer('batch_size', 32, "the number of examples in a batch") tf.app.flags.DEFINE_integer('ul_batch_size', 128, "the number of unlabeled examples in a batch") tf.app.flags.DEFINE_integer('eval_batch_size', 100, "the number of eval examples in a batch") tf.app.flags.DEFINE_integer('eval_freq', 5, "") tf.app.flags.DEFINE_integer('num_epochs', 120, "the number of epochs for training") tf.app.flags.DEFINE_integer('epoch_decay_start', 80, "epoch of starting learning rate decay") tf.app.flags.DEFINE_integer('num_iter_per_epoch', 400, "the number of updates per epoch") tf.app.flags.DEFINE_float('learning_rate', 0.001, "initial leanring rate") tf.app.flags.DEFINE_float('mom1', 0.9, "initial momentum rate") tf.app.flags.DEFINE_float('mom2', 0.5, "momentum rate after epoch_decay_start") tf.app.flags.DEFINE_string('method', 'vat', "{vat, vatent, baseline}")
tensorflow.app.flags.DEFINE_integer
6,285
import tensorflow as tf layer_id, tf.matmul(next_h[-1], self.w_attn_1)) def _condition(layer_id, *args): return tf.less(layer_id, self.num_cells + 2) def _body(layer_id, inputs, prev_c, prev_h, anchors, anchors_w_1, arc_seq, entropy, log_prob): indices = tf.range(0, layer_id, dtype=tf.int32) start_id = 4 * (layer_id - 2) prev_layers = [] for i in range(2): # index_1, index_2 next_c, next_h = stack_lstm(inputs, prev_c, prev_h, self.w_lstm) prev_c, prev_h = next_c, next_h query = anchors_w_1.gather(indices)
tensorflow.range
6,286
import tensorflow as tf """ with tf.variable_scope(scope, reuse=reuse): observations_ph = U.ensure_tf_input(make_obs_ph("observation")) stochastic_ph = tf.placeholder(tf.bool, (), name="stochastic") update_eps_ph = tf.placeholder(tf.float32, (), name="update_eps") eps = tf.get_variable("eps", (), initializer=tf.constant_initializer(0.0))
tensorflow.placeholder
6,287
from tensorflow.python.ops import array_ops else: loss_vec = nn.sparse_softmax_cross_entropy_with_logits( logits, array_ops.reshape(target, [-1])) if weight_tensor is None: return math_ops.reduce_mean(loss_vec, name="loss") else: loss_vec = array_ops.reshape(loss_vec, shape=(-1,)) loss_vec = math_ops.mul( loss_vec, array_ops.reshape(weight_tensor, shape=(-1,))) return math_ops.div( math_ops.reduce_sum(loss_vec), math_ops.to_float(math_ops.reduce_sum(weight_tensor)), name="loss")
tensorflow.python.ops.array_ops.reshape
6,288
from tensorflow.python.framework import ops value: A `Tensor` with type `float`, `double`, `int64`, `int32`, `uint8`, `int16`, `int8`, or `complex64`. bias: A 1-D `Tensor` with size matching the last dimension of `value`. Must be the same type as `value` unless `value` is a quantized type, in which case a different quantized type may be used. name: A name for the operation (optional). Returns: A `Tensor` with the same type as `value`. """ with ops.op_scope([value, bias], name, "BiasAddV1") as name: value = ops.convert_to_tensor(value, name="input") bias = ops.convert_to_tensor(bias, dtype=value.dtype, name="bias") return gen_nn_ops._bias_add_v1(value, bias, name=name) ops.RegisterShape("BiasAddV1")(common_shapes.bias_add_shape) ops.RegisterShape("BiasAddGradV1")(common_shapes.bias_add_grad_shape) def relu6(features, name=None):
tensorflow.python.framework.ops.convert_to_tensor
6,289
import tensorflow as tf def load_and_align_data(image_paths, image_size, margin, gpu_memory_fraction): print('Creating networks and loading parameters') with tf.Graph().as_default(): gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=gpu_memory_fraction) sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options, log_device_placement=False)) with sess.as_default(): pnet, rnet, onet = align.detect_face.create_mtcnn(sess, None)
tensorflow.Graph
6,290
import tensorflow as tf def mgpu_predict(*xs): gpu_ops = [] xs = (tf.split(x, n_gpu, 0) for x in xs) for i, xs in enumerate(zip(*xs)): with tf.device(assign_to_gpu(i, "/gpu:0")), tf.variable_scope(tf.get_variable_scope(), reuse=True): clf_logits, clf_losses, lm_losses = model(*xs, train=False, reuse=True) gpu_ops.append([clf_logits, clf_losses, lm_losses]) ops = [tf.concat(op, 0) for op in zip(*gpu_ops)] return ops
tensorflow.get_variable_scope
6,291
import tensorflow as tf logstd = tf.get_variable( "logstd", mean.shape[2:], tf.float32, logstd_initializer) logstd = tf.tile( logstd[None, None], [tf.shape(mean)[0], tf.shape(mean)[1]] + [1] * (mean.shape.ndims - 2)) with tf.variable_scope("value"): x = flat_observations for size in config.value_layers: x = tf.layers.dense(x, size, activation=tf.nn.relu) value = tf.layers.dense(x, 1)[..., 0] mean = tf.check_numerics(mean, "mean") logstd = tf.check_numerics(logstd, "logstd") value = tf.check_numerics(value, "value") policy = tfp.distributions.MultivariateNormalDiag(mean, tf.exp(logstd)) return NetworkOutput(policy, value, lambda a: tf.clip_by_value(a, -2., 2))
tensorflow.layers.dense
6,292
import tensorflow as tf with tf.name_scope(name):
tensorflow.name_scope
6,293
import tensorflow as tf def get_weight_initializer(params): initializer = [] scope = tf.get_variable_scope() scope.reuse_variables() for layer, value in params.items(): op = tf.get_variable('%s' % layer).assign(value) initializer.append(op)
tensorflow.get_variable_scope
6,294
from tensorflow.python.ops import gen_math_ops x = ops.convert_to_tensor(x, name="x") return gen_math_ops._sigmoid(x, name=name)
tensorflow.python.ops.gen_math_ops._sigmoid
6,295
import tensorflow as tf def get_width_upright(bboxes): with tf.name_scope('BoundingBoxTransform/get_width_upright'): bboxes = tf.cast(bboxes, tf.float32) x1, y1, x2, y2 = tf.split(bboxes, 4, axis=1) width = x2 - x1 + 1. height = y2 - y1 + 1.
tensorflow.cast
6,296
import tensorflow as tf """ return tf.variable_scope('resnet_model', custom_getter=self._custom_dtype_getter)
tensorflow.variable_scope
6,297
from tensorflow.python.framework import ops event_start = array_ops.where( self._batch_ndims_is_0, 2, 1 + self.batch_ndims) event_shape = array_ops.slice(s, (event_start,), (self.event_ndims,)) new_shape = array_ops.concat(0, (sample_shape, batch_shape, event_shape)) x = array_ops.reshape(x, shape=new_shape) return x @contextlib.contextmanager def _name_scope(self, name=None, values=None): """Helper function to standardize op scope.""" with ops.name_scope(self.name): with ops.name_scope(name, values=( (values or []) + [self.batch_ndims, self.event_ndims])) as scope: yield scope def _is_all_constant_helper(self, *args): """Helper which returns True if all inputs are constant_value.""" return all(tensor_util.constant_value(x) is not None for x in args) def _assert_non_negative_int32_scalar(self, x):
tensorflow.python.framework.ops.name_scope
6,298
import tensorflow as tf reinforce_weights = get_weights(samples, utils.EOS_ID, include_first_eos=True) reinforce_loss = sequence_loss(logits=outputs, targets=samples, weights=reinforce_weights, rewards=baseline_rewards) trg_mask = get_weights(targets[:, 1:], utils.EOS_ID, include_first_eos=True) xent_loss = sequence_loss(logits=outputs, targets=targets[:, 1:], weights=trg_mask) if monotonicity_weight: monotonicity_dist = monotonicity_dist or 1.0 batch_size = tf.shape(attention_weights)[0] src_len = tf.shape(attention_weights)[2] trg_len = tf.shape(attention_weights)[1] src_indices = tf.tile(tf.reshape(tf.range(src_len), shape=[1, 1, src_len]), [batch_size, trg_len, 1]) trg_indices = tf.tile(tf.reshape(tf.range(trg_len), shape=[1, trg_len, 1]), [batch_size, 1, src_len]) source_length = encoder_input_length[0] target_length = tf.to_int32(tf.reduce_sum(trg_mask, axis=1)) true_src_len = tf.reshape(source_length, shape=[batch_size, 1, 1]) - 1 true_trg_len = tf.reshape(target_length, shape=[batch_size, 1, 1]) - 1 src_mask = tf.to_float(tf.sequence_mask(source_length, maxlen=src_len)) mask = tf.matmul(tf.expand_dims(trg_mask, axis=2), tf.expand_dims(src_mask, axis=1))
tensorflow.shape
6,299