seed
stringlengths
25
2.89k
seed_api
stringlengths
14
102
index
int64
0
14.8k
import tensorflow as tf def conv(x, scope, *, nf, rf, stride, pad='VALID', init_scale=1.0, data_format='NHWC', one_dim_bias=False): if data_format == 'NHWC': channel_ax = 3 strides = [1, stride, stride, 1] bshape = [1, 1, 1, nf] elif data_format == 'NCHW': channel_ax = 1 strides = [1, 1, stride, stride] bshape = [1, nf, 1, 1] else: raise NotImplementedError bias_var_shape = [nf] if one_dim_bias else [1, nf, 1, 1] nin = x.get_shape()[channel_ax].value wshape = [rf, rf, nin, nf] with tf.variable_scope(scope): w = tf.get_variable("w", wshape, initializer=ortho_init(init_scale)) b = tf.get_variable("b", bias_var_shape, initializer=tf.constant_initializer(0.0)) if not one_dim_bias and data_format == 'NHWC': b = tf.reshape(b, bshape) return tf.nn.conv2d(x, w, strides=strides, padding=pad, data_format=data_format) + b def fc(x, scope, nh, *, init_scale=1.0, init_bias=0.0): with tf.variable_scope(scope): nin = x.get_shape()[1].value w = tf.get_variable("w", [nin, nh], initializer=ortho_init(init_scale)) print("w is "+str(w)) b = tf.get_variable("b", [nh], initializer=tf.constant_initializer(init_bias)) return tf.matmul(x, w)+b
tensorflow.variable_scope
6,100
import tensorflow as tf inputs_list = [] for i in range(num_gpu): start = i * cfgs.BATCH_SIZE end = (i + 1) * cfgs.BATCH_SIZE img = img_batch[start:end, :, :, :] pretrain_zoo = PretrainModelZoo() if self.cfgs.NET_NAME in pretrain_zoo.pth_zoo or self.cfgs.NET_NAME in pretrain_zoo.mxnet_zoo: img = img / tf.constant([cfgs.PIXEL_STD]) gtboxes_and_label_h = get_horizen_minAreaRectangle( tf.reshape(gtboxes_and_label_batch[start:end], [-1, 9])) gtboxes_and_label_h = tf.reshape(gtboxes_and_label_h, [cfgs.BATCH_SIZE, -1, 5]) gtboxes_and_label_q = tf.reshape(gtboxes_and_label_batch[start:end], [cfgs.BATCH_SIZE, -1, 9]) num_objects = num_objects_batch[start:end] num_objects = tf.cast(tf.reshape(num_objects, [cfgs.BATCH_SIZE, -1, ]), tf.float32) img_h = img_h_batch[start:end] img_w = img_w_batch[start:end] inputs_list.append([img, gtboxes_and_label_h,
tensorflow.reshape
6,101
import tensorflow.contrib as contrib # BN normalizer_fn=contrib.layers.batch_norm, normalizer_params={ "is_training": is_training, "scale": True, "updates_collections": None } ): fc1_1 = contrib.layers.fully_connected(X, 32, scope="fc1_1") fc1_2 = contrib.layers.fully_connected(X, 32, scope="fc1_2") if cross_stitch_enabled: with tf.variable_scope("cross_stitch_1"): stitch1_1, stitch1_2 = apply_cross_stitch(fc1_1, fc1_2) else: stitch1_1, stitch1_2 = fc1_1, fc1_2
tensorflow.contrib.layers.fully_connected
6,102
import tensorflow as tf tf.train.init_from_checkpoint(init_checkpoint, assignment_map) return tf.train.Scaffold()
tensorflow.train.Scaffold
6,103
import tensorflow as tf def coarse_to_fine_pruning(self, top_span_emb, top_span_mention_scores, c): k = util.shape(top_span_emb, 0) top_span_range = tf.range(k) # [k] antecedent_offsets = tf.expand_dims(top_span_range, 1) - tf.expand_dims(top_span_range, 0) # [k, k] antecedents_mask = antecedent_offsets >= 1 # [k, k] fast_antecedent_scores = tf.expand_dims(top_span_mention_scores, 1) + tf.expand_dims(top_span_mention_scores, 0) # [k, k] fast_antecedent_scores += tf.log(tf.to_float(antecedents_mask)) # [k, k] fast_antecedent_scores += self.get_fast_antecedent_scores(top_span_emb) # [k, k] _, top_antecedents = tf.nn.top_k(fast_antecedent_scores, c, sorted=False) # [k, c] top_antecedents_mask = util.batch_gather(antecedents_mask, top_antecedents) # [k, c] top_fast_antecedent_scores = util.batch_gather(fast_antecedent_scores, top_antecedents) # [k, c] top_antecedent_offsets = util.batch_gather(antecedent_offsets, top_antecedents) # [k, c]
tensorflow.to_float
6,104
import tensorflow as tf self.W_out_train = params.get('W_out_train', True) self.b_rec_train = params.get('b_rec_train', True) self.b_out_train = params.get('b_out_train', True) self.init_state_train = params.get('init_state_train', True) # Tensorflow initializations self.x = tf.placeholder("float", [N_batch, N_steps, N_in]) self.y = tf.placeholder("float", [N_batch, N_steps, N_out]) self.output_mask = tf.placeholder("float", [N_batch, N_steps, N_out]) # trainable variables with tf.variable_scope("model"):
tensorflow.placeholder
6,105
import tensorflow as tf # Tensorboard if summary_dir is not None: self.writer = tf.summary.FileWriter(summary_dir) tf.summary.scalar('Loss/Policy', loss_pg)
tensorflow.summary.FileWriter
6,106
from tensorflow.python.ops import array_ops n_classes=2, label_name=label_name, weight_column_name=weight_column_name) def logits_to_predictions(self, logits, proba=False): if proba: raise ValueError( "logits to probabilities is not supported for _BinarySvmTargetColumn") logits = array_ops.concat(1, [array_ops.zeros_like(logits), logits]) return math_ops.argmax(logits, 1) # TODO(zakaria): use contrib losses. def _mean_squared_loss(logits, target): # To prevent broadcasting inside "-". if len(target.get_shape()) == 1: target = array_ops.expand_dims(target, dim=[1])
tensorflow.python.ops.array_ops.zeros_like
6,107
import tensorflow.contrib.eager as tfe # limitations under the License. # ============================================================================== from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow as tf # pylint: disable=g-bad-import-order import tensorflow.contrib.eager as tfe # pylint: disable=g-bad-import-order from official.mnist import mnist from official.mnist import mnist_eager from official.utils.misc import keras_utils def device(): return "/device:GPU:0" if tfe.num_gpus() else "/device:CPU:0" def data_format(): return "channels_first" if tfe.num_gpus() else "channels_last" def random_dataset(): batch_size = 64 images = tf.random_normal([batch_size, 784]) labels = tf.random_uniform([batch_size], minval=0, maxval=10, dtype=tf.int32) return tf.data.Dataset.from_tensors((images, labels)) def train(defun=False):
tensorflow.contrib.eager.num_gpus
6,108
import tensorflow as tf # Compute Matthew's correlation mcc = tf.div_no_nan( tp * tn - fp * fn, tf.pow((tp + fp) * (tp + fn) * (tn + fp) * (tn + fn), 0.5)) # Compute accuracy accuracy = tf.metrics.accuracy( labels=label_ids, predictions=predictions, weights=is_real_example) loss = tf.metrics.mean( values=per_example_loss, weights=is_real_example) return {"matthew_corr": (mcc, tf.group(tp_op, tn_op, fp_op, fn_op)), "eval_accuracy": accuracy, "eval_loss": loss,} eval_metrics = (metric_fn, [per_example_loss, label_ids, logits, is_real_example]) output_spec = contrib_tpu.TPUEstimatorSpec( mode=mode, loss=total_loss, eval_metrics=eval_metrics, scaffold_fn=scaffold_fn) else: output_spec = contrib_tpu.TPUEstimatorSpec( mode=mode, predictions={ "probabilities": probabilities,
tensorflow.group
6,109
import tensorflow as tf update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS, name_scope) staging_delta_ops = list(self.variable_mgr.staging_delta_ops) if not update_ops: update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS, name_scope) enqueue_ops.append(tf.group(*gpu_copy_stage_ops)) if self.variable_mgr.supports_staged_vars(): for staging_ops in self.variable_mgr.staging_vars_on_devices:
tensorflow.get_collection
6,110
import tensorflow as tf """ if key.dtype != tf.string: raise ValueError('key must have type tf.string') # Quantile ops convert input values to double under the hood. Keep bucket # boundaries as float for all numeric types. bucket_dtype = tf.float32 with tf.compat.v1.name_scope(name, 'quantiles_by_key'): combiner = QuantilesCombiner( num_buckets, epsilon, bucket_dtype.as_numpy_dtype, has_weights=weights is not None,
tensorflow.compat.v1.name_scope
6,111
import tensorflow as tf """ name = 'batch_norm' with tf.variable_scope(name): phase_train = tf.convert_to_tensor(phase_train, dtype=tf.bool) n_out = int(x.get_shape()[3]) beta = tf.Variable(tf.constant(0.0, shape=[n_out], dtype=x.dtype), name=name+'/beta', trainable=True, dtype=x.dtype) gamma = tf.Variable(tf.constant(1.0, shape=[n_out], dtype=x.dtype), name=name+'/gamma', trainable=True, dtype=x.dtype) batch_mean, batch_var = tf.nn.moments(x, [0,1,2], name='moments') ema = tf.train.ExponentialMovingAverage(decay=0.9) def mean_var_with_update(): ema_apply_op = ema.apply([batch_mean, batch_var]) with tf.control_dependencies([ema_apply_op]): return tf.identity(batch_mean), tf.identity(batch_var) mean, var = control_flow_ops.cond(phase_train, mean_var_with_update, lambda: (ema.average(batch_mean), ema.average(batch_var))) normed = tf.nn.batch_normalization(x, mean, var, beta, gamma, 1e-3)
tensorflow.nn.moments
6,112
import tensorflow as tf update_ops.extend(optimizer.apply_grad(grad, var)) lowering = mtf.Lowering(graph, {mesh: mesh_impl}) tf_loss = lowering.export_to_tf_tensor(loss) tf_loss = tf.to_float(tf_loss) if logits and mode != tf.estimator.ModeKeys.TRAIN: tf_logits = lowering.export_to_tf_tensor(logits) if mode == tf.estimator.ModeKeys.TRAIN: tf_update_ops = [lowering.lowered_operation(op) for op in update_ops] tf_update_ops.append(tf.assign_add(global_step, 1)) # tf.logging.info("tf_update_ops: {}".format(tf_update_ops)) train_op = tf.group(tf_update_ops) with mtf.utils.outside_all_rewrites(): # Copy master variables to slices. Must be called first. restore_hook = mtf.MtfRestoreHook(lowering) saver = tf.train.Saver( tf.global_variables(), sharded=True, max_to_keep=10,
tensorflow.assign_add
6,113
import tensorflow as tf return # pylint: enable=g-import-not-at-top with tf.compat.v1.Graph().as_default() as graph: outputs = {
tensorflow.compat.v1.Graph
6,114
import tensorflow as tf input_images = tf.placeholder(tf.float32, shape=[None, None, None, 3], name='input_images') input_score_maps = tf.placeholder(tf.float32, shape=[None, None, None, 1], name='input_score_maps') if FLAGS.geometry == 'RBOX':
tensorflow.placeholder
6,115
from tensorflow.python.saved_model import loader self.session = tf.Session() metagraph_def = loader.load(
tensorflow.python.saved_model.loader.load
6,116
import tensorflow as tf state[self.ITERATION_STATE_KEY] + tf.constant(1, dtype=tf.int32) } def get_params(self, state): """See base class.""" params = { self.ADD_PARAM_KEY: 1 / tf.to_float(state[self.ITERATION_STATE_KEY]) } return params, params def encode(self, x, encode_params): """See base class."""
tensorflow.to_float
6,117
import tensorflow as tf def test_prob_and_grad_gives_finite_results_for_common_events(self): with self.test_session(): mu = tf.Variable(0.0, name="mu") sigma = tf.Variable(1.0, name="sigma") qdist = distributions.QuantizedDistribution( base_dist_cls=distributions.Normal, mu=mu, sigma=sigma) x = tf.ceil(4 * self._rng.rand(100).astype(np.float32) - 2) tf.initialize_all_variables().run() proba = qdist.prob(x) self._assert_all_finite(proba.eval()) grads = tf.gradients(proba, [mu, sigma]) self._assert_all_finite(grads[0].eval()) self._assert_all_finite(grads[1].eval()) def test_lower_cutoff_must_be_below_upper_cutoff_or_we_raise(self): with self.test_session(): qdist = distributions.QuantizedDistribution( base_dist_cls=distributions.Normal, lower_cutoff=1., # not strictly less than upper_cutoff. upper_cutoff=1., mu=0., sigma=1., validate_args=True) self.assertTrue(qdist.validate_args) # Default is True.
tensorflow.gradients
6,118
import tensorflow as tf ''' Flattening function: input: a tensor list returns: a rank one tensor ''' s= len(tensor) #number of tensors in the list for i in range(s): dl = tensor[i] #take one element of the gradient list (hence the zero) d1, d2 = dl.get_shape() #Obtain tensor dimensions fl = tf.reshape(dl,[-1, d1*d2]) #reshape the tensor to a (1, d1*d2) tensor #concatenate over all the elemets in the list if i==0: flattened = fl # the first time else: flattened = tf.concat([flattened, fl], axis=1) return flattened #Hessian def hessian(grads, par): ''' Evaluates the exact Hessian matrix. This function uses the same convention of the Autograd package.
tensorflow.reshape
6,119
import tensorflow as tf logits = tf.add(logits, output_bias) probabilities=tf.sigmoid(logits) # labels=tf.constant(labels,dtype=tf.int32) per_example_loss=tf.losses.sigmoid_cross_entropy(multi_class_labels=labels, logits=logits,reduction=Reduction.NONE) per_example_loss=tf.reduce_sum(per_example_loss,axis=-1) loss = tf.reduce_mean(per_example_loss,name='train_loss') return (loss, per_example_loss, logits, probabilities) def model_fn_builder(bert_config, num_labels, init_checkpoint, learning_rate, num_train_steps, num_warmup_steps, use_tpu,
tensorflow.reduce_mean
6,120
import tensorflow as tf height = tf.shape(inputs)[1] width = tf.shape(inputs)[2] out_height = get_deconv_dim(height, stride_h, kernel_h, padding) out_width = get_deconv_dim(width, stride_w, kernel_w, padding) output_shape = tf.stack([batch_size, out_height, out_width, num_output_channels], axis=0) outputs = tf.nn.conv2d_transpose(inputs, kernel, output_shape, [1, stride_h, stride_w, 1],
tensorflow.stack
6,121
import tensorflow as tf self._tower_loss_semi_supervised( self.inputs, self.labels, num_classes=num_classes, is_fm_loss=True) global_update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS) if update_ops is None: update_ops = global_update_ops
tensorflow.get_collection
6,122
from tensorflow.python.framework import ops """ with ops.op_scope([features], name, "Relu6") as name:
tensorflow.python.framework.ops.op_scope
6,123
import tensorflow as tf self._initial_state = cell.zero_state(config.batch_size, data_type()) state = self._initial_state # Simplified version of tf.nn.static_rnn(). # This builds an unrolled LSTM for tutorial purposes only. # In general, use tf.nn.static_rnn() or tf.nn.static_state_saving_rnn(). # # The alternative version of the code below is: # # inputs = tf.unstack(inputs, num=self.num_steps, axis=1) # outputs, state = tf.nn.static_rnn(cell, inputs, # initial_state=self._initial_state) outputs = [] with tf.variable_scope("RNN"): for time_step in range(self.num_steps): if time_step > 0: tf.get_variable_scope().reuse_variables() (cell_output, state) = cell(inputs[:, time_step, :], state) outputs.append(cell_output) output = tf.reshape(tf.concat(outputs, 1), [-1, config.hidden_size]) return output, state def assign_lr(self, session, lr_value): session.run(self._lr_update, feed_dict={self._new_lr: lr_value}) def export_ops(self, name): """Exports ops to collections.""" self._name = name ops = {util.with_prefix(self._name, "cost"): self._cost} if self._is_training: ops.update(lr=self._lr, new_lr=self._new_lr, lr_update=self._lr_update)
tensorflow.get_variable_scope
6,124
import tensorflow as tf do_nothing = np.zeros(self.ACTIONS) do_nothing[0]=1 x_t,r_0,terminal =self.game_state.frame_step(do_nothing) x_t = cv2.cvtColor(cv2.resize(x_t,(80,80)),cv2.COLOR_BGR2GRAY) ret,x_t = cv2.threshold(x_t,1,255,cv2.THRESH_BINARY) s_t = np.stack((x_t,x_t,x_t,x_t),axis=2) return s_t def restore_param(self): Saver = tf.train.Saver() self.sess.run(tf.global_variables_initializer()) checkpoint = tf.train.get_checkpoint_state("saved_networks") if checkpoint and checkpoint.model_checkpoint_path: Saver.restore(self.sess,checkpoint.model_checkpoint_path) print("Successfully loaded",checkpoint.model_checkpoint_path) else: print("Could not find old network weights") return Saver # 定义一个weight,其中命名空间为name,形状为shape
tensorflow.global_variables_initializer
6,125
import tensorflow as tf "url.") tf.flags.DEFINE_string( "tpu_zone", None, "[Optional] GCE zone where the Cloud TPU is located in. If not " "specified, we will attempt to automatically detect the GCE project from " "metadata.") tf.flags.DEFINE_string( "gcp_project", None, "[Optional] Project name for the Cloud TPU-enabled project. If not " "specified, we will attempt to automatically detect the GCE project from " "metadata.") tf.flags.DEFINE_string("master", None, "[Optional] TensorFlow master URL.")
tensorflow.flags.DEFINE_string
6,126
import tensorflow as tf name="deconv2d", with_w=False): with tf.variable_scope(name): # filter : [height, width, output_channels, in_channels] w = tf.get_variable('w', [k_h, k_w, output_shape[-1], input_.get_shape()[-1]], initializer=tf.random_normal_initializer(stddev=stddev)) # print("w", w.get_shape()) try: deconv = tf.nn.conv2d_transpose(input_, w, output_shape=output_shape,
tensorflow.random_normal_initializer
6,127
from tensorflow.python.ops import math_ops thresholds = [(i + 1) * 1.0 / (num_thresholds - 1) for i in range(num_thresholds-2)] thresholds = [0.0 - kepsilon] + thresholds + [1.0 + kepsilon] (tp, fn, tn, fp, tp_update_op, fn_update_op, tn_update_op, fp_update_op) = _tp_fn_tn_fp(predictions, labels, thresholds, weights) # Add epsilons to avoid dividing by 0. epsilon = 1.0e-6 assert array_ops.squeeze(fp).get_shape().as_list()[0] == num_thresholds def compute_auc(tp, fn, tn, fp, name): """Computes the roc-auc or pr-auc based on confusion counts.""" recall = math_ops.div(tp + epsilon, tp + fn + epsilon) if curve == 'ROC': fp_rate = math_ops.div(fp, fp + tn + epsilon) x = fp_rate y = recall else: # curve == 'PR'. precision = math_ops.div(tp + epsilon, tp + fp + epsilon) x = recall y = precision return math_ops.reduce_sum(math_ops.mul( x[:num_thresholds - 1] - x[1:], (y[:num_thresholds - 1] + y[1:]) / 2.), name=name)
tensorflow.python.ops.math_ops.div
6,128
import tensorflow as tf self.D_B_real = self.build_discriminator(self.image_real_B,reuse=True, name="discriminatorB") self.D_A_real = self.build_discriminator(self.image_real_A,reuse=True, name="discriminatorA") self.loss_GABA = self.lambda_l2*squared_loss(self.images_fake_A,self.image_real_A) + binary_cross_entropy_loss(labels=tf.ones_like(self.D_B_fake),logits=self.D_B_fake) self.loss_GBAB = self.lambda_l2*squared_loss(self.images_fake_B_,self.image_real_B) + binary_cross_entropy_loss(labels=tf.ones_like(self.D_A_fake),logits=self.D_A_fake) self.generator_loss = self.loss_GABA + self.loss_GBAB self.D_B_loss_real = binary_cross_entropy_loss(tf.ones_like(self.D_B_real),self.D_B_real) self.D_B_loss_fake = binary_cross_entropy_loss(tf.zeros_like(self.D_B_fake),self.D_B_fake) self.D_B_loss = (self.D_B_loss_real + self.D_B_loss_fake) / 2.0 self.D_A_loss_real = binary_cross_entropy_loss(tf.ones_like(self.D_A_real),self.D_A_real) self.D_A_loss_fake = binary_cross_entropy_loss(tf.zeros_like(self.D_A_fake),self.D_A_fake) self.D_A_loss = (self.D_A_loss_real + self.D_A_loss_fake) / 2.0 self.discriminator_loss = self.D_B_loss + self.D_A_loss self.loss_GABA_sum = tf.summary.scalar("g_loss_a2b", self.loss_GABA) self.loss_GBAB_sum = tf.summary.scalar("g_loss_b2a", self.loss_GBAB) self.g_total_loss_sum = tf.summary.scalar("g_loss", self.generator_loss) self.g_sum = tf.summary.merge([self.loss_GABA_sum,self.loss_GBAB_sum,self.g_total_loss_sum]) self.loss_db_sum = tf.summary.scalar("db_loss", self.D_B_loss) self.loss_da_sum = tf.summary.scalar("da_loss", self.D_A_loss) self.loss_d_sum = tf.summary.scalar("d_loss",self.discriminator_loss)
tensorflow.ones_like
6,129
import tensorflow as tf for i in range(len(hidden_layers_node)): layer_name = 'layer' + str(i+1) with tf.variable_scope(layer_name, reuse=tf.AUTO_REUSE): weights = tf.get_variable('weights', [prev_node, hidden_layers_node[i]],
tensorflow.variable_scope
6,130
import tensorflow as tf + 0.00392377*t**(-8)) a = 7.5 return __phi_f(tf.minimum(x, a)) - __phi_f(a) + __phi_g(tf.maximum(x, a)) N = tf.cast(tf.shape(X)[0], tf.float32) if y is None: y = silverman_rule_of_thumb(N) A = 1/(N*N*tf.sqrt(y)) B = 2.0/(N*tf.sqrt(y+0.5)) A1 = euclidean_norm_squared(tf.subtract(tf.expand_dims(X, 0), tf.expand_dims(X, 1)), axis=2)/(4*y) B1 = euclidean_norm_squared(X, axis=1)/(2+4*y) return 1/tf.sqrt(1+y) + A*tf.reduce_sum(__phi(A1)) - B*tf.reduce_sum(__phi(B1)) def cw(X, y=None): D = tf.cast(tf.shape(X)[1], tf.float32) N = tf.cast(tf.shape(X)[0], tf.float32) if y is None: y = silverman_rule_of_thumb(N) K = 1/(2*D-3) A1 = euclidean_norm_squared(tf.subtract(tf.expand_dims(X, 0), tf.expand_dims(X, 1)), axis=2) A = (1/(N**2)) * tf.reduce_sum((1/tf.sqrt(y + K*A1)))
tensorflow.sqrt
6,131
import tensorflow as tf cell, decoder_fn, inputs=None, sequence_length=sequence_length) if return_final_state: return final_state else: return outputs @layer def reshape_layer(tensor, shape, **opts): out = tf.reshape(tensor, shape=shape) return out @layer def dense_layer(tensor, hidden_dims, weight=None, bias=None, **opts): original_tensor_shape = tf.shape(tensor) in_dim = int(tensor.get_shape()[-1]) rank = _rank(tensor)
tensorflow.reshape
6,132
import tensorflow as tf writer.close() def file_based_input_fn_builder(input_file, seq_length, is_training, drop_remainder): """Creates an `input_fn` closure to be passed to TPUEstimator.""" name_to_features = { "input_ids": tf.FixedLenFeature([seq_length], tf.int64), "input_mask": tf.FixedLenFeature([seq_length], tf.int64), "segment_ids": tf.FixedLenFeature([seq_length], tf.int64), "label_ids": tf.FixedLenFeature([], tf.int64), "is_real_example": tf.FixedLenFeature([], tf.int64), } def _decode_record(record, name_to_features): """Decodes a record to a TensorFlow example.""" example = tf.parse_single_example(record, name_to_features) # tf.Example only supports tf.int64, but the TPU only supports tf.int32. # So cast all int64 to int32. for name in list(example.keys()): t = example[name] if t.dtype == tf.int64:
tensorflow.FixedLenFeature
6,133
import tensorflow as tf min_score_thresh=0.65, min_iou_thresh=0.5, is_class_agnostic=False) nms_masks_expected2 = tf.stack([mask2, mask0, mask5, mask4]) nms_scores_expected2 = tf.constant([0.95, 1.0, 0.8, 0.7], dtype=tf.float32) nms_classes_expected2 = tf.constant([0, 1, 2, 2], dtype=tf.int32) self.assertAllEqual(nms_masks1.numpy(), nms_masks_expected1.numpy()) self.assertAllClose(nms_scores1.numpy(), nms_scores_expected1.numpy())
tensorflow.constant
6,134
import tensorflow as tf self.num_layers = num_layers self.grus = [] self.inits = [] self.dropout_mask = [] self.scope = scope for layer in range(num_layers): input_size_ = input_size if layer == 0 else 2 * num_units gru_fw = tf.contrib.rnn.GRUCell(num_units) gru_bw = tf.contrib.rnn.GRUCell(num_units) init_fw = tf.tile(tf.Variable( tf.zeros([1, num_units])), [batch_size, 1]) init_bw = tf.tile(tf.Variable( tf.zeros([1, num_units])), [batch_size, 1]) mask_fw = dropout(tf.ones([batch_size, 1, input_size_], dtype=tf.float32), keep_prob=keep_prob, is_train=is_train, mode=None) mask_bw = dropout(tf.ones([batch_size, 1, input_size_], dtype=tf.float32), keep_prob=keep_prob, is_train=is_train, mode=None) self.grus.append((gru_fw, gru_bw, )) self.inits.append((init_fw, init_bw, )) self.dropout_mask.append((mask_fw, mask_bw, ))
tensorflow.zeros
6,135
import tensorflow as tf initializer = tf.contrib.layers.xavier_initializer() var = _variable_on_cpu(name, shape, initializer) else: # initializer = tf.truncated_normal_initializer(stddev=stddev) with tf.device('/cpu:0'): var = tf.truncated_normal(shape, stddev=np.sqrt(2 / shape[-1])) var = tf.round(var * tf.constant(1000, dtype=tf.float32)) / tf.constant(1000, dtype=tf.float32) var = tf.Variable(var, name='weights') if wd is not None: weight_decay = tf.multiply(tf.nn.l2_loss(var), wd, name='weight_loss') tf.add_to_collection('losses', weight_decay) return var
tensorflow.Variable
6,136
import tensorflow as tf total_loss = tf.identity(loss, name='total_loss') tf.summary.scalar('loss', total_loss) if mode == tf.estimator.ModeKeys.EVAL: return tf.estimator.EstimatorSpec(mode=mode, loss=loss, predictions=predictions, eval_metric_ops=metrics) if mode == tf.estimator.ModeKeys.TRAIN: global_step = tf.train.get_or_create_global_step() lr_values = [params['warmup_learning_rate']] + [base_learning_rate * decay for decay in params['lr_decay_factors']] learning_rate = tf.train.piecewise_constant(tf.cast(global_step, tf.int32), [params['warmup_steps']] + [int(float(ep)*params['steps_per_epoch']) for ep in params['decay_boundaries']], lr_values) truncated_learning_rate = tf.maximum(learning_rate, tf.constant(params['end_learning_rate'], dtype=learning_rate.dtype), name='learning_rate') tf.summary.scalar('lr', truncated_learning_rate) optimizer = tf.train.MomentumOptimizer(learning_rate=truncated_learning_rate, momentum=params['momentum']) # Batch norm requires update_ops to be added as a train_op dependency.
tensorflow.cast
6,137
import tensorflow as tf custom_getter=tf_util.outer_scope_getter("train_model")): train_model = self.policy(self.sess, self.observation_space, self.action_space, self.n_envs, self.n_steps + 1, n_batch_train, reuse=True, **self.policy_kwargs) with tf.variable_scope("moving_average"): # create averaged model ema = tf.train.ExponentialMovingAverage(self.alpha) ema_apply_op = ema.apply(self.params) def custom_getter(getter, name, *args, **kwargs): name = name.replace("polyak_model/", "") val = ema.average(getter(name, *args, **kwargs))
tensorflow.train.ExponentialMovingAverage
6,138
import tensorflow as tf [batch_size * seq_length, width]) output_tensor = tf.gather(flat_sequence_tensor, flat_positions) return output_tensor # add sequence mask for: # 1. random shuffle lm modeling---xlnet with random shuffled input # 2. left2right and right2left language modeling # 3. conditional generation def generate_seq2seq_mask(attention_mask, mask_sequence, seq_type, **kargs): if seq_type == 'seq2seq': if mask_sequence is not None: seq_shape = get_shape_list(mask_sequence, expected_rank=2) seq_len = seq_shape[1] ones = tf.ones((1, seq_len, seq_len)) a_mask = tf.matrix_band_part(ones, -1, 0) s_ex12 = tf.expand_dims(tf.expand_dims(mask_sequence, 1), 2) s_ex13 = tf.expand_dims(tf.expand_dims(mask_sequence, 1), 3) a_mask = (1 - s_ex13) * (1 - s_ex12) + s_ex13 * a_mask # generate mask of batch x seq_len x seq_len a_mask = tf.reshape(a_mask, (-1, seq_len, seq_len)) out_mask = attention_mask * a_mask else: ones = tf.ones_like(attention_mask[:1]) mask = (tf.matrix_band_part(ones, -1, 0)) out_mask = attention_mask * mask else: out_mask = attention_mask return out_mask
tensorflow.expand_dims
6,139
import tensorflow as tf self.conv5_1 = self.conv_layer(self.pool4, "conv5_1") self.conv5_2 = self.conv_layer(self.conv5_1, "conv5_2") self.conv5_3 = self.conv_layer(self.conv5_2, "conv5_3") self.conv5_4 = self.conv_layer(self.conv5_3, "conv5_4") self.pool5 = self.max_pool(self.conv5_4, 'pool5') self.fc6 = self.fc_layer(self.pool5, "fc6") assert self.fc6.get_shape().as_list()[1:] == [4096] self.relu6 = tf.nn.relu(self.fc6) self.fc7 = self.fc_layer(self.relu6, "fc7") self.relu7 = tf.nn.relu(self.fc7) self.fc8 = self.fc_layer(self.relu7, "fc8") log("finished building VGG19 in %ds" % (time.time() - start_time)) return self.fc8 def avg_pool(self, bottom, name): return tf.nn.avg_pool(bottom, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME', name=name)
tensorflow.nn.relu
6,140
import tensorflow as tf with tf.variable_scope('anchor_generator'): if offset is None: offset = [stride[0]/2, stride[1]/2] features_width = tf.cast(features_width, tf.int32) features_height = tf.cast(features_height, tf.int32) scales = tf.convert_to_tensor(scales, dtype=tf.float32) ratios = tf.convert_to_tensor(ratios, dtype=tf.float32) offset = tf.convert_to_tensor(offset, dtype=tf.float32) scales_grid, ratios_grid = tf.meshgrid(scales, ratios) scales_grid = tf.reshape(scales_grid, [-1, 1]) ratios_grid = tf.reshape(ratios_grid, [-1, 1])
tensorflow.convert_to_tensor
6,141
import tensorflow as tf #rnn_outputs.append(state) #final_state = rnn_outputs[-1] # 得到最后的state cell = tf.contrib.rnn.BasicRNNCell(num_units=state_size) rnn_outputs, final_state = tf.nn.dynamic_rnn(cell, rnn_inputs, initial_state=init_state) '''预测,损失,优化''' with tf.variable_scope('softmax'): W = tf.get_variable('W', [state_size, num_classes]) b = tf.get_variable('b', [num_classes], initializer=tf.constant_initializer(0.0)) '''因为rnn_outputs是三维的,这里需要将其转成2维的, 矩阵运算后再转换回来[batch_size, num_steps, num_classes]''' logits = tf.reshape(tf.matmul(tf.reshape(rnn_outputs, [-1, state_size]), W) +b, \ shape=[batch_size, num_steps, num_classes]) predictions = tf.nn.softmax(logits) y_as_list = tf.unstack(y, num=num_steps, axis=1) losses = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=y,logits=logits)
tensorflow.constant_initializer
6,142
import tensorflow as tf if FLAGS.input_file is not None: for input_pattern in FLAGS.input_file.split(","): input_files.extend(tf.gfile.Glob(input_pattern)) if FLAGS.input_dir is not None: for filename in tf.gfile.ListDirectory(FLAGS.input_dir): input_files.extend(tf.gfile.Glob(os.path.join(FLAGS.input_dir, filename))) tf.logging.info("*** Input Files ***") for input_file in input_files: tf.logging.info(" %s" % input_file) validation_input_files = [] if FLAGS.validation_input_file is None and FLAGS.validation_input_dir is None: validation_input_files = input_files else: if FLAGS.validation_input_file is not None: for input_pattern in FLAGS.validation_input_file.split(","): validation_input_files.extend(tf.gfile.Glob(input_pattern))
tensorflow.logging.info
6,143
import tensorflow as tf target_weights = get_weights(targets[:, 1:], utils.EOS_ID, include_first_eos=True) parameters = dict(encoders=encoders[1:], decoder=encoders[0], training=training) attention_states, encoder_state, encoder_input_length[1:] = multi_encoder( encoder_inputs[1:], encoder_input_length=encoder_input_length[1:], **parameters) decoder_inputs = encoder_inputs[0][:, :-1] batch_size = tf.shape(decoder_inputs)[0] pad = tf.ones(shape=tf.stack([batch_size, 1]), dtype=tf.int32) * utils.BOS_ID decoder_inputs = tf.concat([pad, decoder_inputs], axis=1) outputs, _, states, attns, _, _, _ = attention_decoder( attention_states=attention_states, initial_state=encoder_state, decoder_inputs=decoder_inputs, encoder_input_length=encoder_input_length[1:], **parameters ) chaining_loss = sequence_loss(logits=outputs, targets=encoder_inputs[0], weights=input_weights[0]) if 'lstm' in decoder.cell_type.lower():
tensorflow.stack
6,144
import tensorflow as tf """ mu, var = self.build_prior_mean_var(test_points, num_latent, True) jitter = tfhacks.eye(tf.shape(mu)[0], var.dtype) * 1e-06 L = tf.batch_cholesky(tf.transpose(var, (2, 0, 1)) + jitter) V_shape = [tf.shape(L)[0], tf.shape(L)[1], num_samples] V = tf.random_normal(V_shape, dtype=L.dtype) samples = tf.expand_dims(tf.transpose(mu), -1) + tf.batch_matmul(L, V) return tf.transpose(samples) @autoflow((tf.float64, [None, None]), (tf.float64, [None, None]), (tf.float64, [None, None])) def compute_posterior_mean_var(self, X, Y, test_points):
tensorflow.batch_matmul
6,145
import tensorflow as tf if use_tpu: def tpu_scaffold(): tf.train.init_from_checkpoint(init_checkpoint, assignment_map) return tf.train.Scaffold() scaffold_fn = tpu_scaffold elif not do_serve: tf.train.init_from_checkpoint(init_checkpoint, assignment_map) tf.logging.info("**** Trainable Variables ****") for var in tvars: init_string = "" if var.name in initialized_variable_names: init_string = ", *INIT_FROM_CKPT*" tf.logging.info(" name = %s, shape = %s%s", var.name, var.shape, init_string) output_spec = None if mode == tf.estimator.ModeKeys.TRAIN:
tensorflow.logging.info
6,146
import tensorflow as tf output0 = f(tf.constant([1]), tf.constant([2]))
tensorflow.constant
6,147
import tensorflow as tf trg_len = tf.shape(attention_weights)[1] src_indices = tf.tile(tf.reshape(tf.range(src_len), shape=[1, 1, src_len]), [batch_size, trg_len, 1]) trg_indices = tf.tile(tf.reshape(tf.range(trg_len), shape=[1, trg_len, 1]), [batch_size, 1, src_len]) source_length = encoder_input_length[0] target_length = tf.to_int32(tf.reduce_sum(trg_mask, axis=1)) true_src_len = tf.reshape(source_length, shape=[batch_size, 1, 1]) - 1 true_trg_len = tf.reshape(target_length, shape=[batch_size, 1, 1]) - 1 src_mask = tf.to_float(tf.sequence_mask(source_length, maxlen=src_len)) mask = tf.matmul(tf.expand_dims(trg_mask, axis=2), tf.expand_dims(src_mask, axis=1)) monotonous = tf.sqrt(((true_trg_len * src_indices - true_src_len * trg_indices) ** 2) / (true_trg_len**2 + true_src_len**2)) monotonous = tf.to_float(monotonous < monotonicity_dist) non_monotonous = (1 - monotonous) * mask attn_loss = tf.reduce_sum(attention_weights * tf.stop_gradient(non_monotonous)) / tf.to_float(batch_size) if monotonicity_decay: decay = tf.stop_gradient(0.5 ** (tf.to_float(global_step) / monotonicity_decay)) else: decay = 1.0 xent_loss += monotonicity_weight * decay * attn_loss losses = [xent_loss, reinforce_loss, baseline_loss_] return losses, [outputs], encoder_state, attention_states, attention_weights, samples, beam_fun, initial_data
tensorflow.to_float
6,148
import tensorflow as tf tf.app.flags.DEFINE_integer( 'save_summary_steps', 500, 'The frequency with which summaries are saved, in seconds.') tf.app.flags.DEFINE_integer( 'save_checkpoints_secs', 7200, 'The frequency with which the model is saved, in seconds.') # model related configuration tf.app.flags.DEFINE_integer( 'train_image_size', 352, 'The size of the input image for the model to use.') tf.app.flags.DEFINE_integer( 'resnet_size', 50, 'The size of the ResNet model to use.') tf.app.flags.DEFINE_integer(
tensorflow.app.flags.DEFINE_integer
6,149
import tensorflow as tf elif x.dtype == tf.uint32 or x.dtype == tf.uint64: TypeError('Data type %r is not supported' % x.dtype) x = tf.sparse.reduce_sum(x, axis=0) elif isinstance(x, tf.RaggedTensor): raise NotImplementedError( 'Elementwise sum does not support RaggedTensors.') else: x = tf.reduce_sum(input_tensor=x, axis=0) output_dtype, sum_fn = _sum_combine_fn_and_dtype(x.dtype) return _numeric_combine( inputs=[x], fn=sum_fn, default_accumulator_value=0, reduce_instance_dims=reduce_instance_dims,
tensorflow.reduce_sum
6,150
import tensorflow as tf ) # Increment episode count. with tf.control_dependencies(control_inputs=(assignment,)): assignment = tf.assign_add(ref=self.episode_count, value=num_episodes) # Increment memory index. with tf.control_dependencies(control_inputs=(assignment,)): assignment = tf.assign( ref=self.episode_indices[-1], value=tf.where(self.memory_index + num_instances > self.capacity, self.episode_indices[self.episode_count - 1], self.capacity - 1) )
tensorflow.control_dependencies
6,151
import tensorflow as tf with tf.variable_scope("root", initializer=tf.constant_initializer(0.5)): cell = tf.nn.rnn_cell.BasicLSTMCell(2, state_is_tuple=True)
tensorflow.nn.rnn_cell.BasicLSTMCell
6,152
import tensorflow as tf tf.float32, size=self.num_cells + 2, clear_after_read=False) anchors_w_1 = tf.TensorArray( tf.float32, size=self.num_cells + 2, clear_after_read=False) arc_seq = tf.TensorArray(tf.int32, size=self.num_cells * 4) if prev_c is None: assert prev_h is None, "prev_c and prev_h must both be None" prev_c = [tf.zeros([1, self.lstm_size], tf.float32) for _ in range(self.lstm_num_layers)] prev_h = [tf.zeros([1, self.lstm_size], tf.float32) for _ in range(self.lstm_num_layers)] inputs = self.g_emb for layer_id in range(2): next_c, next_h = stack_lstm(inputs, prev_c, prev_h, self.w_lstm) prev_c, prev_h = next_c, next_h anchors = anchors.write(layer_id, tf.zeros_like(next_h[-1])) anchors_w_1 = anchors_w_1.write( layer_id, tf.matmul(next_h[-1], self.w_attn_1)) def _condition(layer_id, *args): return tf.less(layer_id, self.num_cells + 2) def _body(layer_id, inputs, prev_c, prev_h, anchors, anchors_w_1, arc_seq, entropy, log_prob): indices = tf.range(0, layer_id, dtype=tf.int32) start_id = 4 * (layer_id - 2) prev_layers = [] for i in range(2): # index_1, index_2 next_c, next_h = stack_lstm(inputs, prev_c, prev_h, self.w_lstm) prev_c, prev_h = next_c, next_h
tensorflow.zeros_like
6,153
import tensorflow as tf # add by wangxiao # define the inputs of signature def serving_input_fn(): label_ids = tf.placeholder(tf.int32, [None], name='label_ids') input_ids = tf.placeholder(tf.int32, [None, FLAGS.max_seq_length], name='input_ids') input_mask = tf.placeholder(tf.int32, [None, FLAGS.max_seq_length], name='input_mask') segment_ids = tf.placeholder(tf.int32, [None, FLAGS.max_seq_length], name='segment_ids') input_fn = tf.estimator.export.build_raw_serving_input_receiver_fn({ 'label_ids': label_ids, 'input_ids': input_ids, 'input_mask': input_mask, 'segment_ids': segment_ids, })() return input_fn
tensorflow.estimator.export.build_raw_serving_input_receiver_fn
6,154
from tensorflow.python.framework import ops Raises: TypeError: If `x` cannot be cast to the `dtype`. """ with ops.op_scope([x], name, "Cast") as name: if isinstance(x, ops.SparseTensor): values_cast = cast(x.values, dtype, name=name) return ops.SparseTensor(x.indices, values_cast, x.shape) else: # TODO(touts): Handle what Josh said. # # Could return ops.convert_to_tensor(x, dtype=dtype, ...) here, but that # allows some conversions that cast() can't do, e.g. casting numbers to # strings. x = ops.convert_to_tensor(x, name="x") if x.dtype.base_dtype == dtype: return x return gen_math_ops.cast(x, dtype, name=name) def to_float(x, name="ToFloat"): """Casts a tensor to type `float32`. Args: x: A `Tensor` or `SparseTensor`. name: A name for the operation (optional). Returns:
tensorflow.python.framework.ops.convert_to_tensor
6,155
import tensorflow as tf slim.conv2d_transpose, slim.separable_conv2d, slim.fully_connected], weights_regularizer=weights_regularizer, biases_regularizer=biases_regularizer, biases_initializer=tf.constant_initializer(0.0)): gtboxes_and_label_h, gtboxes_and_label_r = tf.py_func(self.get_gtboxes_and_label, inp=[inputs_list[i][1], inputs_list[i][2], inputs_list[i][3]], Tout=[tf.float32, tf.float32]) gtboxes_and_label_h = tf.reshape(gtboxes_and_label_h, [-1, 5])
tensorflow.py_func
6,156
import tensorflow as tf lambda_term = lambdas * label_priors * (target_recall - 1.0) * maybe_log2 loss = tf.reshape(weighted_loss + lambda_term, original_shape)
tensorflow.reshape
6,157
import tensorflow as tf biases = tf.get_variable('biases', [output_node], initializer=tf.constant_initializer(0.0)) layer_out = tf.matmul(prev_x, weights) + biases # Output of Network y = layer_out # Global step with tf.variable_scope('training_step', reuse=tf.AUTO_REUSE): global_step = tf.get_variable("global_step", [], dtype=tf.int32, initializer=tf.constant_initializer(0), trainable=False) # Loss value reg_item = tf.contrib.layers.l1_l2_regularizer(L1_reg,
tensorflow.variable_scope
6,158
import tensorflow as tf if non_linear_fn is None: return output else: activation = non_linear_fn(output) return activation def batch_norm(x, b_train, scope, reuse=False): with tf.variable_scope(scope, reuse=tf.AUTO_REUSE): n_out = x.get_shape().as_list()[-1] beta = tf.get_variable('beta', initializer=tf.constant(0.0, shape=[n_out])) gamma = tf.get_variable('gamma', initializer=tf.constant(1.0, shape=[n_out])) batch_mean, batch_var = tf.nn.moments(x, [0], name='moments') ema = tf.train.ExponentialMovingAverage(decay=0.9)
tensorflow.variable_scope
6,159
import tensorflow as tf self.layers = [] # Temp(First) Conv Layer with tf.variable_scope("temp_conv") as scope: filter_shape = [3, embedding_size, 4, 64] W = tf.get_variable(name='W_1', shape=filter_shape, initializer=he_normal,
tensorflow.variable_scope
6,160
import tensorflow as tf except ValueError: tf.get_variable_scope().reuse_variables() return tf.get_variable(name, *args, **kwargs)
tensorflow.get_variable
6,161
import tensorflow as tf with tf.variable_scope("coref_layer", reuse=(i > 0)): top_antecedent_emb = tf.gather(top_span_emb, top_antecedents) # [k, c, emb] top_antecedent_scores = top_fast_antecedent_scores + self.get_slow_antecedent_scores(top_span_emb, top_antecedents, top_antecedent_emb, top_antecedent_offsets, top_span_speaker_ids, genre_emb) # [k, c] top_antecedent_weights = tf.nn.softmax(tf.concat([dummy_scores, top_antecedent_scores], 1)) # [k, c + 1] top_antecedent_emb = tf.concat([tf.expand_dims(top_span_emb, 1), top_antecedent_emb], 1) # [k, c + 1, emb] attended_span_emb = tf.reduce_sum(tf.expand_dims(top_antecedent_weights, 2) * top_antecedent_emb, 1) # [k, emb] with tf.variable_scope("f"): f = tf.sigmoid(util.projection(tf.concat([top_span_emb, attended_span_emb], 1), util.shape(top_span_emb, -1))) # [k, emb] top_span_emb = f * attended_span_emb + (1 - f) * top_span_emb # [k, emb] top_antecedent_scores = tf.concat([dummy_scores, top_antecedent_scores], 1) # [k, c + 1]
tensorflow.variable_scope
6,162
from tensorflow.python.client import device_lib gamma=0.99, learning_starts=learning_starts, learning_freq=4, frame_history_len=4, target_update_freq=10000, grad_norm_clipping=10, restore=restore, checkpoint_dir=checkpoint_dir ) env.close() return save_path def get_available_gpus(): from tensorflow.python.client import device_lib local_device_protos = device_lib.list_local_devices() return [x.physical_device_desc for x in local_device_protos if x.device_type == 'GPU'] def set_global_seeds(i): try: import tensorflow as tf except ImportError: pass else: tf.set_random_seed(i) np.random.seed(i) random.seed(i)
tensorflow.python.client.device_lib.list_local_devices
6,163
import tensorflow as tf self.D = dim_feature[1] self.M = dim_embed self.H = dim_hidden self.T = n_time_step self._start = word_to_idx['<START>'] self._null = word_to_idx['<NULL>'] self.weight_initializer = tf.contrib.layers.xavier_initializer() self.const_initializer = tf.constant_initializer(0.0) self.emb_initializer = tf.random_uniform_initializer(minval=-1.0, maxval=1.0) # Place holder for features and captions self.features = tf.placeholder(tf.float32, [None, self.L, self.D]) self.captions = tf.placeholder(tf.int32, [None, self.T + 1]) def _get_initial_lstm(self, features): with tf.variable_scope('initial_lstm'): features_mean = tf.reduce_mean(features, 1)
tensorflow.random_uniform_initializer
6,164
from tensorflow.python.framework import ops mid = segment_ids_shape.ndims if mid is None: return [tensor_shape.unknown_shape()] else: num_segments = tensor_util.ConstantValue(op.inputs[2]) return [tensor_shape.TensorShape([num_segments]).concatenate( data_shape[mid:])] @ops.RegisterShape("LinSpace") def _LinspaceShape(op): num = tensor_util.ConstantValue(op.inputs[2]) return [tensor_shape.vector(num)]
tensorflow.python.framework.ops.RegisterShape
6,165
import tensorflow as tf if self._offset: self._set_default_initializer(self.BETA) self._beta = tf.get_variable( self.BETA, shape=self._mean_shape, initializer=self._initializers[self.BETA]) else: self._beta = None if self._scale: self._set_default_initializer(self.GAMMA) self._gamma = tf.get_variable( self.GAMMA, shape=self._mean_shape, initializer=self._initializers[self.GAMMA]) else: self._gamma = None out = tf.nn.batch_normalization( input_batch, mean, variance,
tensorflow.get_variable
6,166
import tensorflow as tf #add_layer 函数里面所有的with都是为了tensorboard添加上去的 def add_layer(inputs, in_size, out_size, activation_function=None,nameScope="layer"): # add one more layer and return the output of this layer with tf.name_scope(nameScope): with tf.name_scope('weights'): Weights = tf.Variable(tf.random_normal([in_size, out_size]), name='W') with tf.name_scope('biases'): biases = tf.Variable(tf.zeros([1, out_size]) + 0.1, name='b') with tf.name_scope('Wx_plus_b'): Wx_plus_b = tf.add(tf.matmul(inputs, Weights), biases) if activation_function is None: outputs = Wx_plus_b else: outputs = activation_function(Wx_plus_b, )
tensorflow.name_scope
6,167
import tensorflow as tf # on the one hand; but on the other hand, we get less frequent parameter updates, which # slows down learning. In this code, we found that making local steps be much # smaller than 20 makes the algorithm more difficult to tune and to get to work. self.runner = RunnerThread(env, pi, 20) grads = tf.gradients(self.loss, pi.var_list) tf.summary.scalar("model/policy_loss", pi_loss / bs) tf.summary.scalar("model/value_loss", vf_loss / bs) tf.summary.scalar("model/entropy", entropy / bs)
tensorflow.gradients
6,168
import tensorflow as tf box_xy, box_wh, obj, cls = tf.split(logits, (2, 2, 1, num_classes), axis=-1) box_xy = tf.sigmoid(box_xy) obj = tf.sigmoid(obj) cls = tf.sigmoid(cls) anchors = anchors.astype(np.float32) grid_shape = x_shape[1:3] # print(grid_shape) grid_h, grid_w = grid_shape[0], grid_shape[1] # print(grid_h,tf.range(grid_h)) grid = tf.meshgrid(tf.range(grid_w), tf.range(grid_h)) grid = tf.expand_dims(tf.stack(grid, axis=-1), axis=2) # [gx, gy, 1, 2] box_xy = (box_xy + tf.cast(grid, dtype)) * stride box_wh = tf.exp(box_wh) * anchors box_x1y1 = box_xy - box_wh / 2. box_x2y2 = box_xy + box_wh / 2. box = tf.concat([box_x1y1, box_x2y2], axis=-1) boxes.append(tf.reshape(box, (x_shape[0], -1, 1, 4))) objects.append(tf.reshape(obj, (x_shape[0], -1, 1))) classes.append(tf.reshape(cls, (x_shape[0], -1, num_classes))) boxes = tf.concat(boxes, axis=1) objects = tf.concat(objects, axis=1) classes = tf.concat(classes, axis=1)
tensorflow.cast
6,169
import tensorflow as tf return (loss, per_example_loss, logits, probabilities) def model_fn_builder(bert_config, num_labels, init_checkpoint, learning_rate, num_train_steps, num_warmup_steps, use_tpu, use_one_hot_embeddings): """Returns `model_fn` closure for TPUEstimator.""" def model_fn(features, labels, mode, params): # pylint: disable=unused-argument """The `model_fn` for TPUEstimator.""" tf.logging.info("*** Features ***") for name in sorted(features.keys()): tf.logging.info(" name = %s, shape = %s" % (name, features[name].shape)) input_ids = features["input_ids"] input_mask = features["input_mask"] segment_ids = features["segment_ids"] label_ids = features["label_ids"] is_real_example = None if "is_real_example" in features: is_real_example = tf.cast(features["is_real_example"], dtype=tf.float32) else: is_real_example = tf.ones(tf.shape(label_ids), dtype=tf.float32) is_training = (mode == tf.estimator.ModeKeys.TRAIN)
tensorflow.logging.info
6,170
import tensorflow as tf bounds=bounds, var_list=variables, # supply with bounds to match order! tol=1e-14, ) tf.scalar_summary('nll', nll) init_op = tf.initialize_all_variables() # from http://stackoverflow.com/a/35907755/1199693 config = tf.ConfigProto(graph_options=tf.GraphOptions( # optimizer_options=tf.OptimizerOptions(opt_level=tf.OptimizerOptions.L2))) # L2 werkt niet (wrs eruit gehaald) optimizer_options=tf.OptimizerOptions(opt_level=tf.OptimizerOptions.L1))) # start session with tf.Session(config=config) as sess: # Merge all the summaries and write them out to /tmp/mnist_logs (by default) summarize_merged = tf.merge_all_summaries() summary_writer = tf.train.SummaryWriter('./train/%i' % int(time.time()), sess.graph) # Run the init operation. sess.run(init_op) true_vars = {} for v in variables: key = v.name[:v.name.find(':')] true_vars[key] = v.eval() true_vars['m0'] = m0.eval() print("name\t" + "\t".join([v.name.ljust(10) for v in variables]) + "\t | <nll>\t\t | step")
tensorflow.Session
6,171
import tensorflow as tf self.fc1 = tf.contrib.layers.fully_connected(self.flatten, self.config.cifar10_cnn["fc1_nb_units"]) self.fc2 = tf.contrib.layers.fully_connected(self.fc1, self.config.data["num_categories"], activation_fn=None) # Compute loss with tf.name_scope("loss"): self.loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=self.fc2, labels=self.y)) # Optimizer with tf.name_scope("training_op"): self.training_op = tf.compat.v1.train.AdamOptimizer(self.learning_rate).minimize(self.loss) # Perf metrics with tf.name_scope("accuracy"): prediction = tf.equal(tf.argmax(self.fc2, 1), tf.argmax(self.y, 1)) self.accuracy = tf.reduce_mean(tf.cast(prediction, tf.float32))
tensorflow.argmax
6,172
import tensorflow as tf # print(pred_strings) # print(self.labels) loss = self.loss_layer(logits, true_tag_ids, nwords, crf_params) metrics = self.compute_metrics( true_tag_ids, pred_ids, num_tags, indices, nwords ) if self.mode == tf.estimator.ModeKeys.EVAL: return tf.estimator.EstimatorSpec( self.mode, loss=loss, eval_metric_ops=metrics ) elif self.mode == tf.estimator.ModeKeys.TRAIN: optimizer_params = self.params.get("optimizer_params", {}) global_step = tf.train.get_or_create_global_step() # apply learning rate decay if it's setup already. lr_decay_params = optimizer_params.pop("learning_rate_exp_decay", {})
tensorflow.estimator.EstimatorSpec
6,173
import tensorflow as tf Returns: Batch tensor of the new observations. """ if indices is None: indices = tf.range(len(self._batch_env)) observ_dtype = self._parse_dtype(self._batch_env.observation_space) observ = tf.py_func( self._batch_env.reset, [indices], observ_dtype, name='reset') observ = tf.check_numerics(observ, 'observ') reward = tf.zeros_like(indices, tf.float32) done = tf.zeros_like(indices, tf.bool) with tf.control_dependencies([ tf.scatter_update(self._observ, indices, observ), tf.scatter_update(self._reward, indices, reward), tf.scatter_update(self._done, indices, done)]): return tf.identity(observ) @property
tensorflow.zeros_like
6,174
import tensorflow as tf common checkpoint of the model. Hence, we build a separate variable with a separate saver.""" embedding_shape = [int(len(self.test_set) / FLAGS.batch_size) * FLAGS.batch_size, self.encode.get_shape().as_list()[1]] tsv_path = os.path.join(FLAGS.logdir, 'metadata.tsv') self.embedding_test_ph = tf.placeholder(tf.float32, embedding_shape, name='embedding') self.embedding_test = tf.Variable(tf.random_normal(embedding_shape), name='test_embedding', trainable=False) self.embedding_assign = self.embedding_test.assign(self.embedding_test_ph) self.embedding_saver = tf.train.Saver(var_list=[self.embedding_test]) config = projector.ProjectorConfig() embedding = config.embeddings.add() embedding.tensor_name = self.embedding_test.name
tensorflow.random_normal
6,175
import tensorflow as tf unmatched_ignored_reg_weights = tf.gather(reg_weights, unmatched_ignored_anchor_indices) reg_weights= tf.dynamic_stitch(
tensorflow.dynamic_stitch
6,176
import tensorflow as tf save_path = os.path.join(self.get_temp_dir(), "basics_with_list") with self.test_session(graph=tf.Graph()) as sess: # Build a graph with 2 parameter nodes, and Save and # Restore nodes for them. v0 = tf.Variable(10.0, name="v0") v1 = tf.Variable(20.0, name="v1") save = tf.train.Saver([v0, v1]) tf.initialize_all_variables().run() # Check that the parameter nodes have been initialized. self.assertEqual(10.0, v0.eval()) self.assertEqual(20.0, v1.eval())
tensorflow.train.Saver
6,177
import tensorflow as tf indices_input = tf.concat(axis=0, values=[indices, tf.reshape(input_, [-1])]) indices_input = tf.reshape(indices_input, [2, -1])
tensorflow.reshape
6,178
from tensorflow.python.framework import tensor_shape @ops.RegisterShape("LogicalAnd") @ops.RegisterShape("LogicalOr") @ops.RegisterShape("Maximum") @ops.RegisterShape("Minimum") @ops.RegisterShape("Mod") @ops.RegisterShape("Mul") @ops.RegisterShape("NotEqual") @ops.RegisterShape("Pow") @ops.RegisterShape("Sub") def _BroadcastShape(op): """Common shape function for binary operators that broadcast their inputs.""" shape_x = op.inputs[0].get_shape() shape_y = op.inputs[1].get_shape() if shape_x.ndims is None or shape_y.ndims is None: return [tensor_shape.unknown_shape()] # To compute the broadcasted dimensions, we zip together shape_x and shape_y, # and pad with 1 to make them the same length. broadcasted_dims = reversed(list(six.moves.zip_longest( reversed(shape_x.dims), reversed(shape_y.dims), fillvalue=tensor_shape.Dimension(1)))) # Next we combine the dimensions according to the numpy broadcasting rules. # http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html return_dims = [] for (dim_x, dim_y) in broadcasted_dims: if dim_x.value is None or dim_y.value is None: # One or both dimensions is unknown. If either dimension is greater than
tensorflow.python.framework.tensor_shape.unknown_shape
6,179
import tensorflow as tf current_inputs = text_emb # [num_sentences, max_sentence_length, emb] for layer in range(self.config["contextualization_layers"]): with tf.variable_scope("layer_{}".format(layer)): with tf.variable_scope("fw_cell"): cell_fw = util.CustomLSTMCell(self.config["contextualization_size"], num_sentences, self.lstm_dropout) with tf.variable_scope("bw_cell"): cell_bw = util.CustomLSTMCell(self.config["contextualization_size"], num_sentences, self.lstm_dropout) state_fw = tf.contrib.rnn.LSTMStateTuple(tf.tile(cell_fw.initial_state.c, [num_sentences, 1]), tf.tile(cell_fw.initial_state.h, [num_sentences, 1])) state_bw = tf.contrib.rnn.LSTMStateTuple(tf.tile(cell_bw.initial_state.c, [num_sentences, 1]), tf.tile(cell_bw.initial_state.h, [num_sentences, 1])) (fw_outputs, bw_outputs), _ = tf.nn.bidirectional_dynamic_rnn(
tensorflow.variable_scope
6,180
import tensorflow as tf #print('last outputs={}'.format(outputs)) # Output is result of linear activation of last layer of RNN weight = tf.Variable(tf.random_normal([LSTM_SIZE, N_OUTPUTS])) bias = tf.Variable(tf.random_normal([N_OUTPUTS])) predictions = tf.matmul(outputs, weight) + bias # 2. Loss function, training/eval ops if mode == tf.estimator.ModeKeys.TRAIN or mode == tf.estimator.ModeKeys.EVAL: loss = tf.losses.mean_squared_error(labels, predictions)
tensorflow.matmul
6,181
import tensorflow as tf cutout_center_width = tf.random.uniform( shape=[], minval=0, maxval=image_width, dtype=tf.int32) lower_pad = tf.maximum(0, cutout_center_height - length // 2) upper_pad = tf.maximum(0, image_height - cutout_center_height - length // 2) left_pad = tf.maximum(0, cutout_center_width - length // 2) right_pad = tf.maximum(0, image_width - cutout_center_width - length // 2) cutout_shape = [image_height - (lower_pad + upper_pad), image_width - (left_pad + right_pad)] padding_dims = [[lower_pad, upper_pad], [left_pad, right_pad]]
tensorflow.maximum
6,182
import tensorflow as tf inputs = tf.reshape(inputs, [-1, self.final_size]) inputs = tf.layers.dense(inputs=inputs, units=self.num_classes) inputs = tf.identity(inputs, 'final_dense') return inputs
tensorflow.layers.dense
6,183
import tensorflow as tf # Calculate: m(x) m(x)^T + m(x) \mu(x)^T + \mu(x) m(x)^T, # where m(x) is the mean_function and \mu(x) is fmean e_mean_mean = expectation(pXnew, mean_function, mean_function) # N x D x D Lit_q_mu = tf.matrix_triangular_solve(Luu, q_mu, adjoint=True) e_mean_Kuf = expectation(pXnew, mean_function, (kern, feat)) # N x D x M # einsum isn't able to infer the rank of e_mean_Kuf, hence we explicitly set the rank of the tensor: e_mean_Kuf = tf.reshape(e_mean_Kuf, [num_data, num_func, num_ind]) e_fmean_mean = tf.einsum("nqm,mz->nqz", e_mean_Kuf, Lit_q_mu) # N x D x D e_related_to_mean = e_fmean_mean + tf.matrix_transpose(e_fmean_mean) + e_mean_mean if full_output_cov: fvar = ( tf.matrix_diag(tf.tile((eKff - tf.trace(Li_eKuffu_Lit))[:, None], [1, num_func])) + tf.matrix_diag(tf.einsum("nij,dji->nd", Li_eKuffu_Lit, cov)) + # tf.matrix_diag(tf.trace(tf.matmul(Li_eKuffu_Lit, cov))) + tf.einsum("ig,nij,jh->ngh", q_mu, Li_eKuffu_Lit, q_mu) - # tf.matmul(q_mu, tf.matmul(Li_eKuffu_Lit, q_mu), transpose_a=True) - fmean[:, :, None] * fmean[:, None, :] + e_related_to_mean ) else: fvar = ( (eKff - tf.trace(Li_eKuffu_Lit))[:, None] + tf.einsum("nij,dji->nd", Li_eKuffu_Lit, cov) + tf.einsum("ig,nij,jg->ng", q_mu, Li_eKuffu_Lit, q_mu) - fmean ** 2 + tf.matrix_diag_part(e_related_to_mean) ) return fmean, fvar
tensorflow.einsum
6,184
import tensorflow as tf if ent_coef_loss is not None: with tf.control_dependencies([train_values_op]): ent_coef_op = entropy_optimizer.minimize(ent_coef_loss, var_list=self.log_ent_coef) self.infos_names += ['ent_coef_loss', 'ent_coef'] self.step_ops += [ent_coef_op, ent_coef_loss, self.ent_coef] # Monitor losses and entropy in tensorboard tf.summary.scalar('policy_loss', policy_loss) tf.summary.scalar('qf1_loss', qf1_loss) tf.summary.scalar('qf2_loss', qf2_loss) tf.summary.scalar('value_loss', value_loss) tf.summary.scalar("Imitation_loss",self.actor_loss_di) tf.summary.scalar('entropy', self.entropy) tf.summary.scalar('importance weight',tf.reduce_mean(self.weight_ph)) if ent_coef_loss is not None: tf.summary.scalar('ent_coef_loss', ent_coef_loss) tf.summary.scalar('ent_coef', self.ent_coef) tf.summary.scalar('learning_rate', tf.reduce_mean(self.learning_rate_ph)) # Retrieve parameters that must be saved self.params = tf_util.get_trainable_vars("model") self.target_params = tf_util.get_trainable_vars("target/values_fn/vf") # Initialize Variables and target network with self.sess.as_default():
tensorflow.reduce_mean
6,185
import tensorflow as tf i_z1_y0_x1 = tf.gather(im_flat, idx_z1_y0_x1) i_z1_y1_x0 = tf.gather(im_flat, idx_z1_y1_x0) i_z1_y1_x1 = tf.gather(im_flat, idx_z1_y1_x1) # Finally calculate interpolated values. x0_f = tf.to_float(x0) x1_f = tf.to_float(x1) y0_f = tf.to_float(y0) y1_f = tf.to_float(y1) z0_f = tf.to_float(z0) z1_f = tf.to_float(z1) # Check the out-of-boundary case. x0_valid = tf.to_float( tf.less_equal(x0, max_x) & tf.greater_equal(x0, 0)) x1_valid = tf.to_float( tf.less_equal(x1, max_x) & tf.greater_equal(x1, 0)) y0_valid = tf.to_float( tf.less_equal(y0, max_y) & tf.greater_equal(y0, 0)) y1_valid = tf.to_float( tf.less_equal(y1, max_y) & tf.greater_equal(y1, 0)) z0_valid = tf.to_float( tf.less_equal(z0, max_z) & tf.greater_equal(z0, 0)) z1_valid = tf.to_float( tf.less_equal(z1, max_z) & tf.greater_equal(z1, 0)) w_z0_y0_x0 = tf.expand_dims(((x1_f - x) * (y1_f - y) * (z1_f - z) * x1_valid * y1_valid * z1_valid), 1) w_z0_y0_x1 = tf.expand_dims(((x - x0_f) * (y1_f - y) * (z1_f - z) * x0_valid * y1_valid * z1_valid),
tensorflow.less_equal
6,186
import tensorflow as tf K.clear_session() init_session(gpu_memory_fraction) def tensorflow_session(gpu_memory_fraction): config = tf.ConfigProto() config.gpu_options.allow_growth = True config.gpu_options.per_process_gpu_memory_fraction = gpu_memory_fraction return tf.Session(config=config) def load_image(path): img = Image.open(path) if img.mode != 'RGB': img = img.convert('RGB') return img
tensorflow.Session
6,187
import tensorflow as tf with tf.variable_scope("root", initializer=tf.constant_initializer(0.5)): cell = tf.nn.rnn_cell.GRUCell(2) inp = tf.constant(0.5, shape=[2, 2, 2]) enc_outputs, enc_state = tf.nn.dynamic_rnn(cell, inp, dtype=tf.float32) attn_states = enc_outputs dec_inp = [tf.constant(0.4, shape=[2, 2])] * 3 dec, mem = tf.nn.seq2seq.attention_decoder( dec_inp, enc_state, attn_states, cell, output_size=4) sess.run([tf.global_variables_initializer()])
tensorflow.constant
6,188
import tensorflow as tf out = img_in with tf.variable_scope("convnet"): # original architecture out = layers.convolution2d(out, num_outputs=32, kernel_size=8, stride=4, activation_fn=tf.nn.relu) out = layers.convolution2d(out, num_outputs=64, kernel_size=4, stride=2, activation_fn=tf.nn.relu) out = layers.convolution2d(out, num_outputs=64, kernel_size=3, stride=1, activation_fn=tf.nn.relu) out = layers.flatten(out) with tf.variable_scope("action_value"): out = layers.fully_connected(out, num_outputs=512, activation_fn=tf.nn.relu) out = layers.fully_connected(out, num_outputs=num_actions, activation_fn=None) return out
tensorflow.variable_scope
6,189
import tensorflow as tf cell = tf.nn.rnn_cell.BasicLSTMCell(2, state_is_tuple=True) outputs_dict, state_dict = tf.nn.seq2seq.one2many_rnn_seq2seq( enc_inp, dec_inp_dict, cell, 2, dec_symbols_dict, embedding_size=2) sess.run([tf.global_variables_initializer()]) res = sess.run(outputs_dict["0"]) self.assertEqual(3, len(res)) self.assertEqual((2, 5), res[0].shape)
tensorflow.global_variables_initializer
6,190
import tensorflow as tf y_shape = [] for i, s in zip(int_shape(y), tf.unstack(tf.shape(y))):
tensorflow.shape
6,191
import tensorflow as tf tgt_larg = tf.where(geq, tgt1, tgt2) tgt_small = tf.where(geq, tgt2, tgt1) pred_larg = tf.where(geq, pred1, pred2) pred_small = tf.where(geq, pred2, pred1) loss = tf.maximum(0., (tgt_larg - tgt_small) - (pred_larg - pred_small)) if hard_ratio < 1.0: hard_num = tf.cast(tools.shape(pred1)[0] * hard_ratio, tf.int32) loss = tf.reshape(loss, [-1])
tensorflow.maximum
6,192
from tensorflow.contrib.eager.python.examples.revnet import revnet (images, labels) = random_batch(batch_size, config) model = revnet.RevNet(config=config)
tensorflow.contrib.eager.python.examples.revnet.revnet.RevNet
6,193
import tensorflow as tf def example_reading_spec(self): data_fields = {"targets": tf.VarLenFeature(tf.int64)} if self.has_inputs: data_fields["inputs"] = tf.VarLenFeature(tf.int64) if self.packed_length: if self.has_inputs: data_fields["inputs_segmentation"] = tf.VarLenFeature(tf.int64) data_fields["inputs_position"] = tf.VarLenFeature(tf.int64) data_fields["targets_segmentation"] = tf.VarLenFeature(tf.int64) data_fields["targets_position"] = tf.VarLenFeature(tf.int64) data_items_to_decoders = None return (data_fields, data_items_to_decoders) def eval_metrics(self): return [
tensorflow.VarLenFeature
6,194
import tensorflow as tf if mode != 'gen': targets = tf.reshape(targets_nunroll, shape=[batch_size * rnn_nunroll]) target_weights = tf.reshape(target_weights_nunroll, shape=[batch_size * rnn_nunroll]) # CNN cnn_output = feats_audio if do_cnn: layer_last = feats_audio nfilt_last = audio_nchannels for i, ((ntime, nband, nfilt), (ptime, pband)) in enumerate(zip(cnn_filter_shapes, cnn_pool)): layer_name = 'cnn_{}'.format(i) with tf.variable_scope(layer_name): filters = tf.get_variable('filters', [ntime, nband, nfilt_last, nfilt], initializer=cnn_init, dtype=dtype) biases = tf.get_variable('biases', [nfilt], initializer=tf.constant_initializer(0.1), dtype=dtype) if cnn_rnn_zack: padding = 'SAME' else: padding = 'VALID' conv = tf.nn.conv2d(layer_last, filters, [1, 1, 1, 1], padding=padding) biased = tf.nn.bias_add(conv, biases) convolved = tf.nn.relu(biased) pool_shape = [1, ptime, pband, 1] pooled = tf.nn.max_pool(convolved, ksize=pool_shape, strides=pool_shape, padding='SAME') print('{}: {}'.format(layer_name, pooled.get_shape()))
tensorflow.constant_initializer
6,195
import tensorflow as tf # Calculate the output size. x_shape = tf.shape(x) out_shape = calc_out_size_4d(x_shape, ksize, strides, padding) # Pad input. x_ = _pad_input( x, ksize, strides, padding, bsize=[1, blk_shape[1], blk_shape[2], 1], bstrides=bstrides) # In matrix multiplication mode, the block patch should be the same as the kernel size. assert_shape = tf.assert_equal( tf.stack([blk_shape[1], blk_shape[2]]), tf.stack([ksize[0], ksize[1]]), message='Expect blk_indices.shape[1] == w.shape[0] and blk_indices.shape[2] == w.shape[1].') # Currently we do not support strides > 1 in this matrix multiplication mode. Could be supported # in the future. assert_strides = tf.assert_equal( tf.cast(tf.stack([strides[1], strides[2]]), tf.int64), tf.constant([1, 1], dtype=tf.int64), message='Strides > 1 not supported.')
tensorflow.stack
6,196
import tensorflow as tf emb_values = list() for embedding_weight in tf_sparse_demo.embedding_weights: if args.save_params: filepath = r"./embedding_variables/" utils.try_make_dirs(filepath) emb_values.append(embedding_weight.read_value()) else: emb_values = tf.constant(1.0) tf_results = list() with tf.Session(graph=graph) as sess: sess.run([init_op, iterator_init]) sess.run(restore_op) sess.graph.finalize() for step in range(args.iter_num): loss_v, emb_vector_v = sess.run([*graph_results]) print("*" * 80) print(f"step: {step}, loss: {loss_v}, embedding_vector:\n{emb_vector_v}") tf_results.append(emb_vector_v)
tensorflow.Session
6,197
import tensorflow as tf Examples -------- >>> dense_vars = tl.layers.get_variable_with_name('dense', True, True) """ if name is None: raise Exception("please input a name") logging.info(" [*] geting variables with %s" % name) # tvar = tf.trainable_variables() if train_only else tf.all_variables() if train_only: t_vars = tf.trainable_variables() else: try: # TF1.0+ t_vars = tf.global_variables() except Exception: # TF0.12 t_vars = tf.all_variables() d_vars = [var for var in t_vars if name in var.name] if printable: for idx, v in enumerate(d_vars):
tensorflow.trainable_variables
6,198
import tensorflow as tf tf.range(0, batch_size, dtype=tf.int32) * seq_length, [-1, 1] ) flat_positions = tf.reshape(positions + flat_offsets, [-1]) flat_sequence_tensor = tf.reshape(sequence_tensor, [batch_size * seq_length, width]) output_tensor = tf.gather(flat_sequence_tensor, flat_positions) return output_tensor
tensorflow.reshape
6,199