seed
stringlengths
25
2.89k
seed_api
stringlengths
14
102
index
int64
0
14.8k
import tensorflow as tf def input_fn(params): """The actual input function.""" batch_size = params["batch_size"] num_examples = len(features) # This is for demo purposes and does NOT scale to large data sets. We do # not use Dataset.from_generator() because that uses tf.py_func which is # not TPU compatible. The right way to load data is with TFRecordReader. d = tf.data.Dataset.from_tensor_slices({ "input_ids": tf.constant( all_input_ids, shape=[num_examples, seq_length], dtype=tf.int32), "input_mask": tf.constant( all_input_mask, shape=[num_examples, seq_length], dtype=tf.int32), "segment_ids": tf.constant( all_segment_ids, shape=[num_examples, seq_length],
tensorflow.constant
6,000
import tensorflow as tf return safe_get(name, list(shape), initializer=tf.constant_initializer(weights), dtype=tf.float32) def batched_matrix_vector_multiply(vector, matrix): """ computes x^T A in mini-batches. """ vector_batch_as_matricies = tf.expand_dims(vector, [1]) mult_result = tf.matmul(vector_batch_as_matricies, matrix) squeezed_result = tf.squeeze(mult_result, [1]) return squeezed_result def euclidean_loss_layer(a, b, multiplier=100.0, use_l1=False, eps=0.01):
tensorflow.matmul
6,001
import tensorflow as tf self.padding = padding self.epsilon = epsilon def __call__(self,input_var,name=None,**kwargs) : def _init(): v_norm = tf.nn.l2_normalize(self.v,axis=[0,1,2]) t = tf.nn.conv2d(input_var,v_norm,self.strides,self.padding,data_format='NHWC') mu,var = tf.nn.moments(t,axes=[0,1,2]) std = tf.sqrt(var+self.epsilon) return [tf.assign(self.g,1/std),tf.assign(self.b,-1.*mu/std)] require_init = tf.reduce_any(tf.is_nan(self.g)) init_ops = tf.cond(require_init,_init,lambda : [self.g,self.b]) with tf.control_dependencies(init_ops): w = tf.reshape(self.g,[1,1,1,tf.shape(self.v)[-1]]) * tf.nn.l2_normalize(self.v,axis=[0,1,2]) return tf.nn.bias_add(
tensorflow.sqrt
6,002
import tensorflow as tf d_layer_2_all = tf.layers.dense(d_layer_1_all, 40, activation=tf.nn.sigmoid, name='f2_att' + stag) d_layer_3_all = tf.layers.dense(d_layer_2_all, 1, activation=None, name='f3_att' + stag) d_layer_3_all = tf.reshape(d_layer_3_all, [-1, 1, tf.shape(facts)[1]]) scores = d_layer_3_all
tensorflow.shape
6,003
import tensorflow as tf output_bias = tf.get_variable( "output_bias", shape=[bert_config.vocab_size], initializer=tf.zeros_initializer(), ) logits = tf.matmul(input_tensor, output_weights, transpose_b=True) logits = tf.nn.bias_add(logits, output_bias) log_probs = tf.nn.log_softmax(logits, axis=-1) label_ids = tf.reshape(label_ids, [-1]) label_weights = tf.reshape(label_weights, [-1]) one_hot_labels = tf.one_hot( label_ids, depth=bert_config.vocab_size, dtype=tf.float32 ) # The `positions` tensor might be zero-padded (if the sequence is too # short to have the maximum number of predictions). The `label_weights` # tensor has a value of 1.0 for every real prediction and 0.0 for the # padding predictions.
tensorflow.reshape
6,004
import tensorflow as tf def random_apply(fn, image, prob=1.): b, *_ = image.get_shape().as_list() chance = tf.less(tf.random_uniform([b], 0, 1.0), prob) return tf.where(chance, fn(image), tf.identity(image)) def color_distortion(image, s=1.0): lower, upper, x = (1 - 0.8 * s), (1 + 0.8 * s), image x = tf.image.random_brightness(x, max_delta=0.8*s) x = tf.image.random_contrast(x, lower=lower, upper=upper) x = tf.image.random_saturation(x, lower=lower, upper=upper) x = tf.image.random_hue(x, max_delta=0.2*s) x = tf.clip_by_value(x, 0, 1) return x def color_drop(image):
tensorflow.image.random_brightness
6,005
import tensorflow as tf if FLAGS.mode == 'train': train_dataset_reader = dataset.BatchDatset(train_records, image_options) validation_dataset_reader = dataset.BatchDatset(valid_records, image_options) sess = tf.Session() print("Setting up Saver...") saver = tf.train.Saver() # create two summary writers to show training loss and validation loss in the same graph # need to create two folders 'train' and 'validation' inside FLAGS.logs_dir train_writer = tf.summary.FileWriter(FLAGS.logs_dir + '/train', sess.graph) validation_writer = tf.summary.FileWriter(FLAGS.logs_dir + '/validation') sess.run(tf.global_variables_initializer()) ckpt = tf.train.get_checkpoint_state(FLAGS.logs_dir) if ckpt and ckpt.model_checkpoint_path: saver.restore(sess, ckpt.model_checkpoint_path) print("Model restored...") if FLAGS.mode == "train": for itr in xrange(MAX_ITERATION): train_images, train_annotations = train_dataset_reader.next_batch(FLAGS.batch_size) z_ = np.random.uniform(low=-1.0, high=1.0, size=(FLAGS.batch_size,4,4,128)) # print(train_images) feed_dict = {image: train_images, annotation: train_annotations, keep_probability: 0.85, z: z_} #train_images[:,50:100,50:100,:] =0 v = 0
tensorflow.train.get_checkpoint_state
6,006
import tensorflow as tf done_mask_ph = tf.placeholder(tf.float32, [None], name="done") importance_weights_ph = tf.placeholder(tf.float32, [None], name="weight") # q network evaluation q_t = q_func(obs_t_input.get(), num_actions, scope="q_func", reuse=True) # reuse parameters from act q_func_vars = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope=tf.get_variable_scope().name + "/q_func") # target q network evalution q_tp1 = q_func(obs_tp1_input.get(), num_actions, scope="target_q_func") target_q_func_vars = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope=tf.get_variable_scope().name + "/target_q_func")
tensorflow.get_variable_scope
6,007
import tensorflow as tf preserving the original aspect ratio. Args: height: an int32 scalar tensor indicating the current height. width: an int32 scalar tensor indicating the current width. smallest_side: A python integer or scalar `Tensor` indicating the size of the smallest side after resize. Returns: new_height: an int32 scalar tensor indicating the new height. new_width: and int32 scalar tensor indicating the new width. """ smallest_side = tf.convert_to_tensor(smallest_side, dtype=tf.int32) height = tf.to_float(height) width = tf.to_float(width) smallest_side = tf.to_float(smallest_side) scale = tf.cond(tf.greater(height, width), lambda: smallest_side / width, lambda: smallest_side / height) new_height = tf.to_int32(height * scale) new_width = tf.to_int32(width * scale) return new_height, new_width def _aspect_preserving_resize(image, smallest_side): """Resize images preserving the original aspect ratio. Args:
tensorflow.to_float
6,008
import tensorflow as tf self.assertEqual(set(tf.matching_files(pattern % '*').eval()), self._subset(files, [0, 1, 2, 3, 4, 5])) self.assertEqual(set(tf.matching_files(pattern % '[cxz]').eval()), self._subset(files, [0, 1])) self.assertEqual(set(tf.matching_files(pattern % '[0-9]').eval()), self._subset(files, [3, 4])) if __name__ == '__main__': tf.test.main()
tensorflow.test.main
6,009
import tensorflow as tf self.assertEqual(3, len(res)) self.assertEqual((2, 4), res[0].shape) res = sess.run([mem]) self.assertEqual(1, len(res)) self.assertEqual((2, 2), res[0].shape) def testEmbeddingRNNDecoder(self): with self.test_session() as sess: with tf.variable_scope("root", initializer=tf.constant_initializer(0.5)): inp = [tf.constant(0.5, shape=[2, 2])] * 2 cell = tf.nn.rnn_cell.BasicLSTMCell(2, state_is_tuple=True) _, enc_state = tf.nn.rnn(cell, inp, dtype=tf.float32) dec_inp = [tf.constant(i, tf.int32, shape=[2]) for i in range(3)] dec, mem = tf.nn.seq2seq.embedding_rnn_decoder( dec_inp, enc_state, cell, num_symbols=4, embedding_size=2) sess.run([tf.global_variables_initializer()]) res = sess.run(dec) self.assertEqual(3, len(res)) self.assertEqual((2, 2), res[0].shape) res = sess.run([mem]) self.assertEqual(1, len(res)) self.assertEqual((2, 2), res[0].c.shape)
tensorflow.nn.rnn
6,010
import tensorflow as tf # Note: this warning is misleading in the context where tokens are ranked # based on mutual information rather than frequency. tf.compat.v1.logging.warn( 'frequency_threshold %d <= 1 is a no-op, use None instead.',
tensorflow.compat.v1.logging.warn
6,011
import tensorflow as tf num_decoder_symbols=5, embedding_size=2) sess.run([tf.global_variables_initializer()]) res = sess.run(dec) self.assertEqual(3, len(res)) self.assertEqual((2, 5), res[0].shape) res = sess.run([mem]) self.assertEqual((2, 4), res[0].shape) # Test externally provided output projection. w = tf.get_variable("proj_w", [2, 5]) b = tf.get_variable("proj_b", [5]) with tf.variable_scope("proj_seq2seq"): dec, _ = tf.nn.seq2seq.embedding_rnn_seq2seq( enc_inp, dec_inp, cell, num_encoder_symbols=2, num_decoder_symbols=5, embedding_size=2, output_projection=(w, b)) sess.run([tf.global_variables_initializer()]) res = sess.run(dec) self.assertEqual(3, len(res)) self.assertEqual((2, 2), res[0].shape)
tensorflow.get_variable
6,012
from tensorflow.python.framework import ops the return type is `quint8`. """ with ops.op_scope([x], name, "Tanh") as name: x = ops.convert_to_tensor(x, name="x")
tensorflow.python.framework.ops.op_scope
6,013
import tensorflow as tf self.saver = tf.train.Saver() def train_network(self): self.learning_rate = tf.placeholder(tf.float32) self.d_optimizer = tf.train.AdamOptimizer(self.learning_rate,beta1=self.beta1,beta2=self.beta2).minimize(self.discriminator_loss,var_list=self.d_variables) self.g_optimizer = tf.train.AdamOptimizer(self.learning_rate,beta1=self.beta1,beta2=self.beta2).minimize(self.generator_loss,var_list=self.g_variables) self.init_op = tf.global_variables_initializer()
tensorflow.placeholder
6,014
import tensorflow as tf w = tf.get_variable('w', [self.H, self.D], initializer=self.weight_initializer) b = tf.get_variable('b', [self.D], initializer=self.const_initializer) w_att = tf.get_variable('w_att', [self.D, 1], initializer=self.weight_initializer) h_att = tf.nn.relu(features_proj + tf.expand_dims(tf.matmul(h, w), 1) + b) # (N, L, D) out_att = tf.reshape(tf.matmul(tf.reshape(h_att, [-1, self.D]), w_att), [-1, self.L]) # (N, L) alpha = tf.nn.softmax(out_att) context = tf.reduce_sum(features * tf.expand_dims(alpha, 2), 1, name='context') #(N, D) return context, alpha def _selector(self, context, h, reuse=False): with tf.variable_scope('selector', reuse=reuse): w = tf.get_variable('w', [self.H, 1], initializer=self.weight_initializer) b = tf.get_variable('b', [1], initializer=self.const_initializer) beta = tf.nn.sigmoid(tf.matmul(h, w) + b, 'beta') # (N, 1) context = tf.multiply(beta, context, name='selected_context') return context, beta def _decode_lstm(self, x, h, context, dropout=False, reuse=False): with tf.variable_scope('logits', reuse=reuse): w_h = tf.get_variable('w_h', [self.H, self.M], initializer=self.weight_initializer) b_h = tf.get_variable('b_h', [self.M], initializer=self.const_initializer)
tensorflow.variable_scope
6,015
import tensorflow as tf if self.mc.LOAD_PRETRAINED_MODEL: assert tf.gfile.Exists(self.mc.PRETRAINED_MODEL_PATH), \ 'Cannot find pretrained model at the given path:' \
tensorflow.gfile.Exists
6,016
from tensorflow.python.estimator.canned import head as head_lib class CoreGradientBoostedDecisionTreeEstimator(test_util.TensorFlowTestCase): def testTrainEvaluateInferDoesNotThrowError(self): head_fn = head_lib._binary_logistic_head_with_sigmoid_cross_entropy_loss( loss_reduction=losses.Reduction.SUM_OVER_NONZERO_WEIGHTS) learner_config = learner_pb2.LearnerConfig() learner_config.num_classes = 2
tensorflow.python.estimator.canned.head._binary_logistic_head_with_sigmoid_cross_entropy_loss
6,017
import tensorflow as tf self.d_loss_fake = tf.nn.sigmoid_cross_entropy_with_logits( logits=self.end_points_D['D_on_G_logits'], labels=tf.zeros_like(self.end_points_D['D_on_G_logits'])) self.d_loss_class = tf.reduce_mean(self.d_loss_class) self.d_loss_real = tf.reduce_mean(self.d_loss_real) self.d_loss_fake = tf.reduce_mean(self.d_loss_fake) if is_fm_loss: global_pool_head = self.end_points_D['global_pool'] real_data_features = tf.slice(global_pool_head, [0, 0], [batch_size_train, num_classes]) fake_data_features = tf.slice(global_pool_head, [batch_size_train, 0], [batch_size_train, num_classes]) self.g_loss = self._feature_matching_loss(real_data_features, fake_data_features) else: generator_target_prob = self.cnf['generator_target_prob'] # 0.75 / 2.0 self.g_loss = self._sigmoid_kl_with_logits(self.end_points_D['D_on_G_logits'], generator_target_prob) self.g_loss = tf.reduce_mean(self.g_loss) if gpu_idx == 0:
tensorflow.slice
6,018
import tensorflow as tf samples, logits, losses = self.sample(features) # Concatenate the already-generated recent_output with last timestep # of the newly-generated samples. if target_modality.top_is_pointwise: cur_sample = samples[:, -1, :, :] else: cur_sample = samples[:, common_layers.shape_list(recent_output)[1], :, :] cur_sample = tf.to_int64(tf.expand_dims(cur_sample, axis=1)) samples = tf.concat([recent_output, cur_sample], axis=1) if not context.in_eager_mode(): samples.set_shape([None, None, None, 1]) # Assuming we have one shard for logits. logits = tf.concat([recent_logits, logits[:, -1:]], 1) loss = sum([l for l in losses.values() if l is not None]) return samples, logits, loss # Create an initial output tensor. This will be passed # to the infer_step, which adds one timestep at every iteration. if "partial_targets" in features: initial_output = tf.to_int64(features["partial_targets"]) while len(initial_output.get_shape().as_list()) < 4: initial_output = tf.expand_dims(initial_output, 2) batch_size = common_layers.shape_list(initial_output)[0] else: batch_size = common_layers.shape_list(features["inputs"])[0] initial_output = tf.zeros((batch_size, 0, 1, 1), dtype=tf.int64)
tensorflow.concat
6,019
import tensorflow as tf # Upsampling up1 = common_deconv2d(dwn5,self.gf*8,stride=1,padding='valid',name='up1') # 16x16 -> 16x16 #print(np.shape(up1)) up2 = common_deconv2d(up1,self.gf*4,name='up2') # 16x16 -> 32x32 up3 = common_deconv2d(up2,self.gf*2,name='up3') # 32x32 -> 64x64 up4 = common_deconv2d(up3,self.gf,name='up4') # 64x64 -> 128x128 out_img = tf.contrib.layers.conv2d_transpose(up4,self.channels,kernel_size=4,stride=2,padding='SAME',activation_fn=tf.nn.tanh) # 128x128 -> 256x256 #print('out_img',(np.shape(out_img))) return out_img def build_discriminator(self,image,reuse=False,name='discriminator'):
tensorflow.contrib.layers.conv2d_transpose
6,020
import tensorflow as tf Pooling 3D op ''' if is_max_pool: x = tf.nn.max_pool3d(x, ksize=kernel_size, strides=strides, padding='VALID', name=layer_name) else: x = tf.nn.avg_pool3d(x, ksize=kernel_size, strides=strides, padding='VALID', name=layer_name) return x def batch_norm(x): '''
tensorflow.nn.avg_pool3d
6,021
import tensorflow as tf y_centers = y_centers * stride[0] # x_centers = x_centers + offset[1] # y_centers = y_centers + offset[0] x_centers, y_centers = tf.meshgrid(x_centers, y_centers) widths, x_centers = tf.meshgrid(widths, x_centers) heights, y_centers = tf.meshgrid(heights, y_centers) anchor_centers = tf.stack([x_centers, y_centers], axis=2) anchor_centers = tf.reshape(anchor_centers, [-1, 2]) anchor_sizes = tf.stack([widths, heights], axis=2) anchor_sizes = tf.reshape(anchor_sizes, [-1, 2]) anchors = tf.concat([anchor_centers - .5 * anchor_sizes, anchor_centers + .5 * anchor_sizes], 1) # anchors = box_utils.convert_yxyx_to_xyxy_format(anchors) return anchors if __name__ == '__main__':
tensorflow.stack
6,022
import tensorflow as tf name: str = "spherical_harmonics_generate_l_m_permutations") -> Tuple[TensorLike, TensorLike]: with tf.name_scope(name):
tensorflow.name_scope
6,023
import tensorflow as tf min_depth=min_depth, depth_multiplier=depth_multiplier, data_format=data_format, scope=scope) with tf.variable_scope('Logits'): if data_format.startswith('NC'): net = tf.transpose(net, [0, 2, 3, 4, 1]) kernel_size = i3d_utils.reduced_kernel_size_3d(net, [2, 7, 7]) net = layers.avg_pool3d( net, kernel_size, stride=1,
tensorflow.transpose
6,024
import tensorflow as tf labels: (tf.Tensor) A tensor of the same shape as `output`. A value >= 1 means a relevant example. propensity_weights: (tf.Tensor) A tensor of the same shape as `output` containing the weight of each element. name: A string used as the name for this variable scope. Returns: (tf.Tensor) A single value tensor containing the loss. """ loss = None with tf.name_scope(name, "click_weighted_log_loss",[output]): click_prob = tf.sigmoid(output) loss = tf.losses.log_loss(labels, click_prob, propensity_weights) return loss
tensorflow.losses.log_loss
6,025
import tensorflow as tf if mode == compat.ModeKeys.INFER: input_dict["trg_input"] = target_bos else: input_dict["trg"] = batch_of_data["label"] input_dict["trg_length"] = deduce_text_length(batch_of_data["label"], self._multilingual_dp.meta["pad_id"], self._multilingual_dp.meta["padding_mode"]) input_dict["trg_input"] = tf.concat([tf.expand_dims(target_bos, axis=1), batch_of_data["label"][:, :-1]], axis=1) return input_dict def get_data_postprocess_fn(self, data_status, **kwargs) -> callable: if data_status == compat.DataStatus.PROJECTED: return self._multilingual_dp.decode
tensorflow.expand_dims
6,026
import tensorflow as tf init_scale = .01 m_init, v_init = tf.nn.moments(x, [0, 1, 2]) scale_init = init_scale / tf.sqrt(v_init + 1e-10)
tensorflow.nn.moments
6,027
import tensorflow as tf average_across_timesteps=False, average_across_batch=True) # Update the cost self._cost = tf.reduce_sum(loss) self._final_state = state if not is_training: return self._lr = tf.Variable(0.0, trainable=False) tvars = tf.trainable_variables() grads, _ = tf.clip_by_global_norm(tf.gradients(self._cost, tvars), config.max_grad_norm) optimizer = tf.train.GradientDescentOptimizer(self._lr) self._train_op = optimizer.apply_gradients( zip(grads, tvars), global_step=tf.contrib.framework.get_or_create_global_step()) self._new_lr = tf.placeholder( tf.float32, shape=[], name="new_learning_rate") self._lr_update = tf.assign(self._lr, self._new_lr)
tensorflow.trainable_variables
6,028
import tensorflow as tf def contra_step_lossV1(pred, tgt, temp=10.0): # Step-wise contrastive loss pred1, pred2 = tf.split(pred, 2, axis=0) tgt1, tgt2 = tf.split(tgt, 2, axis=0) soft_sign = tf.tanh((tgt1 - tgt2) * temp) loss = tf.maximum(0.0, soft_sign * ((tgt1 - tgt2) - (pred1 - pred2))) loss = tf.reduce_mean(loss) return loss
tensorflow.tanh
6,029
import tensorflow as tf embedding_size = len([x for x in vocab_processor.transform(texts)]) # Split up data set into train/test train_indices = np.random.choice(len(texts), round(len(texts)*0.8), replace=False) test_indices = np.array(list(set(range(len(texts))) - set(train_indices))) texts_train = [x for ix, x in enumerate(texts) if ix in train_indices] texts_test = [x for ix, x in enumerate(texts) if ix in test_indices] target_train = [x for ix, x in enumerate(target) if ix in train_indices] target_test = [x for ix, x in enumerate(target) if ix in test_indices] # Setup Index Matrix for one-hot-encoding identity_mat = tf.diag(tf.ones(shape=[embedding_size])) # Create variables for logistic regression A = tf.Variable(tf.random_normal(shape=[embedding_size,1])) b = tf.Variable(tf.random_normal(shape=[1,1])) # Initialize placeholders x_data = tf.placeholder(shape=[sentence_size], dtype=tf.int32) y_target = tf.placeholder(shape=[1, 1], dtype=tf.float32) # Text-Vocab Embedding x_embed = tf.nn.embedding_lookup(identity_mat, x_data) x_col_sums = tf.reduce_sum(x_embed, 0) # Declare model operations x_col_sums_2D = tf.expand_dims(x_col_sums, 0) model_output = tf.add(tf.matmul(x_col_sums_2D, A), b)
tensorflow.random_normal
6,030
import tensorflow as tf alpha_mean = tf.get_variable('alpha_mean_layer'+str(h), shape=[1, 1, n_basis, n_out], initializer=tf.random_normal_initializer()) alpha_logstd = tf.get_variable('alpha_logstd_layer'+str(h), shape=[1, 1, n_basis, n_out], initializer=tf.random_normal_initializer()) alpha_std = tf.exp(alpha_logstd) # Compute epsilon from {n_samples} standard Gaussian # epsilon = tf.random_normal([n_samples, 1, n_out*2, n_out]) epsilon = tf.random_uniform([n_samples, 1, n_basis, n_out]) hyp_params = tf.get_variable('hyp_params_layer'+str(h), shape=[2], initializer=tf.random_normal_initializer()) l1, l2 = tf.nn.sigmoid(hyp_params[0]), tf.exp(hyp_params[1]) epsilon = tf.sinh(epsilon*l2)/tf.cosh(epsilon*l2)**l1/l2 # Compute A_{h+1} A = tf.tile(alpha_mean+epsilon*alpha_std, [1, tf.shape(X)[0], 1, 1]) # Compute z_{h}A_{h+1} Z1 = tf.matmul(Z, A[:,:,:n_basis//2,:])/tf.sqrt(n_basis*.5) Z2 = tf.matmul(Z, A[:,:,n_basis//2:,:])/tf.sqrt(n_basis*.5) # Compute u_{h+1} and v_{h+1} U, V = tf.cos(Z1)+tf.cos(Z2), tf.sin(Z1)+tf.sin(Z2) Z = tf.concat([U, V], 3)/tf.sqrt(n_out*1.) KL += tf.reduce_mean(alpha_std**2+alpha_mean**2-2*alpha_logstd-1)/2. # Output layer else: F = tf.squeeze(tf.layers.dense(Z, n_out), [2]) return F, KL
tensorflow.cosh
6,031
import tensorflow as tf the smallest side after resize. Returns: new_height: an int32 scalar tensor indicating the new height. new_width: and int32 scalar tensor indicating the new width. """ smallest_side = tf.convert_to_tensor(smallest_side, dtype=tf.int32) height = tf.to_float(height) width = tf.to_float(width) smallest_side = tf.to_float(smallest_side) scale = tf.cond(tf.greater(height, width), lambda: smallest_side / width, lambda: smallest_side / height) new_height = tf.to_int32(height * scale) new_width = tf.to_int32(width * scale) return new_height, new_width
tensorflow.to_float
6,032
import tensorflow as tf # Use a variable name map to set the saved tensor names val = save.save(sess, save_path) self.assertTrue(isinstance(val, six.string_types)) self.assertEqual(save_path, val) # Verify that the original names are not in the Saved file save = tf.train.Saver({"v0": v0, "v1": v1}) with self.assertRaisesOpError("not found in checkpoint"): save.restore(sess, save_path) # Verify that the mapped names are present in the Saved file and can be # Restored using remapped names. with self.test_session() as sess: v0 = tf.Variable(-1.0, name="v0") v1 = tf.Variable(-1.0, name="v1") with self.assertRaisesOpError("uninitialized value v0"): sess.run(v0) with self.assertRaisesOpError("uninitialized value v1"): sess.run(v1) save = tf.train.Saver({"save_prefix/v0": v0, "save_prefix/v1": v1}) save.restore(sess, save_path) # Check that the parameter nodes have been restored. self.assertEqual(10.0, v0.eval())
tensorflow.Variable
6,033
import tensorflow as tf print("***************") print("Training done!!") save_path = saver.save(sess, ckpt_name) print("Model saved in file: %s" % save_path) print ("creating protobuf...") g_1 = tf.get_default_graph() with tf.Session(graph = g_1) as sess: saver = tf.train.import_meta_graph('save/model.ckpt.meta', clear_devices=True) saver.restore(sess, ckpt_name) graph_def = tf.graph_util.convert_variables_to_constants(sess, sess.graph_def, dst_nodes) tf.train.write_graph(tf.graph_util.extract_sub_graph(graph_def, dst_nodes), path, fname, as_text=False)
tensorflow.graph_util.extract_sub_graph
6,034
import tensorflow as tf h1 = tf.matmul(tf.transpose(c_hot_flat, perm=[1, 0, 2]), self.means) h1 = tf.transpose(h1, perm=[1, 0, 2]) h1 = tf.reshape(h1, shape=h1_shape) h1_shape[0] = self.hparams.batch_size h2 = tf.layers.dense(tf.nn.relu(h1), self.hparams.filter_size, name="vch2") res = tf.layers.dense( tf.nn.relu(h2), self.hparams.hidden_size, name="vcfin") return res def discrete_bottleneck(self, x): """Discretization bottleneck for latent variables.
tensorflow.nn.relu
6,035
import tensorflow as tf nin = x.get_shape()[1].value w = tf.get_variable("w", [nin, nh], initializer=ortho_init(init_scale)) print("w is "+str(w)) b = tf.get_variable("b", [nh], initializer=tf.constant_initializer(init_bias)) return tf.matmul(x, w)+b def batch_to_seq(h, nbatch, nsteps, flat=False): if flat: h = tf.reshape(h, [nbatch, nsteps]) else: h = tf.reshape(h, [nbatch, nsteps, -1]) return [tf.squeeze(v, [1]) for v in tf.split(axis=1, num_or_size_splits=nsteps, value=h)] def seq_to_batch(h, flat = False): shape = h[0].get_shape().as_list() if not flat: assert(len(shape) > 1) nh = h[0].get_shape()[-1].value return tf.reshape(tf.concat(axis=1, values=h), [-1, nh]) else: return tf.reshape(tf.stack(values=h, axis=1), [-1])
tensorflow.split
6,036
import tensorflow as tf # filters=y_size[-1], # kernel_size=kernels, # trainable=self.train, # use_bias=use_bias, # activation=self.ff_nl) resized = tf.nn.conv3d_transpose( value=x, filter=kernel, output_shape=y_size, strides=[1] + strides + [1], padding=self.padding, name='resize_x_to_y') resized = tf.nn.bias_add( resized, bias) resized = self.ff_nl(resized) return resized elif mode == 'replicate_n_transpose': resized = tf.image.resize_images( x, y_size[:-1], kernel, align_corners=False) resized = tf.nn.conv3d_transpose(
tensorflow.nn.bias_add
6,037
import tensorflow as tf p = self._testParams() mdl = p.Instantiate() mdl.FPropDefaultTheta() all_vars = tf.trainable_variables() py_utils.SumSquared(all_vars)
tensorflow.trainable_variables
6,038
import tensorflow as tf batch_size = params["batch_size"] num_examples = len(features) # This is for demo purposes and does NOT scale to large data sets. We do # not use Dataset.from_generator() because that uses tf.py_func which is # not TPU compatible. The right way to load data is with TFRecordReader. d = tf.data.Dataset.from_tensor_slices({ "input_ids": tf.constant( all_input_ids, shape=[num_examples, seq_length], dtype=tf.int32), "input_mask": tf.constant( all_input_mask, shape=[num_examples, seq_length], dtype=tf.int32), "segment_ids":
tensorflow.constant
6,039
import tensorflow as tf # case: train mode (uses stats of the current batch) mean = tf.reduce_mean(_x, axis=reduction_axes) brodcast_mean = tf.reshape(mean, broadcast_shape) std = tf.reduce_mean(tf.square(_x - brodcast_mean) + epsilon, axis=reduction_axes) std = tf.sqrt(std) brodcast_std = tf.reshape(std, broadcast_shape) x_normed = (_x - brodcast_mean) / (brodcast_std + epsilon) # x_normed = tf.layers.batch_normalization(_x, center=False, scale=False) x_p = tf.sigmoid(x_normed) return alphas * (1.0 - x_p) * _x + x_p * _x class QAAttGRUCell(RNNCell): """Gated Recurrent Unit cell (cf. http://arxiv.org/abs/1406.1078). Args: num_units: int, The number of units in the GRU cell.
tensorflow.sigmoid
6,040
import tensorflow as tf if result[key_name] > best_perf: best_perf = result[key_name] best_perf_global_step = global_step elif len(_find_valid_cands(global_step)) > 1: _remove_checkpoint(checkpoint_path) writer.write("=" * 50 + "\n") writer.flush() with tf.gfile.GFile(best_trial_info_file, "w") as best_info: best_info.write("{}:{}:{}".format( global_step, best_perf_global_step, best_perf)) writer.close() for ext in ["meta", "data-00000-of-00001", "index"]: src_ckpt = "model.ckpt-{}.{}".format(best_perf_global_step, ext)
tensorflow.gfile.GFile
6,041
import tensorflow as tf with tf.control_dependencies(self.update_ops): self.train_op = optimizer.apply_gradients(grads_pruned, global_step=self.global_step) self.summary_op = tf.summary.merge_all() self.log_op = [lrn_rate, loss, pr_trainable, pr_maskable] + list(metrics.values()) self.log_op_names = ['lr', 'loss', 'pr_trn', 'pr_msk'] + list(metrics.keys()) self.init_op = tf.variables_initializer(self.vars) self.init_opt_op = tf.variables_initializer(optimizer_base.variables()) if FLAGS.enbl_multi_gpu: self.bcast_op = mgw.broadcast_global_variables(0) self.saver_train = tf.train.Saver(self.vars) def __build_eval(self): """Build the evaluation graph.""" with tf.Graph().as_default(): # create a TF session for the current graph config = tf.ConfigProto() if FLAGS.enbl_multi_gpu:
tensorflow.train.Saver
6,042
import tensorflow as tf with graph.as_default(): tf_sparse_demo = TFDemo(vocabulary_size=args.max_vocabulary_size_per_gpu * args.gpu_num, embedding_vec_size=args.embedding_vec_size, combiner=args.combiner, slot_num=args.slot_num, max_nnz=args.max_nnz, use_hashtable=args.use_hashtable, num_of_dense_layers=0) optimizer = utils.get_dense_optimizer(args.optimizer)(learning_rate=0.1) loss_fn = tf.keras.losses.BinaryCrossentropy(from_logits=True) def _train_step(inputs, labels, training): logit, embedding_vector = tf_sparse_demo(inputs, training=training) loss = loss_fn(labels, logit) grads = tf.gradients(loss, tf_sparse_demo.trainable_variables, colocate_gradients_with_ops=True, unconnected_gradients=tf.UnconnectedGradients.NONE) train_op = optimizer.apply_gradients(zip(grads, tf_sparse_demo.trainable_variables)) with tf.control_dependencies([train_op]): loss = tf.identity(loss) return loss, embedding_vector dataset = utils.tf_dataset(*random_samples, batchsize=args.global_batch_size, to_sparse_tensor=True, repeat=1) train_iterator = dataset.make_initializable_iterator() iterator_init = train_iterator.initializer inputs, labels = train_iterator.get_next()
tensorflow.gradients
6,043
import tensorflow as tf False, wd, keep_prob, is_train) # ensure the seletion is right dep_selection = tf.logical_and(rep_mask, dep_selection) head_selection = tf.logical_and(rep_mask, head_selection) rep_dep_tensor, rep_dep_mask, dep_org_idx = reduce_data_rep_max_len(rep_map, dep_selection) rep_head_tensor,rep_head_mask, head_org_idx = reduce_data_rep_max_len(rep_map, head_selection) sl_dep, sl_head = tf.shape(rep_dep_tensor)[1], tf.shape(rep_head_tensor)[1] if keep_unselected: unhead_selection = tf.logical_and(rep_mask, tf.logical_not(head_selection)) rep_unhead_tensor, rep_unhead_mask, unhead_org_idx = reduce_data_rep_max_len(rep_map, unhead_selection) sl_unhead = tf.shape(rep_unhead_tensor)[1] attn_result = tf.cond( tf.equal(sl_head, 0), lambda: tf.zeros([bs, 0, hn], tf.float32), lambda: self_attention_for_selected_head( head_selection, head_org_idx, sl_head, rep_head_mask, dep_selection, dep_org_idx, sl_dep, rep_dep_mask, rep_map, rep_dep_tensor, keep_prob, is_train, direction, ivec ) ) if keep_unselected: input_idx = tf.tile(tf.expand_dims(tf.range(sl), 0), [bs, 1]) pooling_result = tf.cond( tf.equal(sl_unhead, 0), lambda: tf.zeros([bs, 0, hn], tf.float32), lambda: mean_pooling_for_unselected_head( unhead_org_idx, sl_unhead, rep_unhead_mask,
tensorflow.zeros
6,044
import tensorflow as tf #accuracy1 = tf.reduce_sum( # tf.nn.in_top_k(tf.cast(tf.Variable(predictions2), tf.float32), # tf.cast((tf.constant(np_labels), 1), tf.float32))) accuracy1 = tf.reduce_sum( input_tensor=tf.cast(tf.nn.in_top_k(predictions=tf.constant(predictions1), targets=tf.constant(np_labels), k=1), tf.float32)) accuracy5 = tf.reduce_sum( input_tensor=tf.cast(tf.nn.in_top_k(predictions=tf.constant(predictions1), targets=tf.constant(np_labels), k=5), tf.float32)) np_accuracy1, np_accuracy5 = sess.run([accuracy1, accuracy5]) ##print(labels) total_accuracy1 += np_accuracy1 total_accuracy5 += np_accuracy5 print("Processed %d images. (Top1 accuracy, Top5 accuracy) = (%0.4f, %0.4f)" \ % (num_processed_images, total_accuracy1/num_processed_images, total_accuracy5/num_processed_images))
tensorflow.constant
6,045
import tensorflow as tf return tf.less(i, tf.shape(batch)[1]) def body(batch, output, i): self_attention_tmp = din_fcn_attention(batch[:, i, :], batch, ATTENTION_SIZE, mask, softmax_stag=1, stag=stag, mode='LIST') self_attention_tmp = tf.reduce_sum(self_attention_tmp, 1) output = output.write(i, self_attention_tmp) return batch, output, i + 1 output_ta = tf.TensorArray(dtype=tf.float32, size=0, dynamic_size=True, element_shape=(facts[:, 0, :].get_shape())) _, output_op, _ = tf.while_loop(cond, body, [facts, output_ta, 0]) self_attention = output_op.stack() self_attention = tf.transpose(self_attention, perm = [1, 0, 2]) return self_attention def din_fcn_shine(query, facts, attention_size, mask, stag='null', mode='SUM', softmax_stag=1, time_major=False, return_alphas=False): if isinstance(facts, tuple): # In case of Bi-RNN, concatenate the forward and the backward RNN outputs. facts = tf.concat(facts, 2) if time_major: # (T,B,D) => (B,T,D) facts = tf.array_ops.transpose(facts, [1, 0, 2]) # Trainable parameters
tensorflow.while_loop
6,046
import tensorflow as tf # Make a prediction on every word. def GetWordPred(o_): logits = tf.nn.xw_plus_b(o_, pred_mat, pred_bias) return tf.nn.softmax(logits) self.preds_by_word = tf.pack([GetWordPred(o_) for o_ in mats])
tensorflow.nn.softmax
6,047
import tensorflow as tf with tf.variable_scope(name): self.noise = tf.placeholder(tf.float32, shape=[self.batch_size, self.noise_dim], name='noise') # Noise vector. self.real_pc = tf.placeholder(tf.float32, shape=[self.batch_size] + self.n_output, name='real_pc') # Ground-truth. with tf.variable_scope('rotation'):
tensorflow.placeholder
6,048
import tensorflow as tf X = tf.reshape(X, (-1, w_out, h_out, ch_out)) # Sanity shape check return X def _add_fully_connected(self, X, in_shape, out_ch, no_reg=False): ch = np.prod(in_shape) X = tf.reshape(X, (-1, ch)) W = self._make_var('W', (ch, out_ch), no_reg=no_reg) X = tf.matmul(X, W) X = tf.reshape(X, (-1, out_ch)) # Sanity shape check return X def _add_factorized_reduction(self, X, in_w, in_h, in_ch, out_ch, is_train=False): ''' Output is of shape (in_w // 2, in_h // 2, out_ch) '''
tensorflow.matmul
6,049
from tensorflow.python.ops import control_flow_ops cell = rnn_cell.LSTMCell( num_units=num_units, initializer=initializer, state_is_tuple=True) multi_cell = rnn_cell.MultiRNNCell( [cell() for _ in range(num_layers)]) outputs, final_state = core_rnn.static_rnn( multi_cell, inputs, dtype=dtypes.float32) trainable_variables = ops.get_collection( ops.GraphKeys.TRAINABLE_VARIABLES) gradients = gradients_impl.gradients([outputs, final_state], trainable_variables) training_op = control_flow_ops.group(*gradients) self._BenchmarkOp(training_op, "tf_rnn_lstm %s %s" % (config_name, self._GetConfigDesc(config))) def benchmarkTfRNNLSTMBlockCellTraining(self): test_configs = self._GetTestConfig() for config_name, config in test_configs.items(): num_layers = config["num_layers"] num_units = config["num_units"] batch_size = config["batch_size"] seq_length = config["seq_length"]
tensorflow.python.ops.control_flow_ops.group
6,050
from tensorflow.core.util.event_pb2 import SessionLog if step == self._last_saved_step: return logging.info("Saving checkpoints for %d into %s.", step, self._save_path) self._last_saved_time = time.time() self._last_saved_step = step if self._saver is None: self._scaffold.saver.save(session, self._save_path, global_step=step) else: self._saver.save(session, self._save_path, global_step=step) self._summary_writer.add_session_log( SessionLog( status=SessionLog.CHECKPOINT, checkpoint_path=self._save_path), step) class StepCounter(EveryN): """Steps per second monitor.""" def __init__(self, every_n_steps=100, output_dir=None, summary_writer=None):
tensorflow.core.util.event_pb2.SessionLog
6,051
import tensorflow as tf if hparams.full_latent_tower: for i in range(hparams.num_compress_steps): with tf.variable_scope("latent_downstride%d" % i): x = common_layers.make_even_size(x) if i < hparams.filter_double_steps: filters *= 2 x = common_attention.add_timing_signal_nd(x) x = tf.layers.conv2d(x, filters, kernel, activation=common_layers.belu, strides=(2, 2), padding="SAME") x = common_layers.layer_norm(x) else: x = common_layers.double_discriminator(x) x = tf.expand_dims(tf.expand_dims(x, axis=1), axis=1) x = tf.tanh(tf.layers.dense(x, hparams.bottleneck_bits, name="bottleneck")) d = x + tf.stop_gradient(2.0 * tf.to_float(tf.less(0.0, x)) - 1.0 - x) if hparams.mode == tf.estimator.ModeKeys.TRAIN: noise = tf.random_uniform(common_layers.shape_list(x)) noise = 2.0 * tf.to_float(tf.less(hparams.bottleneck_noise, noise)) - 1.0 d *= noise z = tf.layers.dense(d, final_filters, name="unbottleneck") return layer + z, 0.0 @registry.register_hparams def next_frame_basic_stochastic(): """Basic 2-frame conv model with stochastic tower."""
tensorflow.layers.dense
6,052
import tensorflow as tf eval_examples, label_list, FLAGS.max_seq_length, tokenizer, eval_file) tf.logging.info("***** Running evaluation *****") tf.logging.info(" Num examples = %d (%d actual, %d padding)",
tensorflow.logging.info
6,053
import tensorflow as tf n_repeats, ])), 1), [1, 0]) rep = tf.to_int32(rep) x = tf.matmul(tf.reshape(x, (-1, 1)), rep)
tensorflow.to_int32
6,054
import tensorflow as tf
tensorflow.scalar_summary
6,055
import tensorflow as tf self.pred_out = {n: tf.identity(p, name=n) for n, p in pred_out.items()} def _build_graph(self): # Training and evaluation network, if tf datasets provided if self.datasets: # Generate iterators for the given tf datasets self.dataset_iterators = {} with tf.device('/cpu:0'): for n, d in self.datasets.items(): if n == 'training': train_batch = self.config['batch_size']*self.n_gpus d = d.repeat().batch(train_batch).prefetch(train_batch) self.dataset_iterators[n] = d.make_one_shot_iterator() else:
tensorflow.device
6,056
import tensorflow as tf log_scales = tf.maximum(predictions[:, :, :, :, nr_mix:2 * nr_mix], -7.) coeffs = tf.nn.tanh(predictions[:, :, :, :, 2 * nr_mix:3 * nr_mix])
tensorflow.nn.tanh
6,057
import tensorflow as tf td = 0 with tf.device("/gpu:0"): conv = nn_ops.conv3d(d1, d2, strides, padding) with tf.Session(config=config) as sess: t22 = time.time() expected = sess.run(conv)
tensorflow.Session
6,058
import tensorflow as tf hparams = get_default_hparams() energy_fn, _, _ = l2hmc.get_scg_energy_fn() dynamics = l2hmc.Dynamics( x_dim=hparams.x_dim, minus_loglikelihood_fn=energy_fn, n_steps=hparams.n_steps, eps=hparams.eps) samples = tf.random_normal(shape=[hparams.n_samples, hparams.x_dim]) x_, v_, x_accept_prob, x_out = dynamics.apply_transition(samples) self.assertEqual(x_.shape, v_.shape) self.assertEqual(x_out.shape, samples.shape) self.assertEqual(x_.shape, x_out.shape) self.assertEqual(x_accept_prob.shape, (hparams.n_samples,))
tensorflow.random_normal
6,059
import tensorflow as tf # Loss functions and training epsilon_decay = tf.train.polynomial_decay(self.EPSILON, self.global_step, self.EPS_LEN, 0.1, power=1) ratio = tf.maximum(pi.prob(batch['actions']), 1e-6) / tf.maximum(pi_old.prob(batch['actions']), 1e-6) ratio = tf.clip_by_value(ratio, 0, 10) surr1 = batch['advantage'] * ratio surr2 = batch['advantage'] * tf.clip_by_value(ratio, 1 - epsilon_decay, 1 + epsilon_decay)
tensorflow.clip_by_value
6,060
import tensorflow as tf return (loss, per_example_loss, log_probs) def gather_indexes(sequence_tensor, positions): """Gathers the vectors at the specific positions over a minibatch.""" sequence_shape = modeling.get_shape_list(sequence_tensor, expected_rank=3) batch_size = sequence_shape[0] seq_length = sequence_shape[1] width = sequence_shape[2] flat_offsets = tf.reshape( tf.range(0, batch_size, dtype=tf.int32) * seq_length, [-1, 1] ) flat_positions = tf.reshape(positions + flat_offsets, [-1]) flat_sequence_tensor = tf.reshape(sequence_tensor, [batch_size * seq_length, width]) output_tensor = tf.gather(flat_sequence_tensor, flat_positions) return output_tensor def input_fn_builder( input_files, max_seq_length, max_predictions_per_seq, is_training, num_cpu_threads=4 ): """Creates an `input_fn` closure to be passed to TPUEstimator.""" def input_fn(params): """The actual input function."""
tensorflow.reshape
6,061
from tensorflow.python.ops import math_ops # For SparseTensor, calculate separate count for each row. if isinstance(labels, (ops.SparseTensor, ops.SparseTensorValue)): labels_sizes = set_ops.set_size(labels) return math_ops.minimum(labels_sizes, k, name=scope) # For dense Tensor, calculate scalar count based on last dimension, and # tile across labels shape. labels_shape = array_ops.shape(labels) labels_size = labels_shape[-1] num_relevant_scalar = math_ops.minimum(labels_size, k) return array_ops.fill(labels_shape[0:-1], num_relevant_scalar, name=scope) def expand_and_tile(tensor, multiple, dim=0, name=None): """Slice `tensor` shape in 2, then tile along the sliced dimension. A new dimension is inserted in shape of `tensor` before `dim`, then values are tiled `multiple` times along the new dimension.
tensorflow.python.ops.math_ops.minimum
6,062
import tensorflow as tf # Functionality to update the threshold for parameter space noise. update_param_noise_threshold_expr = param_noise_threshold.assign(tf.cond(update_param_noise_threshold_ph >= 0, lambda: update_param_noise_threshold_ph, lambda: param_noise_threshold)) # Put everything together. deterministic_actions = tf.argmax(q_values_perturbed, axis=1) batch_size = tf.shape(observations_ph.get())[0] random_actions = tf.random_uniform(tf.stack([batch_size]), minval=0, maxval=num_actions, dtype=tf.int64) chose_random = tf.random_uniform(tf.stack([batch_size]), minval=0, maxval=1, dtype=tf.float32) < eps stochastic_actions = tf.where(chose_random, random_actions, deterministic_actions)
tensorflow.argmax
6,063
from tensorflow.contrib.framework import deprecated_arg_values batch_size=batch_size, steps=steps, metrics=metrics, name=name, checkpoint_path=checkpoint_path, hooks=hooks) @deprecated_arg_values( estimator.AS_ITERABLE_DATE, estimator.AS_ITERABLE_INSTRUCTIONS, as_iterable=False) def predict(self, x=None, input_fn=None, batch_size=None, as_iterable=True): """Returns predicted classes for given features.
tensorflow.contrib.framework.deprecated_arg_values
6,064
import tensorflow as tf else: # initializer = tf.truncated_normal_initializer(stddev=stddev) with tf.device('/cpu:0'): var = tf.truncated_normal(shape, stddev=np.sqrt(2 / shape[-1])) var = tf.round(var * tf.constant(1000, dtype=tf.float32)) / tf.constant(1000, dtype=tf.float32) var = tf.Variable(var, name='weights') if wd is not None: weight_decay = tf.multiply(tf.nn.l2_loss(var), wd, name='weight_loss') tf.add_to_collection('losses', weight_decay) return var def conv1d(inputs, num_output_channels,
tensorflow.nn.l2_loss
6,065
import tensorflow as tf mvn = dists.MultivariateNormalDiag([[mu]], [[sigma]], validate_args=True) self.assertFalse(tensor_util.constant_value(mvn.is_scalar_event)) self.assertFalse(tensor_util.constant_value(mvn.is_scalar_batch)) # We now test every codepath within the underlying is_scalar_helper # function. # Test case 1, 2. x = tf.placeholder(dtype=tf.int32, shape=[]) # None would fire an exception were it actually executed. self.assertTrue(normal._is_scalar_helper(x.get_shape, lambda: None)) self.assertTrue(normal._is_scalar_helper(lambda: tf.TensorShape(None), lambda: tf.shape(x))) x = tf.placeholder(dtype=tf.int32, shape=[1]) # None would fire an exception were it actually executed. self.assertFalse(normal._is_scalar_helper(x.get_shape, lambda: None)) self.assertFalse(normal._is_scalar_helper(lambda: tf.TensorShape(None), lambda: tf.shape(x))) # Test case 3. x = tf.placeholder(dtype=tf.int32) is_scalar = normal._is_scalar_helper(x.get_shape, lambda: tf.shape(x)) self.assertTrue(is_scalar.eval(feed_dict={x: 1}))
tensorflow.TensorShape
6,066
import tensorflow as tf try: config = load_config(logdir) except RuntimeError: print('Failed to load existing config.') except IOError: config = save_config(config, logdir) trainer = trainer_.Trainer(logdir, config=config) cleanups = [] try: with tf.variable_scope('graph', use_resource=True): data = get_batch(datasets, trainer.phase, trainer.reset) score, summary, cleanups = model_fn(data, trainer, config, logdir) message = 'Graph contains {} trainable variables.' tf.logging.info(message.format(tools.count_weights())) if config.test_steps: trainer.add_phase( 'test', config.test_steps, score, summary, batch_size=config.batch_shape[0],
tensorflow.variable_scope
6,067
import tensorflow as tf beta_list = [] lstm_cell = tf.contrib.rnn.BasicLSTMCell(num_units=self.H, reuse=tf.get_variable_scope().reuse)
tensorflow.get_variable_scope
6,068
import tensorflow as tf kernel, bias, strides, mode='transpose', use_bias=True): """Resize activity x to the size of y using interpolation.""" y_size = y.get_shape().as_list() if mode == 'resize': return tf.image.resize_images( x, y_size[:-1], kernel, align_corners=True) elif mode == 'transpose': # strides = np.asarray(self.pool_strides) # strides[1:] *= len(self.ff_conv_k)
tensorflow.image.resize_images
6,069
import tensorflow as tf observations_ph = U.ensure_tf_input(make_obs_ph("observation")) stochastic_ph = tf.placeholder(tf.bool, (), name="stochastic") update_eps_ph = tf.placeholder(tf.float32, (), name="update_eps") eps = tf.get_variable("eps", (), initializer=tf.constant_initializer(0)) q_values = q_func(observations_ph.get(), num_actions, scope="q_func") deterministic_actions = tf.argmax(q_values, axis=1) batch_size = tf.shape(observations_ph.get())[0] random_actions = tf.random_uniform(tf.stack([batch_size]), minval=0, maxval=num_actions, dtype=tf.int64) chose_random = tf.random_uniform(tf.stack([batch_size]), minval=0, maxval=1, dtype=tf.float32) < eps stochastic_actions = tf.where(chose_random, random_actions, deterministic_actions)
tensorflow.argmax
6,070
from tensorflow.python.framework import tensor_util yield scope def _is_all_constant_helper(self, *args): """Helper which returns True if all inputs are constant_value.""" return all(tensor_util.constant_value(x) is not None for x in args) def _assert_non_negative_int32_scalar(self, x): """Helper which ensures that input is a non-negative, int32, scalar."""
tensorflow.python.framework.tensor_util.constant_value
6,071
import tensorflow as tf supervised_encoder_loss = tf.reduce_mean( tf.nn.softmax_cross_entropy_with_logits(labels=y_input, logits=encoder_output_label_)) all_variables = tf.trainable_variables() dc_g_var = [var for var in all_variables if 'dc_g_' in var.name] dc_c_var = [var for var in all_variables if 'dc_c_' in var.name] en_var = [var for var in all_variables if 'e_' in var.name] # Optimizers autoencoder_optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate, beta1=beta1).minimize(autoencoder_loss) discriminator_g_optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate, beta1=beta1).minimize(dc_g_loss, var_list=dc_g_var) discriminator_c_optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate, beta1=beta1).minimize(dc_c_loss, var_list=dc_c_var) generator_optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate, beta1=beta1).minimize(generator_loss, var_list=en_var) supervised_encoder_optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate, beta1=beta1).minimize(supervised_encoder_loss, var_list=en_var) init = tf.global_variables_initializer()
tensorflow.train.AdamOptimizer
6,072
import tensorflow as tf self.assertAllClose(masks.numpy(), expected_masks.numpy()) def test_inputs_Distances_to_centers(self): inputs = tf.random.uniform( [100, 8], minval=-10, maxval=10.0, dtype=tf.float32) centers = tf.random.uniform(
tensorflow.random.uniform
6,073
import tensorflow as tf coord.join(threads) def predict_time(loop=100): feed_dict={ testnum:1 } with tf.Session(config=config) as sess: sess.run(init) coord = tf.train.Coordinator() threads = tf.train.start_queue_runners(coord=coord) tf.train.Saver().restore(sess,path) total=0.0 for i in range(loop): a = datetime.now() accuracy_np = sess.run([accuracy],feed_dict=feed_dict) b = datetime.now() c = (b - a).microseconds total+=c print('predict_time(ms): ',total/(loop*1000)) coord.request_stop()
tensorflow.train.Saver
6,074
import tensorflow as tf init_b = tf.constant_initializer(0.01) net = tf.layers.dense(s, 500, activation=tf.nn.relu, kernel_initializer=init_w, bias_initializer=init_b, name='l1', trainable=trainable) net = tf.layers.dense(net, 200, activation=tf.nn.relu, kernel_initializer=init_w, bias_initializer=init_b, name='l2', trainable=trainable)
tensorflow.layers.dense
6,075
import tensorflow as tf x = tf.split(x, out_channels, 4) x = tf.concat([phase_shift_3d(v, r) for v in x], 4) return x def pixel_shuffler_3d(x, r, k, out_channels, name): in_channels = x.get_shape.as_list()[4] with tf.variable_scope(name): u = conv3d(x, [k, k, k, in_channels, out_channels*pow(r, 3)], 'conv', bias=True, stride=1) h = subpixel_conv3d(u, r, out_channels) return h def minibatch_discrimination(x, n_kernels, dim_per_kernel, name):
tensorflow.variable_scope
6,076
import tensorflow as tf bert_config, is_training, input_ids, input_mask, segment_ids, label_ids, num_labels, use_one_hot_embeddings) tvars = tf.trainable_variables() initialized_variable_names = {} scaffold_fn = None
tensorflow.trainable_variables
6,077
import tensorflow as tf inputs = tf.reshape(inputs, [-1, self.final_size]) inputs = tf.layers.dense(inputs=inputs, units=self.num_classes) inputs = tf.identity(inputs, 'final_dense') return inputs
tensorflow.identity
6,078
import tensorflow as tf clone_loss = tf.add_n(clone_losses, name='clone_loss') if num_clones > 1: clone_loss = tf.div(clone_loss, 1.0 * num_clones, name='scaled_clone_loss')
tensorflow.div
6,079
import tensorflow as tf after applying all the transformations. """ # Reshape flattened multiclass scores tensor into a 2D tensor of shape # [num_boxes, num_classes]. if fields.InputDataFields.multiclass_scores in tensor_dict: tensor_dict[fields.InputDataFields.multiclass_scores] = tf.reshape( tensor_dict[fields.InputDataFields.multiclass_scores], [ tf.shape(tensor_dict[fields.InputDataFields.groundtruth_boxes])[0], num_classes ]) if fields.InputDataFields.groundtruth_boxes in tensor_dict: tensor_dict = util_ops.filter_groundtruth_with_nan_box_coordinates( tensor_dict) tensor_dict = util_ops.filter_unrecognized_classes(tensor_dict)
tensorflow.shape
6,080
import tensorflow as tf noise_tensor = tf.random_normal((data_size, INPUT_DIM)) real_data_tensor = tf.random_uniform((data_size, OUTPUT_DIM))
tensorflow.random_uniform
6,081
import tensorflow as tf ''' Creates final model output and loss for logistic objective Args: output: Model output target: Training target placeholder add_bias: If True, a bias Variable will be added to the output Returns: tuple (final output, loss) ''' y = output if add_bias: bias = tf.Variable([0.0]) y = output + bias sig_y = tf.clip_by_value(tf.sigmoid(y), 0.001, 0.999) # avoid NaNs loss = -tf.reduce_sum(target*tf.log(sig_y) + (1-target)*tf.log(1-sig_y)) return sig_y, loss def ranking_margin_objective(output, margin=1.0): ''' Create final model output and loss for pairwise ranking margin objective Loss for single pair (f(p), f(n)) = [margin - f(p) + f(n)]+ This only works when given model output on alternating positive/negative
tensorflow.Variable
6,082
import tensorflow as tf # compute estimate of best possible value starting from state at t + 1 if double_q: q_tp1_using_online_net = q_func(obs_tp1_input.get(), num_actions, scope="q_func", reuse=True) q_tp1_best_using_online_net = tf.arg_max(q_tp1_using_online_net, 1) q_tp1_best = tf.reduce_sum(q_tp1 * tf.one_hot(q_tp1_best_using_online_net, num_actions), 1) else: q_tp1_best = tf.reduce_max(q_tp1, 1) q_tp1_best_masked = (1.0 - done_mask_ph) * q_tp1_best # compute RHS of bellman equation q_t_selected_target = rew_t_ph + gamma * q_tp1_best_masked # compute the error (potentially clipped)
tensorflow.reduce_max
6,083
from tensorflow.python.framework import ops ops.RegisterShape("Sqrt")(common_shapes.unchanged_shape) ops.RegisterShape("Square")(common_shapes.unchanged_shape) ops.RegisterShape("Sigmoid")(common_shapes.unchanged_shape) ops.RegisterShape("Tanh")(common_shapes.unchanged_shape) ops.RegisterShape("Cast")(common_shapes.unchanged_shape) ops.RegisterShape("ComplexAbs")(common_shapes.unchanged_shape) @ops.RegisterShape("Add") @ops.RegisterShape("Complex") @ops.RegisterShape("Div") @ops.RegisterShape("Equal") @ops.RegisterShape("Greater") @ops.RegisterShape("GreaterEqual") @ops.RegisterShape("Less") @ops.RegisterShape("LessEqual") @ops.RegisterShape("LogicalAnd") @ops.RegisterShape("LogicalOr") @ops.RegisterShape("Maximum") @ops.RegisterShape("Minimum")
tensorflow.python.framework.ops.RegisterShape
6,084
import tensorflow as tf initializer=tf.truncated_normal_initializer(stddev=0.02)) output_bias = tf.get_variable( "output_bias", [num_labels], initializer=tf.zeros_initializer()) with tf.variable_scope("loss"): if is_training: # I.e., 0.1 dropout output_layer = tf.nn.dropout(output_layer, keep_prob=0.9) logits = tf.matmul(output_layer, output_weights, transpose_b=True) logits = tf.nn.bias_add(logits, output_bias) probabilities = tf.nn.softmax(logits, axis=-1) log_probs = tf.nn.log_softmax(logits, axis=-1) one_hot_labels = tf.one_hot(labels, depth=num_labels, dtype=tf.float32) per_example_loss = -tf.reduce_sum(one_hot_labels * log_probs, axis=-1) loss = tf.reduce_mean(per_example_loss) return (loss, per_example_loss, logits, probabilities) def model_fn_builder(bert_config, num_labels, init_checkpoint, learning_rate, num_train_steps, num_warmup_steps, use_tpu, use_one_hot_embeddings):
tensorflow.nn.log_softmax
6,085
import tensorflow as tf # reconstruction loss recon_loss_A = tf.reduce_mean(tf.abs(A - ABA), name='recon_loss') # gan loss G_loss_A, D_loss_A = LSGAN_losses(A_dis_real, A_dis_fake) with tf.name_scope('LossB'): recon_loss_B = tf.reduce_mean(tf.abs(B - BAB), name='recon_loss') G_loss_B, D_loss_B = LSGAN_losses(B_dis_real, B_dis_fake) LAMBDA = 10.0 self.g_loss = tf.add((G_loss_A + G_loss_B), (recon_loss_A + recon_loss_B) * LAMBDA, name='G_loss_total')
tensorflow.abs
6,086
from tensorflow.python.ops import variable_scope `false_positives` variables appropriately and whose value matches `precision`. Raises: ValueError: If `predictions` and `labels` have mismatched shapes, or if `ignore_mask` is not `None` and its shape doesn't match `predictions`, or if `weights` is not `None` and its shape doesn't match `predictions`, or if either `metrics_collections` or `updates_collections` are not a list or tuple. """ with variable_scope.variable_scope( name, 'precision', [predictions, labels]): predictions, labels = tensor_util.remove_squeezable_dimensions( predictions, labels) predictions.get_shape().assert_is_compatible_with(labels.get_shape()) weights = _mask_weights(ignore_mask, weights) true_positives, true_positives_update_op = _streaming_true_positives( predictions, labels, weights, metrics_collections=None,
tensorflow.python.ops.variable_scope.variable_scope
6,087
from tensorflow.python.ops import random_ops # Benchmarking code def parameterized_vs_naive(shape, num_iters, use_gpu=False): np.random.seed(1618) # Make it reproducible. # No CSE/CF. optimizer_options = tf.OptimizerOptions(opt_level=tf.OptimizerOptions.L0) config = tf.ConfigProto( graph_options=tf.GraphOptions(optimizer_options=optimizer_options)) with tf.Session(config=config) as sess: with tf.device("/cpu:0" if not use_gpu else None): param_op = tf.group(random_ops.parameterized_truncated_normal(shape)) naive_op = tf.group(random_ops.truncated_normal(shape)) # Burn-in to avoid session setup costs in the timing. sess.run(param_op) sess.run(param_op) param_dt = timeit.timeit(lambda: sess.run(param_op), number=num_iters) sess.run(naive_op) sess.run(naive_op) naive_dt = timeit.timeit(lambda: sess.run(naive_op), number=num_iters) return param_dt, naive_dt
tensorflow.python.ops.random_ops.parameterized_truncated_normal
6,088
import tensorflow as tf """ center = [(ss - 1) // 2 for ss in shape] axes = [tf.range(-cc, ss - cc, dtype=tf.int32) for cc, ss in zip(center, shape)] # Broadcast and match dimension. if len(shape) > 1: for jj in range(len(shape)): for ii in range(len(shape) + 1): if ii != jj: axes[jj] = tf.expand_dims(axes[jj], ii) for jj in range(len(shape)): shape_ = [ss for ss in shape] + [1] shape_[jj] = 1 axes[jj] = tf.tile(axes[jj], shape_) offset = tf.concat(axes, len(shape)) return offset def _get_offset_array(shape): """ Computes the offset array used to upsample indices with NumPy (static). :param shape: [list] Window shape. """ center = [int(ss - 1) // 2 for ss in shape]
tensorflow.tile
6,089
from tensorflow.contrib.learn.python.learn.estimators import run_config learner_config.num_classes = 2 learner_config.constraints.max_tree_depth = 1 model_dir = tempfile.mkdtemp() config = run_config.RunConfig() # Use core head
tensorflow.contrib.learn.python.learn.estimators.run_config.RunConfig
6,090
import tensorflow as tf if not tf.gfile.Exists(p_name) or not tf.gfile.Exists(m_name): return params with tf.gfile.Open(p_name) as fd: tf.logging.info("Restoring hyper parameters from %s" % p_name) json_str = fd.readline() params.parse_json(json_str) with tf.gfile.Open(m_name) as fd: tf.logging.info("Restoring model parameters from %s" % m_name) json_str = fd.readline() params.parse_json(json_str) return params def export_params(output_dir, name, params): if not tf.gfile.Exists(output_dir):
tensorflow.logging.info
6,091
import tensorflow as tf if mode == 'train' and rnn_keep_prob < 1.0: cell = tf.nn.rnn_cell.DropoutWrapper(cell, output_keep_prob=rnn_keep_prob) if rnn_nlayers > 1: cell = tf.nn.rnn_cell.MultiRNNCell([cell] * rnn_nlayers) initial_state = cell.zero_state(batch_size, dtype) # RNN # TODO: weight init with tf.variable_scope('rnn_unroll'): state = initial_state outputs = [] for i in xrange(rnn_nunroll): if i > 0: tf.get_variable_scope().reuse_variables() (cell_output, state) = cell(rnn_inputs[i], state) outputs.append(cell_output) final_state = state rnn_output = tf.reshape(tf.concat(outputs, axis=1), [batch_size * rnn_nunroll, rnn_size])
tensorflow.variable_scope
6,092
import tensorflow as tf train = tf.placeholder(tf.bool, []) # Build the graph for the deep net y_conv, img_summary = deepnn(x, train) # Define your loss function - softmax_cross_entropy with tf.variable_scope('x_entropy'): cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y_, logits=y_conv)) # Define your AdamOptimiser, using FLAGS.learning_rate to minimixe the loss function decayed_learning_rate = tf.train.exponential_decay(FLAGS.learning_rate, tf.Variable(0, trainable=False), 1000, 0.8) update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS) with tf.control_dependencies(update_ops): optimiser = tf.train.AdamOptimizer(decayed_learning_rate, name="Adam").minimize(cross_entropy) # calculate the prediction and the accuracy accuracy, acc_op = tf.metrics.accuracy(labels=tf.argmax(y_, axis=1), predictions=tf.argmax(y_conv, axis=1)) loss_summary = tf.summary.scalar('Loss', cross_entropy) acc_summary = tf.summary.scalar('Accuracy', accuracy) # summaries for TensorBoard visualisation
tensorflow.get_collection
6,093
import tensorflow as tf def train(self, iterations, validation_interval=100, output_dir=None, save_interval=None, checkpoint_path=None, keep_checkpoints=1): assert 'training' in self.datasets, 'Training dataset is required.' if output_dir is not None: train_writer = tf.summary.FileWriter(output_dir) if not hasattr(self, 'saver'): with tf.device('/cpu:0'): self.saver = tf.train.Saver(save_relative_paths=True, max_to_keep=keep_checkpoints) if not self.graph.finalized: self.graph.finalize()
tensorflow.device
6,094
import tensorflow as tf # Trainable parameters w1 = tf.Variable(tf.random_normal([hidden_size, attention_size], stddev=0.1)) w2 = tf.Variable(tf.random_normal([input_size, attention_size], stddev=0.1)) b = tf.Variable(tf.random_normal([attention_size], stddev=0.1)) v = tf.Variable(tf.random_normal([attention_size], stddev=0.1))
tensorflow.random_normal
6,095
import tensorflow as tf import random import numpy as np import tensorflow as tf import tensorflow.contrib.layers as layers from atari_wrappers import * from dqn_utils import * from gym import wrappers from tensorflow.contrib.layers.python.layers import initializers def atari_model(img_in, num_actions, scope, reuse=False): # as described in https://storage.googleapis.com/deepmind-data/assets/papers/DeepMindNature14236Paper.pdf with tf.variable_scope(scope, reuse=reuse): out = img_in with tf.variable_scope("convnet"): # original architecture out = layers.convolution2d(out, num_outputs=32, kernel_size=8, stride=4, activation_fn=tf.nn.relu) out = layers.convolution2d(out, num_outputs=64, kernel_size=4, stride=2, activation_fn=tf.nn.relu) out = layers.convolution2d(out, num_outputs=64, kernel_size=3, stride=1, activation_fn=tf.nn.relu) out = layers.flatten(out) with tf.variable_scope("action_value"): out = layers.fully_connected(out, num_outputs=512, activation_fn=tf.nn.relu) out = layers.fully_connected(out, num_outputs=num_actions, activation_fn=None) return out
tensorflow.variable_scope
6,096
from tensorflow.python.framework import constant_op np.linalg.norm(expected_unclipped), var0_out[1]) # var1 is not in the var list, so it should not be clipped self.assertAllCloseAccordingToType([4.0 - 3.0 * 0.01, 5.0 - 3.0 * 0.01], var1.eval()) def _setupSparse(self, is_distributed, dtype): with self._maybeWithDevice("/job:ps" if is_distributed else None): var0 = variables.Variable( [[0.0, 1.0], [2.0, 3.0], [4.0, 5.0]], dtype=dtype) var1 = variables.Variable( [[0.0, 1.0], [0.0, 3.0], [0.0, 5.0]], dtype=dtype) with self._maybeWithDevice("/job:worker" if is_distributed else None): grads = ops.IndexedSlices( constant_op.constant( [[0.1, 0.1], [0.1, 0.1]], dtype=dtype), [0, 2], [3, 2]) sgd = gradient_descent.GradientDescentOptimizer(3.0) clip_opt = variable_clipping_optimizer.VariableClippingOptimizer( sgd, {var0: [1], var1: [0]}, 2.0) update_op = clip_opt.apply_gradients( list(zip([grads, grads], [var0, var1]))) variables.global_variables_initializer().run() return var0, var1, update_op def _assertSparseCorrect(self, var0, var1, update_op): # Fetch params to validate initial values self.assertAllCloseAccordingToType([[0.0, 1.0], [2.0, 3.0], [4.0, 5.0]],
tensorflow.python.framework.constant_op.constant
6,097
import tensorflow as tf # Reset Graph tf.reset_default_graph() def testClassifierGraph(self): FLAGS.rnn_num_layers = 2 model = graphs.VatxtModel() train_op, _, _ = model.classifier_training() # Pretrained vars: embedding + LSTM layers self.assertEqual( len(model.pretrained_variables), 1 + 2 * FLAGS.rnn_num_layers) with self.test_session() as sess: sess.run(tf.global_variables_initializer()) tf.train.start_queue_runners(sess) sess.run(train_op) def testLanguageModelGraph(self): train_op, _, _ = graphs.VatxtModel().language_model_training() with self.test_session() as sess: sess.run(tf.global_variables_initializer()) tf.train.start_queue_runners(sess) sess.run(train_op) def testMulticlass(self): FLAGS.num_classes = 10 graphs.VatxtModel().classifier_graph()
tensorflow.train.start_queue_runners
6,098
from tensorflow.python.ops import nn """Inverse Gamma with softplus applied to `alpha` and `beta`.""" def __init__(self, alpha, beta, validate_args=False, allow_nan_stats=True, name="InverseGammaWithSoftplusAlphaBeta"): parameters = locals() parameters.pop("self") with ops.name_scope(name, values=[alpha, beta]) as ns: super(InverseGammaWithSoftplusAlphaBeta, self).__init__( alpha=nn.softplus(alpha, name="softplus_alpha"), beta=nn.softplus(beta, name="softplus_gamma"), validate_args=validate_args, allow_nan_stats=allow_nan_stats, name=ns) self._parameters = parameters
tensorflow.python.ops.nn.softplus
6,099