seed
stringlengths
25
2.89k
seed_api
stringlengths
14
102
index
int64
0
14.8k
from tensorflow.python.ops.rnn_cell_impl import _Linear """Gated recurrent unit (GRU) with nunits cells.""" if self._gate_linear is None: bias_ones = self._bias_initializer if self._bias_initializer is None: bias_ones = init_ops.constant_initializer(1.0, dtype=inputs.dtype) with vs.variable_scope("gates"): # Reset gate and update gate. self._gate_linear = _Linear( [inputs, state], 2 * self._num_units, True, bias_initializer=bias_ones, kernel_initializer=self._kernel_initializer)
tensorflow.python.ops.rnn_cell_impl._Linear
6,400
import tensorflow as tf texts_test = [x for ix, x in enumerate(texts) if ix in test_indices] target_train = [x for ix, x in enumerate(target) if ix in train_indices] target_test = [x for ix, x in enumerate(target) if ix in test_indices] # Setup Index Matrix for one-hot-encoding identity_mat = tf.diag(tf.ones(shape=[embedding_size])) # Create variables for logistic regression A = tf.Variable(tf.random_normal(shape=[embedding_size,1])) b = tf.Variable(tf.random_normal(shape=[1,1])) # Initialize placeholders x_data = tf.placeholder(shape=[sentence_size], dtype=tf.int32) y_target = tf.placeholder(shape=[1, 1], dtype=tf.float32) # Text-Vocab Embedding x_embed = tf.nn.embedding_lookup(identity_mat, x_data) x_col_sums = tf.reduce_sum(x_embed, 0) # Declare model operations x_col_sums_2D = tf.expand_dims(x_col_sums, 0) model_output = tf.add(tf.matmul(x_col_sums_2D, A), b) # Declare loss function (Cross Entropy loss) loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=model_output, labels=y_target))
tensorflow.placeholder
6,401
import tensorflow as tf # Note this can be implemented in terms of cumprod and cumsum, # approximately as (ignoring boundary issues and initial_value): # # cumsum(decay_prods * sequence) / decay_prods # where decay_prods = reverse_cumprod(decay) # # One reason this hasn't been done is that multiplying then dividing again by # products of decays isn't ideal numerically, in particular if any of the # decays are zero it results in NaNs. with tf.name_scope(name, values=[sequence, decay, initial_value]): if sequence_lengths is not None: # Zero out sequence and decay beyond sequence_lengths. with tf.control_dependencies( [tf.assert_equal(sequence.shape[0], decay.shape[0])]): mask = tf.sequence_mask(sequence_lengths, maxlen=sequence.shape[0], dtype=sequence.dtype) mask = tf.transpose(mask) # Adding trailing dimensions to mask to allow for broadcasting. to_seq = mask.shape.dims + [1] * (sequence.shape.ndims - mask.shape.ndims) sequence *= tf.reshape(mask, to_seq) to_decay = mask.shape.dims + [1] * (decay.shape.ndims - mask.shape.ndims) decay *= tf.reshape(mask, to_decay) sequences = [sequence, decay] if reverse: sequences = [_reverse_seq(s, sequence_lengths) for s in sequences]
tensorflow.sequence_mask
6,402
import tensorflow as tf b_init_args = {} if self.inputs.get_shape().ndims != 2: raise Exception("The input dimension must be rank 2, please reshape or flatten it") n_in = int(self.inputs.get_shape()[-1]) with tf.variable_scope(name): W = tf.get_variable(name='W', shape=(n_in, n_units), initializer=W_init, dtype=LayersConfig.tf_dtype, **W_init_args) if b_init is not None: try: b = tf.get_variable(name='b', shape=(n_units), initializer=b_init, dtype=LayersConfig.tf_dtype, **b_init_args) except Exception: # If initializer is a constant, do not specify shape. b = tf.get_variable(name='b', initializer=b_init, dtype=LayersConfig.tf_dtype, **b_init_args) self.outputs = act(tf.matmul(self.inputs, W) + b) else: self.outputs = act(tf.matmul(self.inputs, W)) self.all_layers.append(self.outputs) if b_init is not None: self.all_params.extend([W, b]) else: self.all_params.append(W) class ReconLayer(DenseLayer):
tensorflow.get_variable
6,403
import tensorflow as tf print(imgshape) self.output_height, self.output_width = imgshape[-3:-1] self.batch_size = imgshape[1] featsize = 1024 srcimg = image[0] tgtimg = image[2] tgtctx = image[1] with tf.variable_scope("conv_context") as scope: tgtctx_h0 = lrelu(conv2d(tgtctx, self.df_dim, name='h0_conv')) tgtctx_h1 = lrelu(conv2d(tgtctx_h0, self.df_dim*2, name='h1_conv')) tgtctx_h2 = lrelu(conv2d(tgtctx_h1, self.df_dim*4, name='h2_conv')) tgtctx_h3 = lrelu(conv2d(tgtctx_h2, self.df_dim*8, name='h3_conv')) tgtctx_h4 = lrelu(linear(tf.reshape(tgtctx_h3, [self.batch_size, -1]), featsize, 'h4_lin')) tgtctx_z = linear(tgtctx_h4, featsize, 'hz_lin') with tf.variable_scope("conv") as scope: srcimg_h0 = lrelu(conv2d(srcimg, self.df_dim, name='h0_conv')) srcimg_h1 = lrelu(conv2d(srcimg_h0, self.df_dim*2, name='h1_conv')) srcimg_h2 = lrelu(conv2d(srcimg_h1, self.df_dim*4, name='h2_conv')) srcimg_h3 = lrelu(conv2d(srcimg_h2, self.df_dim*8, name='h3_conv')) print(srcimg_h3.get_shape()) srcimg_h4 = lrelu(linear(tf.reshape(srcimg_h3, [self.batch_size, -1]), featsize, 'h4_lin')) srcimg_z = lrelu(linear(srcimg_h4, featsize, 'hz_lin')) scope.reuse_variables()
tensorflow.reshape
6,404
import tensorflow as tf save._add_collection_def(meta_graph_def, save) self.assertEqual(len(meta_graph_def.collection_def), 0) # Verifies that collection where item type does not match expected # type will not be added. tf.add_to_collection("int_collection", 3) tf.add_to_collection("int_collection", 3.5) save._add_collection_def(meta_graph_def, "int_collection") self.assertEqual(len(meta_graph_def.collection_def), 0) def _testMultiSaverCollectionSave(self): test_dir = self._TestDir("saver_collection") filename = os.path.join(test_dir, "metafile") saver0_ckpt = os.path.join(test_dir, "saver0.ckpt") saver1_ckpt = os.path.join(test_dir, "saver1.ckpt") with self.test_session(graph=tf.Graph()) as sess: # Creates a graph. v0 = tf.Variable(10.0, name="v0") v1 = tf.Variable(11.0, name="v1") # Creates 2 savers. saver0 = tf.train.Saver({"v0": v0}, name="saver0") saver1 = tf.train.Saver({"v1": v1}, name="saver1") tf.add_to_collection("savers", saver0) tf.add_to_collection("savers", saver1) tf.initialize_all_variables().run() # Saves to different checkpoints. saver0.save(sess, saver0_ckpt) saver1.save(sess, saver1_ckpt) # Generates MetaGraphDef. meta_graph_def = tf.train.export_meta_graph(filename)
tensorflow.Graph
6,405
import tensorflow as tf import tensorflow as tf def _smooth_l1_loss(y_true, y_pred): t = tf.abs(y_pred - y_true) return tf.where(t < 1, 0.5 * t ** 2, t - 0.5) def MultiBoxLoss(num_class=2, neg_pos_ratio=3): """multi-box loss""" def multi_box_loss(y_true, y_pred): num_batch = tf.shape(y_true)[0] num_prior = tf.shape(y_true)[1] loc_pred = tf.reshape(y_pred[0], [num_batch * num_prior, 4]) landm_pred = tf.reshape(y_pred[1], [num_batch * num_prior, 10]) class_pred = tf.reshape(y_pred[2], [num_batch * num_prior, num_class]) loc_true = tf.reshape(y_true[..., :4], [num_batch * num_prior, 4]) landm_true = tf.reshape(y_true[..., 4:14], [num_batch * num_prior, 10]) landm_valid = tf.reshape(y_true[..., 14], [num_batch * num_prior, 1]) class_true = tf.reshape(y_true[..., 15], [num_batch * num_prior, 1]) # define filter mask: class_true = 1 (pos), 0 (neg), -1 (ignore) # landm_valid = 1 (w landm), 0 (w/o landm)
tensorflow.shape
6,406
import tensorflow as tf end_logits = tf.contrib.layers.layer_norm(end_logits, begin_norm_axis=-1) end_logits = tf.layers.dense( end_logits,
tensorflow.layers.dense
6,407
import tensorflow as tf self.db_loss_fake_sum = tf.summary.scalar("db_loss_fake", self.D_B_loss_fake) self.da_loss_real_sum = tf.summary.scalar("da_loss_real", self.D_A_loss_real) self.da_loss_fake_sum = tf.summary.scalar("da_loss_fake", self.D_A_loss_fake) self.d_sum = tf.summary.merge( [self.loss_da_sum, self.da_loss_real_sum, self.da_loss_fake_sum, self.loss_db_sum, self.db_loss_real_sum, self.db_loss_fake_sum, self.loss_d_sum] ) trainable_variables = tf.trainable_variables() self.d_variables = [var for var in trainable_variables if 'discriminator' in var.name] self.g_variables = [var for var in trainable_variables if 'generator' in var.name] print ('Variable printing start :' ) for var in self.d_variables: print(var.name) self.test_image_A = tf.placeholder(tf.float32,[None, self.image_size,self.image_size,self.input_dim], name='test_A')
tensorflow.trainable_variables
6,408
import tensorflow as tf tf.app.flags.DEFINE_string('comment', '', 'Comment to leave by the model') tf.app.flags.DEFINE_float('test_max', 10000, 'max number of examples in the test set') tf.app.flags.DEFINE_integer('max_epochs', 0, 'Train for at most this number of epochs') tf.app.flags.DEFINE_integer('save_every', 250, 'Save model state every INT epochs') tf.app.flags.DEFINE_integer('eval_every', 25, 'Save encoding and visualizations every') tf.app.flags.DEFINE_integer('visualiza_max', 10, 'Max pairs to show on visualization') tf.app.flags.DEFINE_boolean('load_state', True, 'Load state if possible ') tf.app.flags.DEFINE_boolean('kill_depth', False, 'Ignore depth information') tf.app.flags.DEFINE_boolean('dev', False, 'Indicate development mode') tf.app.flags.DEFINE_integer('batch_size', 128, 'Batch size') tf.app.flags.DEFINE_float('learning_rate', 0.0001, 'Create visualization of ') tf.app.flags.DEFINE_float('blur', 5.0, 'Max sigma value for Gaussian blur applied to training set') tf.app.flags.DEFINE_boolean('new_blur', False, 'Use data augmentation as blur info') tf.app.flags.DEFINE_integer('blur_decrease', 10000, 'Decrease image blur every X steps') FLAGS = tf.app.flags.FLAGS slim = tf.contrib.slim AUTOENCODER = 'ae' PREDICTIVE = 'pred' DENOISING = 'noise'
tensorflow.app.flags.DEFINE_float
6,409
import tensorflow as tf num_enc_timesteps = 2 num_dec_timesteps = 3 def TestModel(seq2seq): with self.test_session(graph=tf.Graph()) as sess: tf.set_random_seed(111) random.seed(111) np.random.seed(111) enc_inp = [tf.constant(i + 1, tf.int32, shape=[batch_size])
tensorflow.set_random_seed
6,410
import tensorflow as tf saved_shapes = reader.get_variable_to_shape_map() model_names = tf.model_variables() # Used by tf.slim layers if not len(tf.model_variables()): model_names = tf.global_variables() # Fallback when slim is not used model_names = set([v.name.split(':')[0] for v in model_names]) checkpoint_names = set(saved_shapes.keys())
tensorflow.global_variables
6,411
import tensorflow as tf with tf.name_scope('image_preprocess'): if image.dtype.base_dtype != tf.float32: image = tf.cast(image, tf.float32) mean = [0.485, 0.456, 0.406] # rgb std = [0.229, 0.224, 0.225] if self.image_bgr: mean = mean[::-1] std = std[::-1] image_mean = tf.constant(mean, dtype=tf.float32) * 255. image_std = tf.constant(std, dtype=tf.float32) * 255. image = (image - image_mean) / image_std return image @staticmethod def compute_loss_and_error(logits, label, label_smoothing=0.): if label_smoothing != 0.: nclass = logits.shape[-1] label = tf.one_hot(label, nclass) if label.shape.ndims == 1 else label
tensorflow.constant
6,412
import tensorflow as tf y_pairs = tf.reshape(output, [-1,2]) # fold: 1 x n -> [n/2 x 2] pos_scores, neg_scores = tf.split(1, 2, y_pairs) # separate pairs hinge_losses = tf.nn.relu(margin - pos_scores + neg_scores) total_hinge_loss = tf.reduce_sum(hinge_losses) return output, total_hinge_loss
tensorflow.reduce_sum
6,413
from tensorflow.python.ops import math_ops appropriately and whose value matches `accuracy`. Raises: ValueError: If `predictions` and `labels` have mismatched shapes, or if `weights` is not `None` and its shape doesn't match `predictions`, or if either `metrics_collections` or `updates_collections` are not a list or tuple. """ predictions, labels = tensor_util.remove_squeezable_dimensions( predictions, labels) predictions.get_shape().assert_is_compatible_with(labels.get_shape()) if labels.dtype != predictions.dtype: predictions = math_ops.cast(predictions, labels.dtype) is_correct = math_ops.to_float(math_ops.equal(predictions, labels)) return streaming_mean(is_correct, weights, metrics_collections, updates_collections, name or 'accuracy') @deprecated_args(IGNORE_MASK_DATE, IGNORE_MASK_INSTRUCTIONS, 'ignore_mask') def streaming_precision(predictions, labels, ignore_mask=None, weights=None, metrics_collections=None, updates_collections=None, name=None): """Computes the precision of the predictions with respect to the labels.
tensorflow.python.ops.math_ops.cast
6,414
import tensorflow as tf res = render(Monitor(make_env(FLAGS.env.id, task_config=task), f"./{setting}/{taskname}-testtask{TEST_TASK_NUM}-slbo{T}/", force=True, video_callable=lambda episode_id: True), policy) print ('test_summary_slbo:', test_summary['slbo'][TEST_TASK_NUM]) if not test: np.save(f'{setting}/{taskname}.task{TASK_NUM}.saver', saver.state_dict()) np.save(f'{setting}/{taskname}.final.saver', saver.state_dict()) if init_generator and TASK_NUM==0: print ('finished init generator!') exit(0) pol_params, warm_params = tf.get_default_session().run([nn.utils.parameters_to_vector(policy.parameters()), nn.utils.parameters_to_vector(warmup_policy.parameters())]) print ("After SLBO, pol_params_norm:", np.linalg.norm(pol_params), "warm_params_norm:", np.linalg.norm(warm_params)) eval_rollout(runners['train'], policy, 'Use optimal policy to collect data from real env') optimal_collect_real = [] t3 = time.time() slbo_time = t3 - t2 evaluate(settings, 'post-slbo') logger.info(f'Warmup time = {warmup_time}, SLBO time = {slbo_time}')
tensorflow.get_default_session
6,415
import tensorflow as tf print_obj( "grouped_minibatch_stddev", "grouped_image", grouped_image ) # Find the mean of each group. # shape = ( # 1, # cur_batch_size / group_size, # image_size, # image_size, # num_channels # ) grouped_mean = tf.reduce_mean( input_tensor=grouped_image, axis=0, keepdims=True, name="grouped_mean" ) print_obj( "grouped_minibatch_stddev", "grouped_mean", grouped_mean ) # Center each group using the mean. # shape = ( # group_size, # cur_batch_size / group_size,
tensorflow.reduce_mean
6,416
import tensorflow as tf self._initial_state_name = util.with_prefix(self._name, "initial") self._final_state_name = util.with_prefix(self._name, "final") util.export_state_tuples(self._initial_state, self._initial_state_name) util.export_state_tuples(self._final_state, self._final_state_name) def import_ops(self): """Imports ops from collections.""" if self._is_training: self._train_op = tf.get_collection_ref("train_op")[0] self._lr = tf.get_collection_ref("lr")[0] self._new_lr = tf.get_collection_ref("new_lr")[0] self._lr_update = tf.get_collection_ref("lr_update")[0] rnn_params = tf.get_collection_ref("rnn_params") if self._cell and rnn_params: params_saveable = tf.contrib.cudnn_rnn.RNNParamsSaveable( self._cell, self._cell.params_to_canonical, self._cell.canonical_to_params, rnn_params, base_variable_scope="Model/RNN") tf.add_to_collection(tf.GraphKeys.SAVEABLE_OBJECTS, params_saveable) self._cost = tf.get_collection_ref(util.with_prefix(self._name, "cost"))[0]
tensorflow.get_collection_ref
6,417
import tensorflow as tf mask = tf.ones([cutout_size, cutout_size], dtype=tf.int32) start_x = tf.random.uniform(shape=(1,), minval=0, maxval=im_width, dtype=tf.int32) start_y = tf.random.uniform(shape=(1,), minval=0, maxval=im_height, dtype=tf.int32) mask = tf.pad(mask, [[cutout_size + start_y[0], im_height - start_y[0]], [cutout_size + start_x[0], im_width - start_x[0]]]) mask = mask[cutout_size: cutout_size + im_height, cutout_size: cutout_size + im_width] mask = tf.tile(tf.reshape(mask, (im_height, im_width, 1)), (1, 1, 3)) image = tf.where(tf.equal(mask, 0), x=image, y=tf.zeros_like(image)) return image def _add_drop_path(self, X, keep_prob): with tf.variable_scope('drop_path'): batch_size = tf.shape(X)[0] noise_shape = (batch_size, 1, 1, 1) random_tensor = keep_prob + tf.random_uniform(noise_shape, dtype=tf.float32)
tensorflow.zeros_like
6,418
from tensorflow.contrib import cluster_resolver as contrib_cluster_resolver if FLAGS.use_tpu and FLAGS.tpu_name: tpu_cluster_resolver = contrib_cluster_resolver.TPUClusterResolver(
tensorflow.contrib.cluster_resolver.TPUClusterResolver
6,419
import tensorflow as tf Args: x: Tensor, 4D BHWD input maps n_out: integer, depth of input maps phase_train: boolean tf.Variable, true indicates training phase scope: string, variable scope affn: whether to affn-transform outputs Return: normed: batch-normalized maps Ref: http://stackoverflow.com/questions/33949786/how-could-i-use-batch-normalization-in-tensorflow/33950177 """ name = 'batch_norm' with tf.variable_scope(name): phase_train = tf.convert_to_tensor(phase_train, dtype=tf.bool) n_out = int(x.get_shape()[3]) beta = tf.Variable(tf.constant(0.0, shape=[n_out], dtype=x.dtype), name=name+'/beta', trainable=True, dtype=x.dtype) gamma = tf.Variable(tf.constant(1.0, shape=[n_out], dtype=x.dtype), name=name+'/gamma', trainable=True, dtype=x.dtype) batch_mean, batch_var = tf.nn.moments(x, [0,1,2], name='moments') ema = tf.train.ExponentialMovingAverage(decay=0.9) def mean_var_with_update(): ema_apply_op = ema.apply([batch_mean, batch_var]) with tf.control_dependencies([ema_apply_op]):
tensorflow.convert_to_tensor
6,420
import tensorflow as tf with self.assertRaises(tf.errors.CancelledError): session.run(output) with self.assertRaisesRegexp(tf.errors.InvalidArgumentError, 'Output shape must have a batch dimension'): coord.join() def test_output_must_have_same_batch_dimension_size_as_input(self): with self.test_session() as session: @dynamic_batching.batch_fn def f(_): return tf.constant([1, 2, 3, 4]) output = f(tf.constant([1])) coord = tf.train.Coordinator() tf.train.start_queue_runners(coord=coord) with self.assertRaises(tf.errors.CancelledError): session.run(output) with self.assertRaisesRegexp( tf.errors.InvalidArgumentError, 'Output shape must have the same batch dimension as the input batch ' 'size. Expected: 1 Observed: 4'): coord.join()
tensorflow.constant
6,421
import tensorflow as tf if is_training: return_dict["start_log_probs"] = start_log_probs return_dict["end_log_probs"] = end_log_probs else: return_dict["start_top_log_probs"] = start_top_log_probs return_dict["start_top_index"] = start_top_index return_dict["end_top_log_probs"] = end_top_log_probs return_dict["end_top_index"] = end_top_index # an additional layer to predict answerability with tf.variable_scope("answer_class"): # get the representation of CLS cls_index = tf.one_hot(cls_index, seq_len, axis=-1, dtype=tf.float32) cls_feature = tf.einsum("lbh,bl->bh", output, cls_index) # get the representation of START start_p = tf.nn.softmax(start_logits_masked, axis=-1, name="softmax_start") start_feature = tf.einsum("lbh,bl->bh", output, start_p) # note(zhiliny): no dependency on end_feature so that we can obtain # one single `cls_logits` for each sample ans_feature = tf.concat([start_feature, cls_feature], -1) ans_feature = tf.layers.dense( ans_feature, xlnet_config.d_model,
tensorflow.einsum
6,422
import tensorflow as tf b = None if use_bias: b = tf.get_variable('b', [out_channel], initializer=b_init) if split == 1: conv = tf.nn.conv2d(inputdata, w, strides, padding, data_format=data_format) else: inputs = tf.split(inputdata, split, channel_axis) kernels = tf.split(w, split, 3) outputs = [tf.nn.conv2d(i, k, strides, padding, data_format=data_format) for i, k in zip(inputs, kernels)] conv = tf.concat(outputs, channel_axis) ret = tf.identity(tf.nn.bias_add(conv, b, data_format=data_format) if use_bias else conv, name=name) return ret
tensorflow.split
6,423
import tensorflow as tf sigma = tf.layers.dense(input_tf, num_action, tf.nn.softplus, kernel_initializer=w_init, name='sigma') # estimated variance return mu,sigma; class PolicyEstimator_MountainCarContinuous(): def __init__(self, entropy_beta=0.1, learning_rate=0.001, par_idx=0,scope="policy_estimator"): w_init = tf.random_normal_initializer(0.,.1); with tf.variable_scope(scope+"_"+str(par_idx)): # state, target and action self.state = tf.placeholder(tf.float32, [None,400], name="state") self.target = tf.placeholder(tf.float32,[None,1], name="target") self.a_his = tf.placeholder(tf.float32, [None, num_action], name="action_hist") # layers # wrap output self.mu = self.mu * action_bound[1]; self.sigma = self.sigma + 1e-5 self.normal_dist = tf.contrib.distributions.Normal(self.mu, self.sigma) self.action = tf.squeeze(self.normal_dist.sample(1),axis=0);
tensorflow.placeholder
6,424
import tensorflow as tf op = tf.assign(perturbed_var, var) perturb_ops.append(op) assert len(perturb_ops) == len(all_vars) return tf.group(*perturb_ops) # Set up functionality to re-compute `param_noise_scale`. This perturbs yet another copy # of the network and measures the effect of that perturbation in action space. If the perturbation # is too big, reduce scale of perturbation, otherwise increase. q_values_adaptive = q_func(observations_ph.get(), num_actions, scope="adaptive_q_func") perturb_for_adaption = perturb_vars(original_scope="q_func", perturbed_scope="adaptive_q_func") kl = tf.reduce_sum(tf.nn.softmax(q_values) * (tf.log(tf.nn.softmax(q_values)) - tf.log(tf.nn.softmax(q_values_adaptive))), axis=-1) mean_kl = tf.reduce_mean(kl) def update_scale(): with tf.control_dependencies([perturb_for_adaption]): update_scale_expr = tf.cond(mean_kl < param_noise_threshold, lambda: param_noise_scale.assign(param_noise_scale * 1.01), lambda: param_noise_scale.assign(param_noise_scale / 1.01), ) return update_scale_expr
tensorflow.nn.softmax
6,425
from tensorflow.contrib.eager.python import tfe def main(_): data_dir = os.path.join(FLAGS.dir, "data") train_data = load_dataset( data_dir=data_dir, url=SOURCE_TRAIN_URL, batch_size=FLAGS.batch_size) eval_data = load_dataset( data_dir=data_dir, url=SOURCE_TEST_URL, batch_size=FLAGS.batch_size) model = RNNColorbot( rnn_cell_sizes=FLAGS.rnn_cell_sizes, label_dimension=3, keep_prob=FLAGS.keep_probability) optimizer = tf.train.AdamOptimizer(learning_rate=FLAGS.learning_rate) if FLAGS.no_gpu or tfe.num_gpus() <= 0: print(tfe.num_gpus()) device = "/cpu:0" else: device = "/gpu:0" print("Using device %s." % device) log_dir = os.path.join(FLAGS.dir, "summaries") tf.gfile.MakeDirs(log_dir) train_summary_writer = tf.contrib.summary.create_file_writer( os.path.join(log_dir, "train"), flush_millis=10000) test_summary_writer = tf.contrib.summary.create_file_writer( os.path.join(log_dir, "eval"), flush_millis=10000, name="eval") with tf.device(device): for epoch in range(FLAGS.num_epochs):
tensorflow.contrib.eager.python.tfe.num_gpus
6,426
from tensorflow.python.ops import init_ops @property def output_size(self): return self._num_units def __call__(self, inputs, state, att_score): return self.call(inputs, state, att_score) def call(self, inputs, state, att_score=None): """Gated recurrent unit (GRU) with nunits cells.""" if self._gate_linear is None: bias_ones = self._bias_initializer if self._bias_initializer is None: bias_ones = init_ops.constant_initializer(1.0, dtype=inputs.dtype) with vs.variable_scope("gates"): # Reset gate and update gate. self._gate_linear = _Linear( [inputs, state], 2 * self._num_units, True, bias_initializer=bias_ones, kernel_initializer=self._kernel_initializer) value = math_ops.sigmoid(self._gate_linear([inputs, state])) r, u = array_ops.split(value=value, num_or_size_splits=2, axis=1)
tensorflow.python.ops.init_ops.constant_initializer
6,427
import tensorflow as tf Returns: List of delta tensors corresponding to the updates for each optimized variable. """ learning_rate = self.learning_rate.value() unperturbed_loss = fn_loss(**arguments) deltas = [tf.zeros_like(tensor=variable) for variable in variables] previous_perturbations = [tf.zeros_like(tensor=variable) for variable in variables] if self.unroll_loop: # Unrolled for loop for sample in range(self.num_samples): with tf.control_dependencies(control_inputs=deltas): perturbations = [ tf.random_normal(shape=util.shape(variable)) * learning_rate for variable in variables ] perturbation_deltas = [ pert - prev_pert for pert, prev_pert in zip(perturbations, previous_perturbations) ] applied = self.apply_step(variables=variables, deltas=perturbation_deltas) previous_perturbations = perturbations
tensorflow.control_dependencies
6,428
import tensorflow as tf per_example_loss = -tf.reduce_sum(one_hot_labels * log_probs, axis=-1)
tensorflow.reduce_sum
6,429
import tensorflow as tf # row contains the length repeated max_sequence_len times. lengths_transposed = tf.expand_dims(tf.to_int32(self.seq_lens), 1)
tensorflow.to_int32
6,430
import tensorflow as tf states = tf.TensorArray(dtype=tf.float32, size=time_steps) weights = tf.TensorArray(dtype=tf.float32, size=time_steps) attns = tf.TensorArray(dtype=tf.float32, size=time_steps) initial_symbol = inputs.read(0) # first symbol is BOS initial_input = embed(initial_symbol) initial_pos = tf.zeros([batch_size], tf.float32) initial_weights = tf.zeros(tf.shape(attention_states[align_encoder_id])[:2]) zero_context = tf.zeros(shape=tf.shape(attention_states[align_encoder_id][:,0])) # FIXME with tf.variable_scope('decoder_{}'.format(decoder.name)): initial_context, _ = look(0, initial_output, initial_input, pos=initial_pos, prev_weights=initial_weights,
tensorflow.zeros
6,431
import tensorflow as tf self.epsilon = epsilon def __call__(self,input_var,name=None,**kwargs) : if( input_var.shape.ndims > 2 ) : dims = tf.reduce_prod(tf.shape(input_var)[1:]) input_var = tf.reshape(input_var,[-1,dims]) def _init(): v_norm = tf.nn.l2_normalize(self.v,axis=0) t = tf.matmul(input_var,v_norm) mu,var = tf.nn.moments(t,axes=[0]) std = tf.sqrt(var+self.epsilon) return [tf.assign(self.g,1/std),tf.assign(self.b,-1.*mu/std)] require_init = tf.reduce_any(tf.is_nan(self.g)) init_ops = tf.cond(require_init,_init,lambda : [self.g,self.b]) with tf.control_dependencies(init_ops): w = tf.expand_dims(self.g,axis=0) * tf.nn.l2_normalize(self.v,axis=0) return tf.matmul(input_var,w)+self.b def get_variables(self): #TODO: self.v should be l2-normalized or not? / currently not. return {'v':self.v,'b':self.b,'g':self.g} class SymPadConv2d(object): #Resize and Convolution(upsacle by 2) def __init__(self,name,input_dim,output_dim, k_h=3,k_w=3,stddev=0.02) : assert k_h%2==1 and k_w%2==1, 'kernel size should be odd numbers to ensure exact size' with tf.variable_scope(name) :
tensorflow.cond
6,432
import tensorflow as tf lm_losses = tf.reduce_sum(lm_losses*M[:, 1:], 1)/tf.reduce_sum(M[:, 1:], 1) clf_h = tf.reshape(h, [-1, n_embd]) pool_idx = tf.cast(tf.argmax(tf.cast(tf.equal(X[:, :, 0], clf_token), tf.float32), 1), tf.int32) clf_h = tf.gather(clf_h, tf.range(shape_list(X)[0], dtype=tf.int32)*n_ctx+pool_idx) clf_h = tf.reshape(clf_h, [-1, 2, n_embd]) if train and clf_pdrop > 0: shape = shape_list(clf_h) shape[1] = 1 clf_h = tf.nn.dropout(clf_h, 1-clf_pdrop, shape) clf_h = tf.reshape(clf_h, [-1, n_embd]) clf_logits = clf(clf_h, 1, train=train) clf_logits = tf.reshape(clf_logits, [-1, 2]) clf_losses = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=clf_logits, labels=Y) return clf_logits, clf_losses, lm_losses def mgpu_train(*xs): gpu_ops = [] gpu_grads = [] xs = (tf.split(x, n_gpu, 0) for x in xs) for i, xs in enumerate(zip(*xs)): do_reuse = True if i > 0 else None with tf.device(assign_to_gpu(i, "/gpu:0")), tf.variable_scope(tf.get_variable_scope(), reuse=do_reuse): clf_logits, clf_losses, lm_losses = model(*xs, train=True, reuse=do_reuse) if lm_coef > 0: train_loss = tf.reduce_mean(clf_losses) + lm_coef*tf.reduce_mean(lm_losses) else: train_loss = tf.reduce_mean(clf_losses)
tensorflow.nn.sparse_softmax_cross_entropy_with_logits
6,433
import tensorflow as tf num_error_rate = tf.get_variable( 'num_error_rate', [], initializer=tf.constant_initializer(0.), trainable=False) batch_size_train = self.cnf['batch_size_train'] batch_size_val = self.cnf['batch_size_test'] self.end_points_G = self.model.generator([batch_size_train, 100], True, None, batch_size_val) if gpu_idx == 0: G_means = tf.reduce_mean(self.end_points_G['softmax'], 0, keep_dims=True) G_vars = tf.reduce_mean(tf.square(self.end_points_G['softmax'] - G_means), 0, keep_dims=True) G = tf.Print( self.end_points_G['softmax'], [tf.reduce_mean(G_means), tf.reduce_mean(G_vars)], "generator mean and average var", first_n=1) inputs_means = tf.reduce_mean(inputs, 0, keep_dims=True) inputs_vars = tf.reduce_mean(tf.square(inputs - inputs_means), 0, keep_dims=True) inputs = tf.Print( inputs, [tf.reduce_mean(inputs_means), tf.reduce_mean(inputs_vars)], "image mean and average var", first_n=1) joint = tf.concat([inputs, G], 0)
tensorflow.reduce_mean
6,434
import tensorflow as tf img_shape = inputs_list[i][-2:] h_crop = tf.reduce_max(img_shape[0]) w_crop = tf.reduce_max(img_shape[1]) img = tf.image.crop_to_bounding_box(image=img, offset_height=0, offset_width=0, target_height=tf.cast(h_crop, tf.int32), target_width=tf.cast(w_crop, tf.int32)) outputs = fcos.build_whole_detection_network(input_img_batch=img, gtboxes_batch_h=gtboxes_and_label_h, gtboxes_batch_r=gtboxes_and_label_q, gpu_id=i) gtboxes_in_img_q = self.drawer.draw_boxes_with_categories(
tensorflow.cast
6,435
import tensorflow as tf bounds=(0,1)): (clip_min, clip_max)=bounds grad, = tf.gradients(loss, x) if ord == 1: red_ind = list(range(1, len(x.get_shape()))) avoid_zero_div = 1e-8 avoid_nan_norm = tf.maximum(avoid_zero_div, reduce_sum(tf.abs(grad), reduction_indices=red_ind, keepdims=True)) normalized_grad = old_div(grad, avoid_nan_norm) elif ord == 2: red_ind = list(range(1, len(x.get_shape()))) avoid_zero_div = 1e-8 square = tf.maximum(avoid_zero_div, reduce_sum(tf.square(grad), reduction_indices=red_ind,
tensorflow.abs
6,436
from tensorflow.python.ops import array_ops # Expand dims to produce [D1, ... DN, k, 1] tensor. This gives us a separate # prediction for each k, so we can calculate separate true positive values # for each k. predictions_idx_per_k = array_ops.expand_dims( predictions_idx, -1, name='predictions_idx_per_k') # Replicate labels k times to produce [D1, ... DN, k, num_labels] tensor.
tensorflow.python.ops.array_ops.expand_dims
6,437
import tensorflow as tf update_eps_ph = tf.placeholder(tf.float32, (), name="update_eps") eps = tf.get_variable("eps", (), initializer=tf.constant_initializer(0.0)) q_func_results = q_func(observations_ph.get(), num_actions, scope="q_func") q_values = q_func_results['q'] s_value = q_func_results['s'] a_values = q_func_results['a'] deterministic_actions = tf.argmax(q_values, axis=1) batch_size = tf.shape(observations_ph.get())[0] random_actions = tf.random_uniform(tf.stack([batch_size]), minval=0, maxval=num_actions, dtype=tf.int64) chose_random = tf.random_uniform(tf.stack([batch_size]), minval=0, maxval=1, dtype=tf.float32) < eps stochastic_actions = tf.where(chose_random, random_actions, deterministic_actions) output_actions = tf.cond(stochastic_ph, lambda: stochastic_actions, lambda: deterministic_actions) update_eps_expr = eps.assign(tf.cond(update_eps_ph >= 0, lambda: update_eps_ph, lambda: eps)) act = U.function(inputs=[observations_ph, stochastic_ph, update_eps_ph], outputs=[output_actions, q_values, s_value, a_values, update_eps_expr], givens={update_eps_ph: test_epsilon, stochastic_ph: False}, updates=[update_eps_expr]) return act
tensorflow.stack
6,438
import tensorflow as tf res = sess.run([mem]) self.assertEqual((2, 2), res[0].shape) def testAttentionDecoderStateIsTuple(self): with self.test_session() as sess: with tf.variable_scope("root", initializer=tf.constant_initializer(0.5)): cell = tf.nn.rnn_cell.BasicLSTMCell(2, state_is_tuple=True) cell = tf.nn.rnn_cell.MultiRNNCell(cells=[cell] * 2, state_is_tuple=True) inp = [tf.constant(0.5, shape=[2, 2])] * 2 enc_outputs, enc_state = tf.nn.rnn(cell, inp, dtype=tf.float32) attn_states = tf.concat(1, [tf.reshape(e, [-1, 1, cell.output_size]) for e in enc_outputs]) dec_inp = [tf.constant(0.4, shape=[2, 2])] * 3 dec, mem = tf.nn.seq2seq.attention_decoder( dec_inp, enc_state, attn_states, cell, output_size=4) sess.run([tf.global_variables_initializer()]) res = sess.run(dec) self.assertEqual(3, len(res)) self.assertEqual((2, 4), res[0].shape)
tensorflow.reshape
6,439
import tensorflow as tf Returns ------- A tuple length of 3, (normalized_tensor, mean, variance). """ mean, var = tf.nn.moments( x, reduction_axes, shift=None, name=None, keep_dims=False) if sorted(reduction_axes) == range(ndim(x))[:-1]: normed = tf.nn.batch_normalization(x, mean, var, beta, gamma, epsilon) else: # need broadcasting target_shape = [] for axis in range(get_ndim(x)): if axis in reduction_axes: target_shape.append(1) else: target_shape.append(tf.shape(x)[axis]) target_shape = stack(target_shape) broadcast_mean = tf.reshape(mean, target_shape) broadcast_var = tf.reshape(var, target_shape) broadcast_gamma = tf.reshape(gamma, target_shape) broadcast_beta = tf.reshape(beta, target_shape) normed = tf.nn.batch_normalization(x, broadcast_mean, broadcast_var, broadcast_beta, broadcast_gamma, epsilon) return normed, mean, var def ones(shape, dtype=None, name=None): """Instantiates an all-ones tensor variable and returns it.
tensorflow.shape
6,440
import tensorflow as tf embedding = config.embeddings.add() # Specifiy the embedding variable and the metadata embedding.tensor_name = embedding_name embedding.metadata_path = path_to_meta # Project the embeddings to space dimensions for visualization tf.contrib.tensorboard.plugins.projector.visualize_embeddings(summary_writer, config) def add_train_stats(model, hparams): with tf.variable_scope("stats") as scope: for i in range(hparams.tacotron_num_gpus): tf.summary.histogram("mel_outputs %d" % i, model.tower_mel_outputs[i]) tf.summary.histogram("mel_targets %d" % i, model.tower_mel_targets[i]) tf.summary.scalar("before_loss", model.before_loss) tf.summary.scalar("after_loss", model.after_loss) if hparams.predict_linear: tf.summary.scalar("linear_loss", model.linear_loss) for i in range(hparams.tacotron_num_gpus): tf.summary.histogram("mel_outputs %d" % i, model.tower_linear_outputs[i]) tf.summary.histogram("mel_targets %d" % i, model.tower_linear_targets[i]) tf.summary.scalar("regularization_loss", model.regularization_loss)
tensorflow.summary.histogram
6,441
import tensorflow as tf # Runs train_op. train_op = optimizer.minimize(loss) sess.run(train_op) def testGraphExtension(self): self._testGraphExtensionSave() self._testGraphExtensionRestore() def testStrippedOpListDef(self): with self.test_session(): # Creates a graph. v0 = tf.Variable(0.0) var = tf.Variable(10.0) tf.add(v0, var) @function.Defun(x=tf.float32) def minus_one(x): return x - 1 minus_one(tf.identity(v0)) save = tf.train.Saver({"v0": v0}) tf.initialize_all_variables() # Generates MetaGraphDef. meta_graph_def = save.export_meta_graph() ops = [o.name for o in meta_graph_def.meta_info_def.stripped_op_list.op] self.assertEqual(ops, ["Add", "Assign", "Const", "Identity", "NoOp", "RestoreSlice", "SaveSlices", "Sub", "Variable"])
tensorflow.add
6,442
from tensorflow.compat.v1 import ConfigProto, InteractiveSession import pickle from tensorflow.compat.v1 import ConfigProto, InteractiveSession import tensorflow as tf from speech_utils.ACRNN.tf.model_utils import train config = ConfigProto(log_device_placement=True) config.gpu_options.allow_growth = True session = tf.Session(config=config).as_default() def main(args): # Verify
tensorflow.compat.v1.ConfigProto
6,443
from tensorflow.python.framework import ops recall = compute_recall(true_positives, false_negatives, 'value') with ops.control_dependencies([true_positives_update_op, false_negatives_update_op]): update_op = compute_recall(true_positives, false_negatives, 'update_op') if metrics_collections: ops.add_to_collections(metrics_collections, recall) if updates_collections: ops.add_to_collections(updates_collections, update_op) return recall, update_op
tensorflow.python.framework.ops.add_to_collections
6,444
import tensorflow as tf # dtype=tf.float32, # initializer=tf.contrib.layers.xavier_initializer(), # regularizer=tf.contrib.layers.l2_regularizer(self.params["regularizer_rate"]), # trainable=True # ) embeddings = tf.nn.embedding_lookup(embedding_variable, word_ids) return embeddings def dropout_layer(self, data): training = self.mode == tf.estimator.ModeKeys.TRAIN output = tf.layers.dropout(data, rate=self.params["dropout"], training=training) return output def layer_normalization_layer(self, data): output = tf.contrib.layers.layer_norm(data) return output def dense_layer(self, data, num_tags): logits = tf.layers.dense(data, num_tags)
tensorflow.layers.dropout
6,445
import tensorflow as tf sigma = tf.get_variable(name='pi_sigma', shape=self.a_dim, initializer=tf.constant_initializer(0.5)) sigma = tf.clip_by_value(sigma, 0.0, 1.0) norm_dist = tf.distributions.Normal(loc=mu * self.a_bound, scale=sigma) params = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope=name) return norm_dist, params
tensorflow.get_collection
6,446
import tensorflow as tf batch_size = tf.cast(tf.shape(pred)[0], tf.float32) loss_val = tf.sqrt(2 * tf.nn.l2_loss(pred - labels)) / batch_size return loss_val def pullaway_loss(embeddings, name='pullaway_loss'): """Pull Away loss calculation. Args: embeddings: The embeddings to be orthogonalized for varied faces. Shape [batch_size, embeddings_dim] Return: pull away term loss """ with tf.name_scope(name): norm = tf.sqrt(tf.reduce_sum(tf.square(embeddings), 1, keep_dims=True)) normalized_embeddings = embeddings / norm similarity = tf.matmul(normalized_embeddings, normalized_embeddings, transpose_b=True) batch_size = tf.cast(tf.shape(embeddings)[0], tf.float32) pt_loss = (tf.reduce_sum(similarity) - batch_size) / \ (batch_size * (batch_size - 1)) return pt_loss def log_sum_exp(x): """numerically stable log_sum_exp implementation that prevents overflow.""" axis = len(x.get_shape()) - 1 m = tf.reduce_max(x, axis)
tensorflow.name_scope
6,447
import tensorflow as tf shift=shift, name="batch_norm_ss") mean, variance = tf.nn.normalize_moments(counts, shifted_sum_x, shifted_sum_x2, shift, name="normalize_moments") return mean, variance def build_moving_stats(): return ( tf.identity(self._moving_mean), tf.identity(self._moving_variance), ) mean, variance = utils.smart_cond( use_batch_stats, build_batch_stats, build_moving_stats, ) return mean, variance def _build_statistics_second_moment(self, input_batch,
tensorflow.identity
6,448
import tensorflow as tf :param decoder_states: internal states of the decoder, tensor of shape (batch_size, time_steps, state_size) :param reward: reward for each time step, tensor of shape (batch_size, time_steps) :return: reward - computed baseline, tensor of shape (batch_size, time_steps) """ # batch_size = tf.shape(decoder_states)[0] # time_steps = tf.shape(decoder_states)[1] # state_size = decoder_states.get_shape()[2] # states = tf.reshape(decoder_states, shape=tf.stack([batch_size * time_steps, state_size])) baseline = dense(tf.stop_gradient(decoder_states), units=1, activation=None, name='reward_baseline', kernel_initializer=tf.constant_initializer(0.01)) baseline = tf.squeeze(baseline, axis=2) # baseline = tf.reshape(baseline, shape=tf.stack([batch_size, time_steps])) return reward - baseline def baseline_loss(rewards, weights, average_across_timesteps=False, average_across_batch=True): """
tensorflow.stop_gradient
6,449
import tensorflow as tf return weighted_average, weights def no_attention(state, hidden_states, *args, **kwargs): batch_size = tf.shape(state)[0] weighted_average = tf.zeros(shape=tf.stack([batch_size, 0])) weights = tf.zeros(shape=[batch_size, tf.shape(hidden_states)[1]]) return weighted_average, weights def average_attention(hidden_states, encoder_input_length, *args, **kwargs): # attention with fixed weights (average of all hidden states) lengths = tf.to_float(tf.expand_dims(encoder_input_length, axis=1)) mask = tf.sequence_mask(encoder_input_length, maxlen=tf.shape(hidden_states)[1]) weights = tf.to_float(mask) / lengths weighted_average = tf.reduce_sum(hidden_states * tf.expand_dims(weights, axis=2), axis=1) return weighted_average, weights def last_state_attention(hidden_states, encoder_input_length, *args, **kwargs): weights = tf.one_hot(encoder_input_length - 1, tf.shape(hidden_states)[1]) weights = tf.to_float(weights) weighted_average = tf.reduce_sum(hidden_states * tf.expand_dims(weights, axis=2), axis=1) return weighted_average, weights
tensorflow.expand_dims
6,450
import tensorflow as tf 'Optimizer to use: momentum or sgd or rmsprop') tf.flags.DEFINE_float('learning_rate', None,
tensorflow.flags.DEFINE_float
6,451
import tensorflow as tf if not phase_train: if FLAGS.forward_only: all_logits = tf.concat(all_logits, 0) fetches = [all_logits] + enqueue_ops else: all_top_1_ops = tf.reduce_sum(all_top_1_ops) all_top_5_ops = tf.reduce_sum(all_top_5_ops) fetches = [all_top_1_ops, all_top_5_ops] + enqueue_ops return (enqueue_ops, fetches) extra_nccl_ops = [] apply_gradient_devices, gradient_state = ( self.variable_mgr.preprocess_device_grads(device_grads))
tensorflow.reduce_sum
6,452
import tensorflow as tf if self.config.l2_norm is not None: self.logger.info("applying l2 loss") variables = tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES) l2_loss = tf.contrib.layers.apply_regularization(regularizer, variables) self.loss += l2_loss
tensorflow.contrib.layers.apply_regularization
6,453
import tensorflow as tf else: q = tf.nn.softmax(q_logits) p = tf.nn.softmax(p_logits) kl = tf.reduce_sum(q * (tf.log(q) - tf.log(p)), 1) num_labels = tf.reduce_sum(weights) num_labels = tf.where(tf.equal(num_labels, 0.), 1., num_labels) kl.get_shape().assert_has_rank(2) weights.get_shape().assert_has_rank(1) loss = tf.identity(tf.reduce_sum(tf.expand_dims(weights, -1) * kl) / num_labels, name='kl') return loss def cross_entropy_sequence_loss(logits, targets, sequence_length): """Calculates the per-example cross-entropy loss for a sequence of logits and masks out all losses passed the sequence length. Args: logits: Logits of shape `[T, B, vocab_size]`
tensorflow.expand_dims
6,454
import tensorflow as tf def conv3d(layer_name, x, out_channels, kernel_size=[1,3,3], strides=[1,1,1,1,1], data_format='NDHWC', is_pretrain=True): ''' Convolution 3D op wrapper, use RELU activation after convolution ''' in_channels = x.get_shape()[-1].value with tf.variable_scope(layer_name): w = tf.get_variable(name='weight', trainable=is_pretrain, shape=[kernel_size[0],kernel_size[1],kernel_size[2],in_channels,out_channels], initializer=tf.contrib.layers.xavier_initializer()) b = tf.get_variable(name='bias', trainable=is_pretrain, shape=[out_channels], initializer=tf.contrib.layers.xavier_initializer()) x = tf.nn.conv3d(x, w, strides=strides, padding='SAME', data_format=data_format, name='conv3d') x = tf.nn.bias_add(x, b, name='bias_add') x = tf.nn.relu(x, name='relu') return x
tensorflow.contrib.layers.xavier_initializer
6,455
import tensorflow as tf elif norm == 'G': X = tf.contrib.layers.group_norm(X, groups=16, scope=scope, reuse=reuse) if dropout > 0.0: X = tf.layers.dropout(X, dropout, training=is_train) if slope < 1.0: X = tf.nn.leaky_relu(X, slope) if slope > 0.0 else tf.nn.relu(X) return X def decoder_conf(name, X, filter, f_size, scale, norm, reuse, is_train, dropout=0.0, stddev=-1.0, slope=0.00, use_bias=True): with tf.variable_scope(name) as scope: if scale > 1: X = self.t_conv(name + '_upsample', X, filter, scale, scale, (not norm) and use_bias, "VALID", stddev) else: X = self.t_conv(name + '_deconf', X, filter, f_size, 1, (not norm) and use_bias, "VALID", stddev) if norm == 'I': X = tf.contrib.layers.instance_norm(X, scope=scope, reuse=reuse) elif norm == 'B': X = tf.layers.batch_normalization(X, reuse=reuse, training=is_train, name=name) elif norm == 'G': X = tf.contrib.layers.group_norm(X, groups=16, scope=scope, reuse=reuse)
tensorflow.variable_scope
6,456
import tensorflow as tf weights=weights) loss_dict = { 'localization_loss': tf.reduce_sum(location_losses), 'classification_loss': tf.reduce_sum(cls_losses), }
tensorflow.reduce_sum
6,457
import tensorflow as tf keys_to_features = { 'image/encoded': tf.FixedLenFeature((), tf.string, default_value=''), 'image/format': tf.FixedLenFeature((), tf.string, default_value='jpeg'), 'image/height': tf.FixedLenFeature([1], tf.int64), 'image/width': tf.FixedLenFeature([1], tf.int64), 'image/channels': tf.FixedLenFeature([1], tf.int64), 'image/shape': tf.FixedLenFeature([3], tf.int64), 'image/object/bbox/xmin': tf.VarLenFeature(dtype=tf.float32), 'image/object/bbox/ymin': tf.VarLenFeature(dtype=tf.float32), 'image/object/bbox/xmax': tf.VarLenFeature(dtype=tf.float32), 'image/object/bbox/ymax': tf.VarLenFeature(dtype=tf.float32), 'image/object/bbox/label': tf.VarLenFeature(dtype=tf.int64), 'image/object/bbox/difficult': tf.VarLenFeature(dtype=tf.int64), 'image/object/bbox/truncated': tf.VarLenFeature(dtype=tf.int64), } items_to_handlers = { 'image': slim.tfexample_decoder.Image('image/encoded', 'image/format'), 'shape': slim.tfexample_decoder.Tensor('image/shape'),
tensorflow.VarLenFeature
6,458
import tensorflow as tf m = mlow + mhigh m += tf.to_float(idx >= encoder_input_length) mask = tf.to_float(tf.equal(m, 0.0)) e = compute_energy(hidden_states, state, encoder, input_length=encoder_input_length, **kwargs) weights = softmax(e, mask=mask) if encoder.attn_window_size > 0: sigma = encoder.attn_window_size / 2 numerator = -tf.pow((idx - pos), tf.convert_to_tensor(2, dtype=tf.float32)) div = tf.truediv(numerator, 2 * sigma ** 2) weights *= tf.exp(div) # result of the truncated normal distribution # normalize to keep a probability distribution # weights /= (tf.reduce_sum(weights, axis=1, keep_dims=True) + 10e-12) weighted_average = tf.reduce_sum(tf.expand_dims(weights, axis=2) * hidden_states, axis=1) return weighted_average, weights def attention(encoder, scope=None, **kwargs): attention_functions = { 'global': global_attention, 'local': local_attention,
tensorflow.exp
6,459
import tensorflow as tf image_height = image_shape[0] image_width = image_shape[1] crop_size_assert = tf.Assert( tf.logical_and( tf.greater_equal(image_height, crop_height), tf.greater_equal(image_width, crop_width)), ['Crop size greater than the image size.'])
tensorflow.greater_equal
6,460
import tensorflow as tf # AC net def build_anet(self, state_in, name, reuse=False): reg = tf.contrib.layers.l2_regularizer(1e-3) with tf.variable_scope(name, reuse=reuse):
tensorflow.contrib.layers.l2_regularizer
6,461
import tensorflow as tf enable_pretrain = tf.cast( tf.greater_equal(global_step, FLAGS.first_pretrain_steps), tf.float32) loss = src_loss * tf.stop_gradient(loss_weights) * enable_pretrain loss += dst_loss + l2_loss
tensorflow.stop_gradient
6,462
import tensorflow as tf f1 = tf.reduce_sum(half(masked, 0), 2) / tf.reduce_sum(half(mask, 0)) f2 = tf.reduce_sum(half(masked, 1), 2) / tf.reduce_sum(half(mask, 1)) return tf.concat([x, f1, f2], 1) def batch_norm(x, train, name, decay=0.99, epsilon=1e-5): shape = x.get_shape().as_list() with tf.variable_scope(name): beta = tf.get_variable('beta', [shape[-1]], initializer=tf.constant_initializer(0.)) gamma = tf.get_variable('gamma', [shape[-1]], initializer=tf.random_normal_initializer(1., 0.02)) pop_mean = tf.get_variable('pop_mean', [shape[-1]], initializer=tf.constant_initializer(0.), trainable=False) pop_var = tf.get_variable('pop_var', [shape[-1]], initializer=tf.constant_initializer(1.), trainable=False) if pop_mean not in tf.moving_average_variables(): tf.add_to_collection(tf.GraphKeys.MOVING_AVERAGE_VARIABLES, pop_mean) tf.add_to_collection(tf.GraphKeys.MOVING_AVERAGE_VARIABLES, pop_var) def func1(): # execute at training time batch_mean, batch_var = tf.nn.moments(x, range(len(shape) - 1))
tensorflow.constant_initializer
6,463
import tensorflow as tf zs = entropy_bottleneck.decompress(z_strings, z_min_v, z_max_v, z_shape, z_shape[-1]) print("Entropy Decoder (Hyper)") def loop_hyper_deocder(z): z = tf.expand_dims(z, 0) loc, scale = hyper_decoder(z) return tf.squeeze(loc, [0]), tf.squeeze(scale, [0]) locs, scales = tf.map_fn(loop_hyper_deocder, zs, dtype=(tf.float32, tf.float32), parallel_iterations=1, back_prop=False) lower_bound = 1e-9# TODO scales = tf.maximum(scales, lower_bound) print("Hyper Decoder")
tensorflow.squeeze
6,464
from tensorflow.python.ops import init_ops return self._num_units def __call__(self, inputs, state, att_score): return self.call(inputs, state, att_score) def call(self, inputs, state, att_score=None): """Gated recurrent unit (GRU) with nunits cells.""" if self._gate_linear is None: bias_ones = self._bias_initializer if self._bias_initializer is None: bias_ones = init_ops.constant_initializer(1.0, dtype=inputs.dtype) with vs.variable_scope("gates"): # Reset gate and update gate. self._gate_linear = _Linear( [inputs, state], 2 * self._num_units, True, bias_initializer=bias_ones, kernel_initializer=self._kernel_initializer)
tensorflow.python.ops.init_ops.constant_initializer
6,465
import tensorflow as tf # move to numpy cand_feats = cand_feats.numpy() n_cands = n_cands.numpy() # feature normalization cand_feats = (cand_feats - policy['feat_shift']) / policy['feat_scale'] pred_scores = policy['model'].predict(cand_feats) # move back to TF pred_scores = tf.convert_to_tensor(pred_scores.reshape((1, -1)), dtype=tf.float32) # padding pred_scores = padding(pred_scores, n_cands) true_scores = padding(tf.reshape(cand_scores, (1, -1)), n_cands) true_bestscore = tf.reduce_max(true_scores, axis=-1, keepdims=True) assert all(true_bestscore.numpy() == np.take_along_axis(true_scores.numpy(), best_cands.numpy().reshape((-1, 1)), axis=1)) kacc = [] for k in top_k: pred_top_k = tf.nn.top_k(pred_scores, k=k)[1].numpy() pred_top_k_true_scores = np.take_along_axis(true_scores.numpy(), pred_top_k, axis=1) kacc.append(np.mean(np.any(pred_top_k_true_scores == true_bestscore.numpy(), axis=1))) kacc = np.asarray(kacc) batch_size = int(n_cands.shape[0]) mean_kacc += kacc * batch_size n_samples_processed += batch_size
tensorflow.reduce_max
6,466
from tensorflow.python.ops import array_ops 0, (ones[:dim], (multiple,), ones[dim:]), name='multiples') return array_ops.tile(expanded, tile_multiples, name=scope)
tensorflow.python.ops.array_ops.tile
6,467
import tensorflow as tf 'Output shape must have a batch dimension'): coord.join() def test_output_must_have_same_batch_dimension_size_as_input(self): with self.test_session() as session: @dynamic_batching.batch_fn def f(_): return tf.constant([1, 2, 3, 4]) output = f(tf.constant([1])) coord = tf.train.Coordinator() tf.train.start_queue_runners(coord=coord) with self.assertRaises(tf.errors.CancelledError): session.run(output) with self.assertRaisesRegexp( tf.errors.InvalidArgumentError, 'Output shape must have the same batch dimension as the input batch ' 'size. Expected: 1 Observed: 4'): coord.join()
tensorflow.train.Coordinator
6,468
import tensorflow as tf #theta_tensor = tf.get_default_graph().get_tensor_by_name('spt_trans_theta') cls_score, cls_prob, bbox_pred, rois = sess.run([net.get_output('cls_score'), net.get_output('cls_prob'), net.get_output('bbox_pred'), net.get_output('rois')], feed_dict=feed_dict, options=run_options, run_metadata=run_metadata) if (save_vis_dir is not None and os.path.exists(save_vis_dir)): # first get the weights out with tf.variable_scope('conv5_3', reuse=True) as scope: conv5_3_weights = tf.get_variable("weights") conv5_3_weights_np, conv5_3_features, st_pool_features =\ sess.run([conv5_3_weights, net.get_output('conv5_3'), net.get_output('pool_5')], feed_dict=feed_dict, options=run_options, run_metadata=run_metadata) np.save(os.path.join(save_vis_dir, '%s_conv5_3_w.npy' % img_name), conv5_3_weights_np) np.save(os.path.join(save_vis_dir, '%s_conv5_3_f.npy' % img_name), conv5_3_features) np.save(os.path.join(save_vis_dir, '%s_st_pool_f.npy' % img_name), st_pool_features)
tensorflow.get_variable
6,469
import tensorflow as tf if monitorSession: # MonitoredSession # this will restore all the variables from the latest checkpoint if it exists self._fix_checkpoint_abs_to_rel(self._checkpoint_dir) # need to ensure checkpoint has relative path saved chiefsess_creator = tf.train.ChiefSessionCreator(config=sess_config, checkpoint_dir=self._checkpoint_dir) if self._restore_chkptfile is not None: self._network.init_saver() # this is restoring variables self.sess = tf.train.MonitoredSession(session_creator=chiefsess_creator, hooks=self.hooks) # Restore from some checkpoint if self._restore_chkptfile is not None: raw_sess = self.get_raw_session() if raw_sess.run(self.global_step) == 0: self._network.restore(raw_sess, self._restore_chkptfile) else: self.sess = tf.Session(config=sess_config) #all_variables = tf.get_collection_ref(tf.GraphKeys.GLOBAL_VARIABLES) #self.sess.run(tf.variables_initializer(all_variables))
tensorflow.train.MonitoredSession
6,470
import tensorflow as tf def squeeze_nxn(input_, n_factor=2): """Squeezing operation: reshape to convert space to channels.""" if isinstance(input_, (float, int)): return input_ shape = input_.get_shape().as_list() batch_size = shape[0] height = shape[1] width = shape[2] channels = shape[3] if height % n_factor != 0: raise ValueError("Height not divisible by %d." % n_factor) if width % n_factor != 0: raise ValueError("Width not divisible by %d." % n_factor) res = tf.reshape( input_, [batch_size, height // n_factor, n_factor, width // n_factor, n_factor, channels]) res = tf.transpose(res, [0, 1, 3, 5, 2, 4]) res = tf.reshape( res, [batch_size, height // n_factor, width // n_factor, channels * n_factor * n_factor]) return res
tensorflow.reshape
6,471
import tensorflow as tf self.outputs = prev_layer.outputs # self.all_layers = list(layer.all_layers) # self.all_params = list(layer.all_params) # self.all_drop = dict(layer.all_drop) else: self.inputs = prev_layer.outputs logging.info("GaussianNoiseLayer %s: mean:%f stddev:%f" % (self.name, mean, stddev)) with tf.variable_scope(name): # noise = np.random.normal(0.0 , sigma , tf.to_int64(self.inputs).get_shape()) noise = tf.random_normal(shape=self.inputs.get_shape(), mean=mean, stddev=stddev, seed=seed) self.outputs = self.inputs + noise # self.all_layers = list(layer.all_layers) # self.all_params = list(layer.all_params) # self.all_drop = dict(layer.all_drop)
tensorflow.variable_scope
6,472
import tensorflow as tf return pt_loss def log_sum_exp(x): """numerically stable log_sum_exp implementation that prevents overflow.""" axis = len(x.get_shape()) - 1 m = tf.reduce_max(x, axis) m2 = tf.reduce_max(x, axis, keep_dims=True) return m + tf.log(tf.reduce_sum(tf.exp(x - m2), axis)) def log_prob_from_logits(x):
tensorflow.reduce_max
6,473
import tensorflow as tf print(f"Got {len(sync_lp_observations)} observations in {sync_lp_time:.2f}s") # %% [markdown] # ## Comparison # To compare outcomes of sync and async runs, let's plot their respective regrets side by side, and print out the running time. For this toy problem we expect async scenario to run a little bit faster on machines with multiple CPU. # %% from util.plotting import plot_regret import matplotlib.pyplot as plt fig, ax = plt.subplots(1, 2) sync_lp_min_idx = tf.squeeze(tf.argmin(sync_lp_observations, axis=0)) async_lp_min_idx = tf.squeeze(tf.argmin(async_lp_observations, axis=0)) plot_regret( sync_lp_observations.numpy(), ax[0], num_init=len(initial_data), idx_best=sync_lp_min_idx ) ax[0].set_yscale("log") ax[0].set_ylabel("Regret") ax[0].set_ylim(0.0000001, 100) ax[0].set_xlabel("# evaluations") ax[0].set_title(f"Sync LP, {len(sync_lp_observations)} points, time {sync_lp_time:.2f}") plot_regret(
tensorflow.argmin
6,474
import tensorflow as tf name="pool") pooled_outputs.append(pooled) with tf.name_scope("preFc"): # combine all pooled outputs total_filters = num_filter * len(filter_list) # concat all the pooled weights H_pool = tf.concat(pooled_outputs, 3) #flatten it for fully connected layer H_pool_flat = tf.reshape(H_pool, [-1, total_filters]) with tf.name_scope("dropout"): H_drop = tf.nn.dropout(H_pool_flat, keep_prob = keep_prob) # Final (unnormalized) layer with tf.name_scope("output"): W = tf.get_variable("W", shape=[total_filters, nb_classes], initializer=tf.contrib.layers.xavier_initializer()) # add final layer bias b = tf.Variable(tf.constant(0.1, shape=[nb_classes]), name="b") # calc l2 losses l2_loss += tf.nn.l2_loss(W) l2_loss += tf.nn.l2_loss(b)
tensorflow.nn.dropout
6,475
import tensorflow as tf channels = inp.get_shape().as_list()[3] with tf.variable_scope(name): moving_mean = get_variable("mean", shape=[channels], dtype=tf.float32, initializer=tf.constant_initializer(0.0), trainable=False) moving_variance = get_variable("var", shape=[channels], dtype=tf.float32, initializer=tf.constant_initializer(1.0), trainable=False) offset = get_variable("offset", shape=[channels], dtype=tf.float32, initializer=tf.constant_initializer(0.0)) scale = get_variable("scale", shape=[channels], dtype=tf.float32, initializer=tf.constant_initializer(1.0), regularizer=tf.nn.l2_loss)
tensorflow.constant_initializer
6,476
import tensorflow as tf def get_span_emb(self, head_emb, context_outputs, span_starts, span_ends): span_emb_list = [] span_start_emb = tf.gather(context_outputs, span_starts) # [k, emb] span_emb_list.append(span_start_emb) span_end_emb = tf.gather(context_outputs, span_ends) # [k, emb] span_emb_list.append(span_end_emb) span_width = 1 + span_ends - span_starts # [k] if self.config["use_features"]: span_width_index = span_width - 1 # [k] span_width_emb = tf.gather(tf.get_variable("span_width_embeddings", [self.config["max_span_width"], self.config["feature_size"]]), span_width_index) # [k, emb] span_width_emb = tf.nn.dropout(span_width_emb, self.dropout) span_emb_list.append(span_width_emb) if self.config["model_heads"]: span_indices = tf.expand_dims(tf.range(self.config["max_span_width"]), 0) + tf.expand_dims(span_starts, 1) # [k, max_span_width] span_indices = tf.minimum(util.shape(context_outputs, 0) - 1, span_indices) # [k, max_span_width] span_text_emb = tf.gather(head_emb, span_indices) # [k, max_span_width, emb] with tf.variable_scope("head_scores"): self.head_scores = util.projection(context_outputs, 1) # [num_words, 1] span_head_scores = tf.gather(self.head_scores, span_indices) # [k, max_span_width, 1] span_mask = tf.expand_dims(tf.sequence_mask(span_width, self.config["max_span_width"], dtype=tf.float32), 2) # [k, max_span_width, 1] span_head_scores += tf.log(span_mask) # [k, max_span_width, 1] span_attention = tf.nn.softmax(span_head_scores, 1) # [k, max_span_width, 1] span_head_emb = tf.reduce_sum(span_attention * span_text_emb, 1) # [k, emb]
tensorflow.nn.dropout
6,477
from tensorflow.python.framework import tensor_shape @ops.RegisterShape("ArgMax") @ops.RegisterShape("ArgMin") def _ArgOpShape(op): """Common shape function for arg-reduction ops.""" dimension_shape = op.inputs[1].get_shape() dimension_shape.assert_is_compatible_with(tensor_shape.scalar()) input_shape = op.inputs[0].get_shape() if input_shape.ndims is None: return [tensor_shape.unknown_shape()] elif input_shape.ndims <= 1: return [tensor_shape.scalar()] dimension = tensor_util.ConstantValue(op.inputs[1]) if dimension is None: return [tensor_shape.unknown_shape(ndims=input_shape.ndims - 1)] elif 0 <= dimension and dimension < input_shape.ndims: returned_shape = [] for i, dim in enumerate(input_shape.dims): if i != dimension: returned_shape.append(dim) return [tensor_shape.TensorShape(returned_shape)] else:
tensorflow.python.framework.tensor_shape.scalar
6,478
import tensorflow as tf """Wrap the cell in multilayer""" cell=tf.nn.rnn_cell.MultiRNNCell([get_a_cell(state_size,input_prob,state_prob,input_size_x if layer==0 else state_size) for layer in range(num_layers)],state_is_tuple=True) cell=tf.nn.rnn_cell.DropoutWrapper(cell,variational_recurrent=True,dtype=tf.float32,input_size=input_size_x,output_keep_prob=output_prob) init_state = cell.zero_state(batch_size, dtype=tf.float32) """Build dynamic graph""" rnn_outputs, final_state = tf.nn.dynamic_rnn(cell=cell, inputs=rnn_inputs,initial_state=init_state) """Add prediction layer""" with tf.variable_scope('softmax'): W = tf.get_variable('W', [state_size, input_size_y]) b = tf.get_variable('b', [input_size_y], initializer=tf.constant_initializer(0.0)) rnn_outputs = tf.reshape(rnn_outputs, [-1, state_size]) predictions = tf.matmul(rnn_outputs, W) + b yy = tf.reshape(y, [-1, input_size_y]) #batch_size*num_steps when yo udefine a placeholder in Tensorflow, the shape of the input during the session should be the same as the shape of the plcae holder "Mean squared error loss" loss=tf.reduce_mean(tf.square(tf.reshape(predictions,[-1])-tf.reshape(yy,[-1]))) "Adding regularization" if lambda_l2_reg > 0 :
tensorflow.get_variable
6,479
import tensorflow as tf summary_writer = tf.summary.FileWriter(FLAGS.checkpoint_path, tf.get_default_graph()) init = tf.global_variables_initializer()
tensorflow.global_variables_initializer
6,480
import tensorflow as tf 'b_carry', [highway_dim], initializer=tf.constant_initializer(-2.0),
tensorflow.constant_initializer
6,481
import tensorflow as tf tf.app.flags.DEFINE_string('comment', '', 'Comment to leave by the model') tf.app.flags.DEFINE_float('test_max', 10000, 'max number of examples in the test set') tf.app.flags.DEFINE_integer('max_epochs', 0, 'Train for at most this number of epochs') tf.app.flags.DEFINE_integer('save_every', 250, 'Save model state every INT epochs') tf.app.flags.DEFINE_integer('eval_every', 25, 'Save encoding and visualizations every') tf.app.flags.DEFINE_integer('visualiza_max', 10, 'Max pairs to show on visualization') tf.app.flags.DEFINE_boolean('load_state', True, 'Load state if possible ') tf.app.flags.DEFINE_boolean('kill_depth', False, 'Ignore depth information') tf.app.flags.DEFINE_boolean('dev', False, 'Indicate development mode') tf.app.flags.DEFINE_integer('batch_size', 128, 'Batch size') tf.app.flags.DEFINE_float('learning_rate', 0.0001, 'Create visualization of ') tf.app.flags.DEFINE_float('blur', 5.0, 'Max sigma value for Gaussian blur applied to training set') tf.app.flags.DEFINE_boolean('new_blur', False, 'Use data augmentation as blur info') tf.app.flags.DEFINE_integer('blur_decrease', 10000, 'Decrease image blur every X steps') FLAGS = tf.app.flags.FLAGS slim = tf.contrib.slim AUTOENCODER = 'ae' PREDICTIVE = 'pred' DENOISING = 'noise' CHECKPOINT_NAME = '-9999.chpt' EMB_SUFFIX = '_embedding'
tensorflow.app.flags.DEFINE_float
6,482
import tensorflow as tf s_w2, s_w4, s_w8, s_w16 = \ int(s_w/2), int(s_w/4), int(s_w/8), int(s_w/16) output_z_ = lrelu(linear(trans_z, self.gf_dim*8*s_h16*s_w16, 'd_h0_lin')) output_h0 = tf.reshape(output_z_, [-1, s_h16, s_w16, self.gf_dim * 8]) output_h1 = lrelu(deconv2d(tf.concat([output_h0, tgtctx_h3], 3), [self.batch_size, s_h8, s_w8, self.gf_dim*4], name='d_h1')) output_h2 = lrelu(deconv2d(tf.concat([output_h1, tgtctx_h2], 3),
tensorflow.reshape
6,483
import tensorflow as tf metrics_dict[name] = fn(logits, labels) return metrics_dict return all_metrics_fn def _remove_summaries(): g = tf.get_default_graph() key = tf.GraphKeys.SUMMARIES del g.get_collection_ref(key)[:] assert not g.get_collection(key) def _del_dict_nones(d): for k in list(d.keys()):
tensorflow.get_default_graph
6,484
import tensorflow as tf if step % 30 == 0 : summary_str = sess.run(summary_op, feed_dict=train_feed_dict) summary_writer.add_summary(summary=summary_str, global_step=epoch) summary_writer.flush() train_loss /= iteration # average loss train_acc /= iteration # average accuracy train_summary = tf.Summary(value=[tf.Summary.Value(tag='train_loss', simple_value=train_loss), tf.Summary.Value(tag='train_accuracy', simple_value=train_acc)]) # test_acc, test_loss, test_summary = Evaluate(sess) summary_writer.add_summary(summary=train_summary, global_step=epoch) # summary_writer.add_summary(summary=test_summary, global_step=epoch) summary_writer.flush()
tensorflow.Summary.Value
6,485
import tensorflow as tf pre_pool_out = sess.run(pre_pool, feed_dict=feed_dict) self.assertListEqual(list(pre_pool_out.shape), [batch_size, 7, 7, 1024]) def testGlobalPoolUnknownImageShape(self): tf.reset_default_graph() batch_size = 1 height, width = 250, 300 num_classes = 1000
tensorflow.reset_default_graph
6,486
import tensorflow as tf for i in range(0, config.num_clones): with tf.name_scope(config.clone_scope(i)) as clone_scope: clone_device = config.clone_device(i) with tf.device(clone_device): with tf.variable_scope(tf.get_variable_scope(), reuse=True if i > 0 else None): outputs = model_fn(*args, **kwargs) clones.append(Clone(outputs, clone_scope, clone_device))
tensorflow.get_variable_scope
6,487
import tensorflow as tf # @1. split sequence with tf.variable_scope('split_seq'): block_num = tf.cast(tf.ceil(tf.divide(tf.cast(sl, tf.float32), tf.cast(block_len, tf.float32))), tf.int32) comp_len = block_num * block_len - sl
tensorflow.cast
6,488
import tensorflow as tf def get_test_examples(self, data_dir): """Gets a collection of `InputExample`s for prediction.""" raise NotImplementedError() def get_labels(self): """Gets the list of labels for this data set.""" raise NotImplementedError() @classmethod def _read_tsv(cls, input_file, quotechar=None): """Reads a tab separated value file.""" with tf.gfile.Open(input_file, "r") as f: reader = csv.reader(f, delimiter="\t", quotechar=quotechar) lines = [] for line in reader: lines.append(line) return lines class XnliProcessor(DataProcessor): """Processor for the XNLI data set."""
tensorflow.gfile.Open
6,489
import tensorflow as tf config.gpu_options.allow_growth=True sess = tf.Session(config=config) learning_rate = tf.placeholder(tf.float32, shape=[]) optimizer = tf.train.AdamOptimizer(learning_rate).minimize(test.loss) sess.run(tf.global_variables_initializer()) allloss = [] validloss = [] itr = 0
tensorflow.global_variables_initializer
6,490
import tensorflow as tf ] for i in range(len(output_sizes)): expand_W = tf.get_variable("W_%d" % i, [current_size, output_sizes[i]]) expand_b = tf.get_variable("b_%d" % i, [output_sizes[i]]) output_data = tf.nn.bias_add(tf.matmul(output_data, expand_W), expand_b) output_data = tf.nn.elu(output_data)
tensorflow.get_variable
6,491
import tensorflow as tf else: if type(padding)==type(''): conv = tf.nn.conv2d(x, w, stride, padding) else: conv = tf.pad(x, padding, "CONSTANT") conv = tf.nn.conv2d(conv, w, stride, padding='VALID') if bias != -1: bias = tf.get_variable('biases', [num_filters], initializer=tf.constant_initializer(bias)) variable_summaries(bias) conv = tf.nn.bias_add(conv, bias) tf.add_to_collection('debug_layers', conv) return conv @staticmethod def _relu(name, x): with tf.variable_scope(name): return tf.nn.relu(x)
tensorflow.nn.bias_add
6,492
import tensorflow as tf with tf.variable_scope(scope): init_w = tf.random_normal_initializer(0., 0.01) init_b = tf.constant_initializer(0.01) with tf.variable_scope('l1'): n_l1 = 700 # combine the action and states together in this way w1_s = tf.get_variable('w1_s', [self.s_dim, n_l1], initializer=init_w, trainable=trainable) w1_a = tf.get_variable('w1_a', [self.a_dim, n_l1], initializer=init_w, trainable=trainable) b1 = tf.get_variable('b1', [1, n_l1], initializer=init_b, trainable=trainable) net = tf.nn.relu(tf.matmul(s, w1_s) + tf.matmul(a, w1_a) + b1) with tf.variable_scope('l2'): net = tf.layers.dense(net, 20, activation=tf.nn.relu, kernel_initializer=init_w, bias_initializer=init_b, name='l2', trainable=trainable) with tf.variable_scope('q'): q = tf.layers.dense(net, 1, kernel_initializer=init_w, bias_initializer=init_b, trainable=trainable) # Q(s,a)
tensorflow.get_variable
6,493
import tensorflow as tf for method in at_methods: FLAGS.adv_training_method = method with tf.Graph().as_default(): graphs.VatxtModel().classifier_graph() # Ensure variables have been reused # Embedding + LSTM layers + hidden layers + logits layer expected_num_vars = 1 + 2 * FLAGS.rnn_num_layers + 2 * ( FLAGS.cl_num_layers) + 2 self.assertEqual(len(tf.trainable_variables()), expected_num_vars) def testSyncReplicas(self): FLAGS.sync_replicas = True graphs.VatxtModel().language_model_training() def testCandidateSampling(self): FLAGS.num_candidate_samples = 10 graphs.VatxtModel().language_model_training()
tensorflow.trainable_variables
6,494
import tensorflow as tf weights=target_weights) max_src_len = tf.shape(reconstructed_weights)[1] batch_size = tf.shape(reconstructed_weights)[0] attn_loss = tf.matmul(reconstructed_weights, attention_weights) - tf.eye(max_src_len) src_mask = tf.sequence_mask(encoder_input_length[0], maxlen=max_src_len, dtype=tf.float32) src_mask = tf.einsum('ij,ik->ijk', src_mask, src_mask) attn_loss *= tf.to_float(src_mask) # don't take padding words into account
tensorflow.eye
6,495
import tensorflow as tf mean = 0 std = tf.random.uniform(shape=[],minval=5,maxval=10,dtype=tf.float32) # std [5-10] size = tf.random.uniform(shape=[],minval=3,maxval=7,dtype=tf.int32) # size [7-15] self.kernel = self.gaussian_kernel(size,mean,std) self.kernel = tf.tile(self.kernel[:, :, tf.newaxis, tf.newaxis], [1, 1, 3, 1]) self.paddings = tf.convert_to_tensor([[size,size],[size,size],[0,0]]) x_aug = tf.nn.separable_conv2d(tf.expand_dims(tf.pad(x,self.paddings,'SYMMETRIC'), 0), self.kernel, self.pointwise_filter,strides=[1, 1, 1, 1], padding='VALID') x_aug = tf.squeeze(x_aug) return tf.concat([x, x_aug],axis=2) def high_low_pass(self,x): x_low = tf.nn.separable_conv2d(tf.expand_dims(tf.pad(x,self.paddings,'SYMMETRIC'), 0), self.kernel, self.pointwise_filter,strides=[1, 1, 1, 1], padding='VALID')
tensorflow.pad
6,496
import tensorflow as tf self.d_optimizer = tf.train.AdamOptimizer(self.learning_rate,beta1=self.beta1,beta2=self.beta2).minimize(self.discriminator_loss,var_list=self.d_variables) self.g_optimizer = tf.train.AdamOptimizer(self.learning_rate,beta1=self.beta1,beta2=self.beta2).minimize(self.generator_loss,var_list=self.g_variables)
tensorflow.train.AdamOptimizer
6,497
import tensorflow as tf counts.update(_split_string(line)) alphabet = [k for (k, _) in counts.most_common(max_size)] alphabet.sort() return np.asarray(alphabet, dtype=np.object) chars, = tf.py_func(_unique_chars, [filename], [tf.string]) char_to_id = tf.contrib.lookup.index_table_from_tensor( chars, num_oov_buckets=num_oov_buckets) id_to_char = tf.contrib.lookup.index_to_string_table_from_tensor(chars, " ") return char_to_id, id_to_char
tensorflow.contrib.lookup.index_table_from_tensor
6,498
import tensorflow.contrib.layers as layers def atari_model(img_in, num_actions, scope, reuse=False): # as described in https://storage.googleapis.com/deepmind-data/assets/papers/DeepMindNature14236Paper.pdf with tf.variable_scope(scope, reuse=reuse): out = img_in with tf.variable_scope("convnet"): # original architecture out = layers.convolution2d(out, num_outputs=32, kernel_size=8, stride=4, activation_fn=tf.nn.relu) out = layers.convolution2d(out, num_outputs=64, kernel_size=4, stride=2, activation_fn=tf.nn.relu) out = layers.convolution2d(out, num_outputs=64, kernel_size=3, stride=1, activation_fn=tf.nn.relu) out = layers.flatten(out) with tf.variable_scope("action_value"): out = layers.fully_connected(out, num_outputs=512, activation_fn=tf.nn.relu) out = layers.fully_connected(out, num_outputs=num_actions, activation_fn=None) return out def atari_learn(env, session, num_timesteps): # This is just a rough estimate num_iterations = float(num_timesteps) / 4.0
tensorflow.contrib.layers.fully_connected
6,499