seed
stringlengths
25
2.89k
seed_api
stringlengths
14
102
index
int64
0
14.8k
import tensorflow as tf ("gpu" if tfe.num_gpus() > 0 else "cpu"), iters=num_epochs * num_batches, extras={"examples_per_sec": examples_per_sec}, wall_time=wall_time) if __name__ == "__main__": tf.enable_eager_execution() tf.test.main()
tensorflow.enable_eager_execution
4,200
import tensorflow as tf nin = x.get_shape()[1].value w = tf.get_variable("w", [nin, nh], initializer=ortho_init(init_scale)) b = tf.get_variable("b", [nh], initializer=tf.constant_initializer(init_bias)) return tf.matmul(x, w)+b def batch_to_seq(h, nbatch, nsteps, flat=False): if flat: h = tf.reshape(h, [nbatch, nsteps]) else: h = tf.reshape(h, [nbatch, nsteps, -1]) return [tf.squeeze(v, [1]) for v in tf.split(axis=1, num_or_size_splits=nsteps, value=h)] def seq_to_batch(h, flat = False): shape = h[0].get_shape().as_list()
tensorflow.reshape
4,201
import tensorflow as tf v_size = np.prod(np.array(v.shape.as_list())).tolist() # mutiple all dimension size total_size += v_size tf.logging.info("Total trainable variables size: %d", total_size)
tensorflow.logging.info
4,202
import tensorflow as tf # session.run(update_target_fn) # you should update every target_update_freq steps, and you may find the # variable num_param_updates useful for this (it was initialized to 0) obs_t_batch,act_t_batch,rew_t_batch,obs_tp1_batch,done_mask_batch = replay_buffer.sample(batch_size) if not model_initialized: initialize_interdependent_variables(session,tf.global_variables(), {obs_t_ph: obs_t_batch,obs_tp1_ph: obs_tp1_batch,}) model_initialized = True session.run([total_error,train_fn], feed_dict={obs_t_ph: obs_t_batch,act_t_ph: act_t_batch, rew_t_ph: rew_t_batch, obs_tp1_ph: obs_tp1_batch,done_mask_ph: done_mask_batch,
tensorflow.global_variables
4,203
import tensorflow as tf b_t2 = utils.bias_variable([deconv_shape2[3].value], name="b_t2") conv_t2 = utils.conv2d_transpose_strided(fuse_1, W_t2, b_t2, output_shape=tf.shape(image_net["pool3"])) fuse_2 = tf.add(conv_t2, image_net["pool3"], name="fuse_2") shape = tf.shape(image) deconv_shape3 = tf.stack([shape[0], shape[1], shape[2], 3]) W_t3 = utils.weight_variable([16, 16, 3, deconv_shape2[3].value], name="W_t3") b_t3 = utils.bias_variable([3], name="b_t3") conv_t3 = tf.nn.relu(utils.conv2d_transpose_strided(fuse_2, W_t3, b_t3, output_shape=deconv_shape3, stride=8)) annotation_pred = tf.argmax(conv_t3, dimension=3, name="prediction") return tf.expand_dims(annotation_pred, dim=3), conv_t3 def train(loss_val, var_list): optimizer = tf.train.AdamOptimizer(FLAGS.learning_rate) grads = optimizer.compute_gradients(loss_val, var_list=var_list) if FLAGS.debug: # print(len(var_list))
tensorflow.argmax
4,204
import tensorflow as tf blocked_cols = tf.Dimension(0) batch_shape = tf.TensorShape(None)
tensorflow.TensorShape
4,205
import tensorflow as tf ` See the top of the file for details. """ with tf.variable_scope(scope, reuse=reuse): observations_ph = U.ensure_tf_input(make_obs_ph("observation")) stochastic_ph = tf.placeholder(tf.bool, (), name="stochastic") update_eps_ph = tf.placeholder(tf.float32, (), name="update_eps") eps = tf.get_variable("eps", (), initializer=tf.constant_initializer(0))
tensorflow.placeholder
4,206
import tensorflow as tf img_w = img_w_batch[i] inputs_list.append([img, gtboxes_and_label_h, gtboxes_and_label_r, num_objects, img_h, img_w]) tower_grads = [] biases_regularizer = tf.no_regularizer weights_regularizer = tf.contrib.layers.l2_regularizer(cfgs.WEIGHT_DECAY) with tf.variable_scope(tf.get_variable_scope()): for i in range(num_gpu): with tf.device('/gpu:%d' % i): with tf.name_scope('tower_%d' % i): with slim.arg_scope( [slim.model_variable, slim.variable], device='/device:CPU:0'): with slim.arg_scope([slim.conv2d, slim.conv2d_in_plane, slim.conv2d_transpose, slim.separable_conv2d, slim.fully_connected], weights_regularizer=weights_regularizer, biases_regularizer=biases_regularizer,
tensorflow.device
4,207
import tensorflow as tf v = tf.Variable(tf.random_normal([attention_size], stddev=0.1)) with tf.name_scope('v'): # Applying fully connected layer with non-linear activation to each of the B*T timestamps; # the shape of `tmp` is (B,T,D)*(D,A)=(B,T,A), where A=attention_size tmp1 = tf.tensordot(facts, w1, axes=1) tmp2 = tf.tensordot(query, w2, axes=1) tmp2 = tf.reshape(tmp2, [-1, 1, tf.shape(tmp2)[-1]]) tmp = tf.tanh((tmp1 + tmp2) + b) # For each of the timestamps its vector of size A from `tmp` is reduced with `v` vector v_dot_tmp = tf.tensordot(tmp, v, axes=1, name='v_dot_tmp') # (B,T) shape key_masks = mask # [B, 1, T] # key_masks = tf.expand_dims(mask, 1) # [B, 1, T] paddings = tf.ones_like(v_dot_tmp) * (-2 ** 32 + 1) v_dot_tmp = tf.where(key_masks, v_dot_tmp, paddings) # [B, 1, T] alphas = tf.nn.softmax(v_dot_tmp, name='alphas') # (B,T) shape # Output of (Bi-)RNN is reduced with attention vector; the result has (B,D) shape #output = tf.reduce_sum(facts * tf.expand_dims(alphas, -1), 1) output = facts * tf.expand_dims(alphas, -1) output = tf.reshape(output, tf.shape(facts)) # output = output / (facts.get_shape().as_list()[-1] ** 0.5) if not return_alphas: return output else: return output, alphas def din_attention(query, facts, attention_size, mask, stag='null', mode='SUM', softmax_stag=1, time_major=False, return_alphas=False): if isinstance(facts, tuple):
tensorflow.where
4,208
import tensorflow as tf passage_len = input_shape[1] # map decoder inputs to word embeddings decoder_inputs = tf.unstack(decoder_inputs, axis=1) # max_enc_steps * [batch_size] answer_batch_unstack = tf.unstack(answer_batch, axis=1) # initialize all the variables state_t_1 = init_state
tensorflow.unstack
4,209
from tensorflow.python.ops import math_ops ids: `int64` `Tensor` or `SparseTensor` of IDs. selected_id: Int id to select. Returns: `SparseTensor` of same dimensions as `ids`. This contains only the entries equal to `selected_id`. """ if isinstance(ids, (ops.SparseTensor, ops.SparseTensorValue)): return sparse_ops.sparse_retain( ids, math_ops.equal(ids.values, selected_id)) # TODO(ptucker): Make this more efficient, maybe add a sparse version of # tf.equal and tf.reduce_any? # Shape of filled IDs is the same as `ids` with the last dim collapsed to 1. ids_shape = array_ops.shape(ids, out_type=dtypes.int64) ids_last_dim = array_ops.size(ids_shape) - 1 filled_selected_id_shape = math_ops.reduced_shape(
tensorflow.python.ops.math_ops.equal
4,210
import tensorflow as tf opt_denoise = self.optimizer_func(self.hparams.learning_rate) opt_ranker = self.optimizer_func(self.ranker_learning_rate) denoise_updates = opt_denoise.apply_gradients(zip(denoise_gradients, denoise_params), global_step=self.global_step) ranker_updates = opt_ranker.apply_gradients(zip(ranking_model_gradients, ranking_model_params)) self.updates = tf.group(denoise_updates, ranker_updates) def DenoisingNet(self, list_size, forward_only=False, scope=None): with tf.variable_scope(scope or "denoising_model"): # If we are in testing, do not compute propensity if forward_only: return tf.ones_like(self.output)#, tf.ones_like(self.output)
tensorflow.group
4,211
import tensorflow as tf } self._sess.run(m.vars_assign_op, feed_dict=var_feeddict) def _make_placeholders(self): w = self._train_params['image_size'] h = self._train_params['image_size'] in_ch = 3 # Num channels of input images train_images_ph = tf.placeholder(tf.int32, name='train_images_ph', shape=(None, w, h, in_ch)) # Train images pred_images_ph = tf.placeholder(tf.int32, name='pred_images_ph', shape=(None, w, h, in_ch)) # Predict images train_classes_ph = tf.placeholder(tf.int32, name='train_classes_ph', shape=(None,)) # Train classes pred_classes_ph = tf.placeholder(tf.int32, name='pred_classes_ph', shape=(None,)) # Predict classes normal_arch_ph = tf.placeholder(tf.int32, name='normal_arch_ph', shape=(CELL_NUM_BLOCKS, 4)) reduction_arch_ph = tf.placeholder(tf.int32, name='reduction_arch_ph', shape=(CELL_NUM_BLOCKS, 4)) return _ModelPlaceholder(train_images_ph, train_classes_ph, pred_images_ph, pred_classes_ph, normal_arch_ph, reduction_arch_ph) def _forward(self, X, step, normal_arch, reduction_arch, is_train=False, **knobs): K = self._train_params['K'] # No. of classes in_ch = 3 # Num channels of input images w = self._train_params['image_size'] # Initial input width h = self._train_params['image_size'] # Initial input height dropout_keep_prob = knobs['dropout_keep_prob'] use_dynamic_arch = knobs['downscale'] L = knobs['num_layers'] # Total number of layers initial_block_ch = knobs['initial_block_ch'] # Initial no. of channels for operations in block
tensorflow.placeholder
4,212
import tensorflow as tf class TFRecordDataset(TFDataset): def get_num_partitions(self): self.train_rdd.getNumPartitions() def __init__(self, file_path, parse_fn, batch_size, batch_per_thread, hard_code_batch_size=False, validation_file_path=None): import tensorflow as tf g = tf.Graph() with g.as_default(): serialized_example = tf.placeholder(dtype=tf.string, shape=[]) results = parse_fn(serialized_example) flattened = nest.flatten(results) output_names = [tf.cast(t, dtype=tf.float32).name for t in flattened] serialized_graph = bytearray(g.as_graph_def().SerializeToString()) sc = getOrCreateSparkContext() train_rdd = callBigDlFunc("float", "createRDDFromTFRecords", file_path, sc, serialized_graph, serialized_example.name, output_names) validation_rdd = None if validation_file_path is not None: validation_rdd = callBigDlFunc("float", "createRDDFromTFRecords", validation_file_path, sc, serialized_graph, serialized_example.name, output_names)
tensorflow.cast
4,213
import tensorflow as tf "output_bias", shape=[bert_config.vocab_size], initializer=tf.zeros_initializer(), ) logits = tf.matmul(input_tensor, output_weights, transpose_b=True) logits = tf.nn.bias_add(logits, output_bias) log_probs = tf.nn.log_softmax(logits, axis=-1)
tensorflow.matmul
4,214
import tensorflow as tf locs, scales = tf.map_fn(loop_hyper_deocder, zs, dtype=(tf.float32, tf.float32), parallel_iterations=1, back_prop=False) lower_bound = 1e-9# TODO scales = tf.maximum(scales, lower_bound) print("Hyper Decoder") ys = conditional_entropy_model.decompress(y_strings, locs, scales, y_min_v, y_max_v, y_shape)
tensorflow.maximum
4,215
import tensorflow as tf s = tf.matmul(g, f, transpose_b=True) # # [bs, N, N] beta = tf.nn.softmax(s) # attention map print('attention beta dims: ' + str(s.get_shape().as_list())) h = tf.reshape(h, shape=[-1, h.shape[1]*h.shape[2], h.shape[-1]]) print('attention h flat dims: ' + str(h.get_shape().as_list())) o = tf.matmul(beta, h) # [bs, N, C] print('attention o dims: ' + str(o.get_shape().as_list()))
tensorflow.reshape
4,216
import tensorflow as tf landm_valid = tf.reshape(y_true[..., 14], [num_batch * num_prior, 1]) class_true = tf.reshape(y_true[..., 15], [num_batch * num_prior, 1]) # define filter mask: class_true = 1 (pos), 0 (neg), -1 (ignore) # landm_valid = 1 (w landm), 0 (w/o landm) mask_pos = tf.equal(class_true, 1) mask_neg = tf.equal(class_true, 0) mask_landm = tf.logical_and(tf.equal(landm_valid, 1), mask_pos) # landm loss (smooth L1) mask_landm_b = tf.broadcast_to(mask_landm, tf.shape(landm_true)) loss_landm = _smooth_l1_loss(tf.boolean_mask(landm_true, mask_landm_b), tf.boolean_mask(landm_pred, mask_landm_b)) loss_landm = tf.reduce_mean(loss_landm) # localization loss (smooth L1) mask_pos_b = tf.broadcast_to(mask_pos, tf.shape(loc_true)) loss_loc = _smooth_l1_loss(tf.boolean_mask(loc_true, mask_pos_b), tf.boolean_mask(loc_pred, mask_pos_b)) loss_loc = tf.reduce_mean(loss_loc) # classification loss (crossentropy)
tensorflow.boolean_mask
4,217
import tensorflow as tf num_decoder_symbols, embedding_size=2, feed_previous=feed_previous) def EmbeddingRNNSeq2SeqNoTupleF(enc_inp, dec_inp, feed_previous): cell = tf.nn.rnn_cell.BasicLSTMCell(2, state_is_tuple=False) return tf.nn.seq2seq.embedding_rnn_seq2seq( enc_inp, dec_inp, cell, num_encoder_symbols, num_decoder_symbols, embedding_size=2, feed_previous=feed_previous) def EmbeddingTiedRNNSeq2Seq(enc_inp, dec_inp, feed_previous): cell = tf.nn.rnn_cell.BasicLSTMCell(2, state_is_tuple=True) return tf.nn.seq2seq.embedding_tied_rnn_seq2seq( enc_inp, dec_inp, cell, num_decoder_symbols, embedding_size=2, feed_previous=feed_previous) def EmbeddingTiedRNNSeq2SeqNoTuple(enc_inp, dec_inp, feed_previous): cell = tf.nn.rnn_cell.BasicLSTMCell(2, state_is_tuple=False) return tf.nn.seq2seq.embedding_tied_rnn_seq2seq( enc_inp, dec_inp, cell, num_decoder_symbols, embedding_size=2, feed_previous=feed_previous) def EmbeddingAttentionSeq2Seq(enc_inp, dec_inp, feed_previous): cell = tf.nn.rnn_cell.BasicLSTMCell(2, state_is_tuple=True) return tf.nn.seq2seq.embedding_attention_seq2seq( enc_inp, dec_inp, cell, num_encoder_symbols, num_decoder_symbols, embedding_size=2, feed_previous=feed_previous) def EmbeddingAttentionSeq2SeqNoTuple(enc_inp, dec_inp, feed_previous): cell = tf.nn.rnn_cell.BasicLSTMCell(2, state_is_tuple=False) return tf.nn.seq2seq.embedding_attention_seq2seq( enc_inp, dec_inp, cell, num_encoder_symbols,
tensorflow.nn.rnn_cell.BasicLSTMCell
4,218
import tensorflow as tf def model(X, M, Y, train=False, reuse=False): with tf.variable_scope('model', reuse=reuse): we = tf.get_variable("we", [n_vocab+n_special+n_ctx, n_embd], initializer=tf.random_normal_initializer(stddev=0.02)) we = dropout(we, embd_pdrop, train)
tensorflow.random_normal_initializer
4,219
import tensorflow as tf self.assertEqual(save_path + ".meta", meta_graph_filename) # Restore a different "v0" from shard 0 of the saved files. with tf.Session( target="", config=tf.ConfigProto(device_count={"CPU": 2})) as sess: with sess.graph.device("/cpu:0"): v0 = tf.Variable(111, name="v0") save = tf.train.Saver({"v0": v0}, sharded=True) tf.initialize_all_variables().run() self.assertEqual(111, v0.eval()) save.restore(sess, save_path + "-00000-of-00002") self.assertEqual(10, v0.eval()) # Restore a different "v1" from shard 1 of the saved files. with tf.Session(
tensorflow.train.Saver
4,220
import tensorflow as tf **conv_kwargs)) h2 = activ(conv(h, 'c2', nf=64, rf=4, stride=2, init_scale=np.sqrt(2), **conv_kwargs)) h3 = activ(conv(h2, 'c3', nf=64, rf=3, stride=1, init_scale=np.sqrt(2), **conv_kwargs)) h3 = conv_to_fc(h3) return activ(fc(h3, 'fc1', nh=512, init_scale=np.sqrt(2))) class CnnPolicy(object): def __init__(self, sess, ob_space, ac_space, nbatch, nsteps, reuse=False, **conv_kwargs): #pylint: disable=W0613 self.pdtype = make_pdtype(ac_space) X, processed_x = observation_input(ob_space, nbatch) # X:0~255 processed_x:0~1.0 with tf.variable_scope("model", reuse=reuse): h = nature_cnn(processed_x, **conv_kwargs) vf = fc(h, 'v', 1)[:,0] self.pd, self.pi = self.pdtype.pdfromlatent(h, init_scale=0.01) a0 = self.pd.sample() neglogp0 = self.pd.neglogp(a0) self.initial_state = None def step(ob, *_args, **_kwargs): a, v, neglogp = sess.run([a0, vf, neglogp0], {X:ob})
tensorflow.variable_scope
4,221
import tensorflow as tf """Generate input and target data. The task of language model is to predict the next word. Args: chunk: A Tensor of text data. Returns: A namedtuple of input and target data. """ input_text = tf.map_fn(lambda x: x[:-1], chunk) target_text = tf.map_fn(lambda x: x[1:], chunk) return (input_text, target_text) def build_to_ids_fn(vocab, max_seq_len): """Constructs function mapping examples to sequences of token indices.""" _, _, bos, eos = get_special_tokens(len(vocab)) table_values = np.arange(len(vocab), dtype=np.int64) table = tf.lookup.StaticVocabularyTable( tf.lookup.KeyValueTensorInitializer(vocab, table_values),
tensorflow.map_fn
4,222
import tensorflow as tf train_model = self.policy(self.sess, self.observation_space, self.action_space, self.n_envs, self.n_steps + 1, n_batch_train, reuse=True, **self.policy_kwargs) with tf.variable_scope("moving_average"): # create averaged model ema = tf.train.ExponentialMovingAverage(self.alpha)
tensorflow.variable_scope
4,223
import tensorflow as tf assert self.cnf['batch_size_train'] % self.cnf.get('num_gpus', 1) == 0, ( 'Batch size must be divisible by number of GPUs') self.inputs = tf.placeholder( tf.float32, shape=(None, self.model.image_size[0], self.model.image_size[0], 3),
tensorflow.placeholder
4,224
import tensorflow as tf self._lr = tf.Variable(0.0, trainable=False) tvars = tf.trainable_variables() grads, _ = tf.clip_by_global_norm(tf.gradients(self._cost, tvars), config.max_grad_norm) optimizer = tf.train.GradientDescentOptimizer(self._lr) self._train_op = optimizer.apply_gradients( zip(grads, tvars), global_step=tf.contrib.framework.get_or_create_global_step())
tensorflow.train.GradientDescentOptimizer
4,225
import tensorflow as tf # bce_loss_list.append(tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=pred_outputs[pred_ind], labels=targets_list[pred_ind]/255., name='loss_{}'.format(pred_ind)), name='loss_mean_{}'.format(pred_ind))) # mse_loss = tf.multiply(params['mse_weight'] / params['num_stacks'], tf.add_n(bce_loss_list), name='mse_loss') # tf.summary.scalar('mse', mse_loss) # tf.losses.add_loss(mse_loss) # Add weight decay to the loss. We exclude the batch norm variables because # doing so leads to a small improvement in accuracy. loss = mse_loss + params['weight_decay'] * tf.add_n([tf.nn.l2_loss(v) for v in tf.trainable_variables() if 'batch_normalization' not in v.name]) total_loss = tf.identity(loss, name='total_loss') tf.summary.scalar('loss', total_loss) if mode == tf.estimator.ModeKeys.EVAL: return tf.estimator.EstimatorSpec(mode=mode, loss=loss, predictions=predictions, eval_metric_ops=metrics) if mode == tf.estimator.ModeKeys.TRAIN: global_step = tf.train.get_or_create_global_step()
tensorflow.identity
4,226
import tensorflow as tf strides=strides, padding=padding, name=scope.name) if hasattr(input_, "shape"): if input_.get_shape().as_list()[1] < filter_size[0]: res = tf.slice(res, [ 0, filter_size[0] - input_.get_shape().as_list()[1], filter_size[1] - input_.get_shape().as_list()[2], 0 ], [-1, -1, -1, -1]) if bias: biases = variable_on_cpu("biases", [dim_out], tf.constant_initializer(0.)) res = tf.nn.bias_add(res, biases) if nonlinearity is not None: res = nonlinearity(res) return res def max_pool_2x2(input_): """Max pooling.""" return tf.nn.max_pool( input_, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding="SAME")
tensorflow.nn.bias_add
4,227
import tensorflow as tf # Intentionally using tf.Session() instead of self.test_session() to have # control over closing the session. test_session() is a cached session. with tf.Session(): coord = tf.train.Coordinator() tf.train.start_queue_runners(coord=coord) # Sleep to make sure the queue runner has started the first run call. time.sleep(_SLEEP_TIME) # Session closed.
tensorflow.train.start_queue_runners
4,228
from tensorflow.python.ops import state_ops var_update = state_ops.assign_sub(var, lr_t * (scaled_grad + gold)) return control_flow_ops.group(*[var_update, ]) def _apply_sparse(self, grad, var): # sparse grad (only for the shakespeare model) return self._apply_sparse_shared( grad.values, var, grad.indices, lambda x, i, v: state_ops.scatter_add(x, i, v)) def set_params(self, cog, avg_gradient, client): with client.model.graph.as_default(): all_vars = tf.trainable_variables() for variable, value in zip(all_vars, cog):
tensorflow.python.ops.state_ops.scatter_add
4,229
import tensorflow as tf return estimator_spec elif mode == tf.estimator.ModeKeys.PREDICT: print(logits.get_shape(), "===logits shape===") pred_label = tf.argmax(logits, axis=-1, output_type=tf.int32) prob = tf.nn.softmax(logits) max_prob = tf.reduce_max(prob, axis=-1) estimator_spec = tf.estimator.EstimatorSpec( mode=mode,
tensorflow.nn.softmax
4,230
import tensorflow as tf target: A tensor with the same shape as `output`. from_logits: Whether `output` is expected to be a logits tensor. By default, we consider that `output` encodes a probability distribution. # Returns A tensor. """ # Note: tf.nn.softmax_cross_entropy_with_logits # expects logits, Keras expects probabilities. if not from_logits: # transform back to logits epsilon = _to_tensor(_EPSILON, output.dtype.base_dtype) output = tf.clip_by_value(output, epsilon, 1 - epsilon) output = tf.log(output / (1 - output)) try: return tf.nn.sigmoid_cross_entropy_with_logits(labels=target, logits=output) except TypeError: return tf.nn.sigmoid_cross_entropy_with_logits(logits=output, labels=target) def sum(x, axis=None, keepdims=False): """Sum of the values in a tensor, alongside the specified axis. Parameters ---------- x: A tensor or variable. axis: An integer, the axis to sum over.
tensorflow.log
4,231
import tensorflow as tf anchor_scales, anchor_ratios, height, width) init = tf.global_variables_initializer() with tf.Session(config=tf.ConfigProto(device_count={'GPU': 0})) as sess: sess.run(init) anchors_out = sess.run(anchors) print(anchors_out[-30:]) print(anchors.shape) print(anchors_out[158623])
tensorflow.ConfigProto
4,232
import tensorflow as tf state_in = (c_in, h_in) rnn_in = tf.expand_dims(self.h3, [0]) step_size = tf.shape(inputs)[:1] state_in = tf.nn.rnn_cell.LSTMStateTuple(c_in, h_in) lstm_outputs, lstm_state = tf.nn.dynamic_rnn( lstm_cell, rnn_in, initial_state=state_in, sequence_length=step_size, time_major=False) lstm_c, lstm_h = lstm_state
tensorflow.nn.dynamic_rnn
4,233
import tensorflow as tf v_path = conv3d(rb, 3, channel_nr, 'SYMMETRIC', 'relu') v_path = conv3d(v_path, 3, 1, 'SYMMETRIC', None) w_path = conv3d(rb, 3, channel_nr, 'SYMMETRIC', 'relu') w_path = conv3d(w_path, 3, 1, 'SYMMETRIC', None) b_out = tf.keras.layers.concatenate([u_path, v_path, w_path]) return b_out def upsample3d(input_tensor, res_increase): """ Resize the image by linearly interpolating the input using TF '``'resize_bilinear' function.
tensorflow.keras.layers.concatenate
4,234
import tensorflow as tf res = sess.run([mem]) self.assertEqual((2, 2), res[0].shape) def testDynamicAttentionDecoder1(self): with self.test_session() as sess: with tf.variable_scope("root", initializer=tf.constant_initializer(0.5)): cell = tf.nn.rnn_cell.GRUCell(2) inp = tf.constant(0.5, shape=[2, 2, 2]) enc_outputs, enc_state = tf.nn.dynamic_rnn(cell, inp, dtype=tf.float32) attn_states = enc_outputs dec_inp = [tf.constant(0.4, shape=[2, 2])] * 3 dec, mem = tf.nn.seq2seq.attention_decoder( dec_inp, enc_state, attn_states, cell, output_size=4) sess.run([tf.global_variables_initializer()]) res = sess.run(dec) self.assertEqual(3, len(res)) self.assertEqual((2, 4), res[0].shape) res = sess.run([mem]) self.assertEqual((2, 2), res[0].shape)
tensorflow.nn.seq2seq.attention_decoder
4,235
from tensorflow.python.ops import math_ops Args: required_size: number or tf.Tensor specifying required array capacity. growth_factor: optional number or tf.Tensor specifying the growth factor between subsequent allocations. Returns: tf.Tensor with dtype=int32 giving the next array size. """ exponent = math_ops.ceil( math_ops.log(math_ops.cast(required_size, dtypes.float32)) / math_ops.log(math_ops.cast(growth_factor, dtypes.float32))) return math_ops.cast(math_ops.ceil(growth_factor ** exponent), dtypes.int32) def streaming_concat(values, axis=0, max_size=None, metrics_collections=None, updates_collections=None, name=None): """Concatenate values along an axis across batches.
tensorflow.python.ops.math_ops.cast
4,236
import tensorflow as tf top_fast_antecedent_scores = util.batch_gather(fast_antecedent_scores, top_antecedents) # [k, c] top_antecedent_offsets = util.batch_gather(antecedent_offsets, top_antecedents) # [k, c] return top_antecedents, top_antecedents_mask, top_fast_antecedent_scores, top_antecedent_offsets def distance_pruning(self, top_span_emb, top_span_mention_scores, c): k = util.shape(top_span_emb, 0) top_antecedent_offsets = tf.tile(tf.expand_dims(tf.range(c) + 1, 0), [k, 1]) # [k, c] raw_top_antecedents = tf.expand_dims(tf.range(k), 1) - top_antecedent_offsets # [k, c] top_antecedents_mask = raw_top_antecedents >= 0 # [k, c] top_antecedents = tf.maximum(raw_top_antecedents, 0) # [k, c] top_fast_antecedent_scores = tf.expand_dims(top_span_mention_scores, 1) + tf.gather(top_span_mention_scores, top_antecedents) # [k, c] top_fast_antecedent_scores += tf.log(tf.to_float(top_antecedents_mask)) # [k, c] return top_antecedents, top_antecedents_mask, top_fast_antecedent_scores, top_antecedent_offsets
tensorflow.range
4,237
import tensorflow as tf output_spec = None if mode == tf.estimator.ModeKeys.TRAIN: train_op = optimization.create_optimizer( total_loss, learning_rate, num_train_steps, num_warmup_steps, use_tpu) output_spec = tf.contrib.tpu.TPUEstimatorSpec( mode=mode, loss=total_loss, train_op=train_op, scaffold_fn=scaffold_fn) elif mode == tf.estimator.ModeKeys.EVAL: def metric_fn(per_example_loss, label_ids, logits, is_real_example): predictions = tf.argmax(logits, axis=-1, output_type=tf.int32) accuracy = tf.metrics.accuracy( labels=label_ids, predictions=predictions, weights=is_real_example) loss = tf.metrics.mean(values=per_example_loss, weights=is_real_example) return { "eval_accuracy": accuracy, "eval_loss": loss, } eval_metrics = (metric_fn, [per_example_loss, label_ids, logits, is_real_example]) output_spec = tf.contrib.tpu.TPUEstimatorSpec( mode=mode, loss=total_loss, eval_metrics=eval_metrics,
tensorflow.argmax
4,238
import tensorflow as tf orig_indices = tf.range( self._sample_batch_size, dtype=relabel_indices.dtype) with tf.name_scope("relabelling"): # How often are the originally commanded goals most optimal? opt_indices = tf.argmax(logits_vec, axis=1) orig_is_opt = opt_indices == orig_indices orig_opt_frac = tf.reduce_mean(tf.cast(orig_is_opt, tf.float32)) tf.compat.v2.summary.scalar( name="orig_task_optimal", data=orig_opt_frac, step=global_step) # How often is the relabelled goal optimal? # The relabel_indices are [B, 1], so we need to remove the extra dim.
tensorflow.cast
4,239
import tensorflow as tf pred_mask = pred_mask[..., tf.newaxis] return pred_mask[0] dataset, info = tfds.load('oxford_iiit_pet:3.*.*', with_info=True) def normalize(input_image, input_mask): input_image = tf.cast(input_image, tf.float32) / 255.0 input_mask -= 1 return input_image, input_mask def load_image_train(datapoint): """Load images for training.""" input_image = tf.image.resize(datapoint['image'], (512, 512)) input_mask = tf.image.resize(datapoint['segmentation_mask'], (128, 128)) if tf.random.uniform(()) > 0.5: input_image = tf.image.flip_left_right(input_image) input_mask = tf.image.flip_left_right(input_mask) input_image, input_mask = normalize(input_image, input_mask) return input_image, input_mask def load_image_test(datapoint): input_image = tf.image.resize(datapoint['image'], (512, 512)) input_mask = tf.image.resize(datapoint['segmentation_mask'], (128, 128))
tensorflow.image.resize
4,240
from tensorflow.python.framework import ops `precision`. Raises: ValueError: If `ignore_mask` is not `None` and its shape doesn't match `predictions`, or if `weights` is not `None` and its shape doesn't match `predictions`, or if either `metrics_collections` or `updates_collections` are not a list or tuple. ValueError: If `top_k_predictions` has rank < 2. """ default_name = _at_k_name('precision', class_id=class_id) with ops.name_scope( name, default_name, (top_k_predictions, labels, ignore_mask, weights)) as scope: rank = array_ops.rank(top_k_predictions) check_rank_op = control_flow_ops.Assert( math_ops.greater_equal(rank, 2), ['top_k_predictions must have rank 2 or higher, e.g. [batch_size, k].']) with ops.control_dependencies([check_rank_op]): return _streaming_sparse_precision_at_k( top_k_idx=top_k_predictions,
tensorflow.python.framework.ops.name_scope
4,241
import tensorflow as tf strides = [1] + strides + [1] filter_ = get_variable('filter_{}'.format(k), [filter_height, filter_width, in_channels, out_channels]) encoder_inputs_ = tf.nn.conv2d(encoder_inputs_, filter_, strides, padding='SAME') if encoder.batch_norm: encoder_inputs_ = tf.layers.batch_normalization(encoder_inputs_, training=training,
tensorflow.nn.conv2d
4,242
import tensorflow as tf else: if reuse: ret.append(tf.variable_scope( tf.get_variable_scope(), reuse=True)) else: # work around https://github.com/tensorflow/tensorflow/issues/14703 ret.append(tf.variable_scope(tf.get_variable_scope())) # always clear existing ns # TODO check existing ns if len(self._name) and self._name != self._vs_name: ret.append(tf.name_scope(self._name + '/')) return ret def _keys_to_freeze(self): if self.is_main_training_tower: return [] if self.is_training: return [tf.GraphKeys.SUMMARIES, MOVING_SUMMARY_OPS_KEY] # freeze UPDATE_OPS during inference because they should never be used
tensorflow.name_scope
4,243
import tensorflow as tf K = 1/(2*D-3) A1 = euclidean_norm_squared(tf.subtract(tf.expand_dims(X, 0), tf.expand_dims(X, 1)), axis=2) A = (1/(N**2)) * tf.reduce_sum((1/tf.sqrt(y + K*A1)))
tensorflow.expand_dims
4,244
import tensorflow as tf mask1 = tf.constant([[1, 1], [0, 1]], dtype=tf.float32) mask2 = tf.constant([[1, 0], [1, 1]], dtype=tf.float32) mask3 = tf.constant([[1, 1], [1, 1]], dtype=tf.float32) mask4 = tf.constant([[0, 0], [0, 0]], dtype=tf.float32)
tensorflow.constant
4,245
import tensorflow as tf return from tensorflow_transform import annotations_pb2 # pylint: disable=g-import-not-at-top message_type = annotations_pb2.VocabularyMetadata.DESCRIPTOR.full_name unfiltered_vocabulary_size = tf.expand_dims(unfiltered_vocabulary_size, 0) filtered_vocabulary_size = tf.expand_dims(filtered_vocabulary_size, 0) file_name = tf.convert_to_tensor([vocab_filename]) descriptor_source = descriptor_pb2.FileDescriptorSet()
tensorflow.expand_dims
4,246
from tensorflow.python.framework import ops ``` # tensor 'real' is [2.25, 3.25] # tensor `imag` is [4.75, 5.75] tf.complex(real, imag) ==> [[2.25 + 4.74j], [3.25 + 5.75j]] ``` Args: real: A `Tensor` of type `float`. imag: A `Tensor` of type `float`. name: A name for the operation (optional). Returns: A `Tensor` of type `complex64`. """ with ops.op_scope([real, imag], name, "Complex") as name: return gen_math_ops._complex(real, imag, name=name) def round(x, name=None): """Rounds the values of a tensor to the nearest integer, element-wise. For example: ```python # 'a' is [0.9, 2.5, 2.3, -4.4] tf.round(a) ==> [ 1.0, 3.0, 2.0, -4.0 ] ``` Args:
tensorflow.python.framework.ops.op_scope
4,247
import tensorflow as tf one_hot_labels = tf.one_hot(labels, depth=num_labels, dtype=tf.float32) per_example_loss = -tf.reduce_sum(one_hot_labels * log_probs, axis=-1) loss = tf.reduce_sum(per_example_loss) return (loss, per_example_loss, logits) def model_fn_builder(bert_config, num_labels, init_checkpoint, learning_rate, num_train_steps, num_warmup_steps, use_tpu, use_one_hot_embeddings): def model_fn(features, labels, mode, params): tf.logging.info("*** Features ***") for name in sorted(features.keys()): tf.logging.info(" name = %s, shape = %s" % (name, features[name].shape)) input_ids = features["input_ids"] input_mask = features["input_mask"] segment_ids = features["segment_ids"] label_ids = features["label_ids"] is_training = (mode == tf.estimator.ModeKeys.TRAIN)
tensorflow.logging.info
4,248
import tensorflow as tf with tf.variable_scope('logits', reuse=reuse): w_h = tf.get_variable('w_h', [self.H, self.M], initializer=self.weight_initializer) b_h = tf.get_variable('b_h', [self.M], initializer=self.const_initializer) w_out = tf.get_variable('w_out', [self.M, self.V], initializer=self.weight_initializer)
tensorflow.get_variable
4,249
from tensorflow.python.ops import math_ops """ with variable_scope.variable_scope(name, 'mean_iou', [predictions, labels]): # Check if shape is compatible. predictions.get_shape().assert_is_compatible_with(labels.get_shape()) # Local variable to accumulate the predictions in the confusion matrix. cm_dtype = dtypes.int64 if weights is not None else dtypes.float64 total_cm = _create_local('total_confusion_matrix', shape=[num_classes, num_classes], dtype=cm_dtype) # Cast the type to int64 required by confusion_matrix_ops. predictions = math_ops.to_int64(predictions) labels = math_ops.to_int64(labels) num_classes = math_ops.to_int64(num_classes) # Flatten the input if its rank > 1. predictions_rank = predictions.get_shape().ndims if predictions_rank > 1: predictions = array_ops.reshape(predictions, [-1]) labels_rank = labels.get_shape().ndims if labels_rank > 1: labels = array_ops.reshape(labels, [-1]) weights = _mask_weights(ignore_mask, weights) if weights is not None:
tensorflow.python.ops.math_ops.to_int64
4,250
import tensorflow as tf ldj = tf.where(x2 > self.epsilon, ldj, tf.zeros_like(ldj)) return z2, tf.math.reduce_sum(ldj, axis=[1,2,3]) def _inverse(self, x1, z2, **kwargs): params = self.parameterizer(x1) mus, log_sigmas = params[:,:,:,0::2], params[:,:,:,1::2] x2, ldj = log_gaussianize(z2, mus, log_sigmas, inverse=tf.constant(True)) x2 = tf.where(z2 > self.epsilon, x2, z2) ldj = tf.where(z2 > self.epsilon, ldj, tf.zeros_like(ldj)) return x2, tf.math.reduce_sum(ldj, axis=[1,2,3]) def half_gaussianize(x, log_sigmas, inverse=tf.constant(False)): if inverse: z = tf.math.exp(log_sigmas)*x ldj = tf.math.reduce_sum(log_sigmas, axis=[1,2,3]) else: z = x*tf.math.exp(-log_sigmas) ldj = -tf.math.reduce_sum(log_sigmas, axis=[1,2,3]) return z, ldj class HalfGaussianize(Parameterize): """ Implementation of parameterize for a half-Gaussian prior. """ def __init__(self, input_shape=None, name='gaussianize', *args, **kwargs): super().__init__(*args, num_parameters=1, input_shape=input_shape, name=name, **kwargs) def _forward(self, x1, x2, **kwargs):
tensorflow.math.reduce_sum
4,251
import tensorflow as tf def _create_dummy_vars(): """Dummy vars for restore to work when not using TPU codepath.""" var_names = set([v.name for v in tf.global_variables()]) if "losses_avg/problem_0/total_loss:0" in var_names: return with tf.variable_scope("losses_avg"): with tf.variable_scope("problem_0"): for var_name in ["total", "extra", "training"]: tf.get_variable( "%s_loss" % var_name, initializer=100.0, trainable=False) with tf.variable_scope("train_stats"): tf.get_variable("problem_0_steps", initializer=0, trainable=False) # These metrics are implemented with py_funcs and therefore do no work with TPU TPU_METRIC_BLACKLIST = set([ metrics.Metrics.APPROX_BLEU,
tensorflow.get_variable
4,252
import tensorflow as tf h = tf.nn.dropout(h, 0.5) h_logits = tf.matmul(h, w_h) + b_h if self.ctx2out: w_ctx2out = tf.get_variable('w_ctx2out', [self.D, self.M], initializer=self.weight_initializer) h_logits += tf.matmul(context, w_ctx2out) if self.prev2out:
tensorflow.get_variable
4,253
import tensorflow as tf valid_image_batch,valid_label_batch=get_valid_batch(valid_image,valid_label,validnum) valid_inf=work.valid_inference(valid_image_batch) valid_labels=tf.one_hot(valid_label_batch,classnum) #train_step=tf.train.GradientDescentOptimizer(0.001).minimize(cross_entropy) valid_pre = tf.reshape(valid_inf, [validnum, classnum]) valid_correct_prediction=tf.equal(tf.argmax(valid_inf,1),tf.argmax(valid_labels,1)) valid_accuracy=tf.reduce_mean(tf.cast(valid_correct_prediction,tf.float32)) valid_pre = tf.argmax(valid_pre, 1) valid_true = tf.argmax(valid_labels, 1) target_names = ['class sg', 'class bm', 'class wd', 'class wt', 'class wj', 'class wo', 'class ym', 'class shq', 'class shj', 'class no', 'class yh', 'class fb'] init = tf.initialize_all_variables() config=tf.ConfigProto()
tensorflow.argmax
4,254
import tensorflow as tf b = bias_variable([FLAGS.feats_per_layer]) Wx_b = tf.nn.conv3d(bottom, W, strides=[1,1,1,1,1], padding='VALID') + b out = tf.nn.relu(Wx_b)
tensorflow.nn.conv3d
4,255
import tensorflow as tf from utils import get_random_batch, read_config_file, create_dir RUN_IN_GPU = False def train_acregnet_model(config): tf.reset_default_graph() tf_config = tf.ConfigProto() if RUN_IN_GPU: tf_config.gpu_options.allow_growth = True sess = tf.Session(config=tf_config) train_ims, _ = DataHandler.load_images(config['train_ims_file']) train_lbs, _ = DataHandler.load_labels(config['train_lbs_file']) print('Loading training data...done') acregnet = ACRegNet(sess, config, 'ACRegNet', is_train=True) print('Building AC-RegNet model...done') print('Training...') for i in range(config['iterations']): batch_ims_x, batch_ims_y, batch_lbs_x, batch_lbs_y = get_random_batch( train_ims, config['batch_size'], train_lbs)
tensorflow.Session
4,256
from tensorflow.python.ops import logging_ops loss = self._target_column.loss(logits, targets, features) logging_ops.scalar_summary("loss", loss)
tensorflow.python.ops.logging_ops.scalar_summary
4,257
import tensorflow as tf if not os.path.isfile(char_embedding_meta): with open(char_embedding_meta, "w", encoding="utf-8") as f: for symbol in symbols: if symbol == " ": symbol = "\\s" # For visual purposes, swap space with \s f.write("{}\n".format(symbol)) char_embedding_meta = char_embedding_meta.replace(log_dir, "..") # Book keeping step = 0 time_window = ValueWindow(100) loss_window = ValueWindow(100) saver = tf.train.Saver(max_to_keep=5) log("Tacotron training set to a maximum of {} steps".format(args.tacotron_train_steps)) # Memory allocation on the GPU as needed config = tf.ConfigProto() config.gpu_options.allow_growth = True config.allow_soft_placement = True # Train with tf.Session(config=config) as sess: try: summary_writer = tf.summary.FileWriter(tensorboard_dir, sess.graph)
tensorflow.train.Saver
4,258
import tensorflow as tf start_top_log_probs, start_top_index = tf.nn.top_k( start_log_probs, k=FLAGS.start_n_top) start_index = tf.one_hot(start_top_index, depth=seq_len, axis=-1, dtype=tf.float32) start_features = tf.einsum("lbh,bkl->bkh", output, start_index) end_input = tf.tile(output[:, :, None], [1, 1, FLAGS.start_n_top, 1]) start_features = tf.tile(start_features[None], [seq_len, 1, 1, 1]) end_input = tf.concat([end_input, start_features], axis=-1)
tensorflow.tile
4,259
import tensorflow as tf with tf.variable_scope('B'):
tensorflow.variable_scope
4,260
import tensorflow as tf hidden = beam_search.resize_like(hidden, state) input_length = beam_search.resize_like(input_length, state) context_vector, weights_ = attention(state=state, hidden_states=hidden, encoder=encoder, encoder_input_length=input_length, pos=pos_, context=context_vector, prev_weights=prev_weights_, **kwargs) attns.append(context_vector) weights.append(weights_) if aggregation_method == 'sum': context_vector = tf.reduce_sum(tf.stack(attns, axis=2), axis=2) else: context_vector = tf.concat(attns, axis=1) return context_vector, weights def attention_decoder(decoder_inputs, initial_state, attention_states, encoders, decoder, encoder_input_length, feed_previous=0.0, align_encoder_id=0, feed_argmax=True, training=True, **kwargs): """
tensorflow.stack
4,261
from tensorflow.contrib.learn.python.learn.estimators import dnn_linear_combined input_fn = test_data.iris_input_logistic_fn metrics = classifier.fit(input_fn=input_fn, steps=_ITERS).evaluate( input_fn=input_fn, steps=100) self._assertSingleClassMetrics(metrics) def benchmarkMultiClass(self): iris = base.load_iris() cont_feature = feature_column.real_valued_column('feature', dimension=4) bucketized_feature = feature_column.bucketized_column( cont_feature, test_data.get_quantile_based_buckets(iris.data, 10)) classifier = dnn_linear_combined.DNNLinearCombinedClassifier( n_classes=3, linear_feature_columns=(bucketized_feature,), dnn_feature_columns=(cont_feature,), dnn_hidden_units=(3, 3)) input_fn = test_data.iris_input_multiclass_fn metrics = classifier.fit(input_fn=input_fn, steps=_ITERS).evaluate( input_fn=input_fn, steps=100) self._assertCommonMetrics(metrics) def benchmarkPartitionedVariables(self):
tensorflow.contrib.learn.python.learn.estimators.dnn_linear_combined.DNNLinearCombinedClassifier
4,262
import tensorflow as tf input_size = encoder_inputs_.get_shape()[2].value def get_initial_state(name='initial_state'): if encoder.train_initial_states: initial_state = get_variable(name, initializer=tf.zeros(cell_state_size)) return tf.tile(tf.expand_dims(initial_state, axis=0), [batch_size, 1]) else: return None if encoder.bidir: rnn = lambda reuse: stack_bidirectional_dynamic_rnn(
tensorflow.expand_dims
4,263
import tensorflow as tf gan_train_ops.generator_train_op, global_step.assign_add(1)) if params['use_tpu']: # TPU version of EstimatorSpec return tf.contrib.tpu.TPUEstimatorSpec( mode=mode, predictions=predictions, loss=loss, train_op=train_op,) else: return tf.estimator.EstimatorSpec( mode=mode, predictions=predictions, loss=loss, train_op=train_op,) def train_input_fn(params={}): # make some fake noise data_size = 100 noise_tensor = tf.random_normal((data_size, INPUT_DIM))
tensorflow.estimator.EstimatorSpec
4,264
import tensorflow as tf with sess.graph.device("/cpu:1"): v1 = tf.Variable(20, name="v1") save = tf.train.Saver({"v0": v0, "v1": v1}, sharded=True) tf.initialize_all_variables().run() val = save.save(sess, save_path) self.assertEqual(save_path + "-?????-of-00002", val) meta_graph_filename = save._MetaGraphFilename(val) self.assertEqual(save_path + ".meta", meta_graph_filename) # Restore a different "v0" from shard 0 of the saved files. with tf.Session( target="", config=tf.ConfigProto(device_count={"CPU": 2})) as sess: with sess.graph.device("/cpu:0"): v0 = tf.Variable(111, name="v0") save = tf.train.Saver({"v0": v0}, sharded=True) tf.initialize_all_variables().run() self.assertEqual(111, v0.eval()) save.restore(sess, save_path + "-00000-of-00002") self.assertEqual(10, v0.eval()) # Restore a different "v1" from shard 1 of the saved files. with tf.Session( target="", config=tf.ConfigProto(device_count={"CPU": 2})) as sess: with sess.graph.device("/cpu:0"): v1 = tf.Variable(222) save = tf.train.Saver({"v1": v1}, sharded=True)
tensorflow.Variable
4,265
from tensorflow.python.ops import array_ops relevant_per_k = _sparse_true_positive_at_k( predictions_idx_per_k, labels_per_k, name='relevant_per_k') tp_per_k = math_ops.cumsum(relevant_per_k, axis=-1, name='tp_per_k') retrieved_per_k = math_ops.cumsum( array_ops.ones_like(relevant_per_k), axis=-1, name='retrieved_per_k') precision_per_k = math_ops.div( math_ops.to_double(tp_per_k), math_ops.to_double(retrieved_per_k), name='precision_per_k')
tensorflow.python.ops.array_ops.ones_like
4,266
import tensorflow as tf return None def build_generator(self,image,reuse=False,name='generator'): with tf.variable_scope(name): if reuse: tf.get_variable_scope().reuse_variables() else: assert tf.get_variable_scope().reuse is False """U-Net Generator""" def lrelu(x, alpha,name='lrelu'): with tf.variable_scope(name): return tf.nn.relu(x) - alpha * tf.nn.relu(-x) def instance_norm(x,name='instance_norm'):
tensorflow.get_variable_scope
4,267
import tensorflow as tf k_h=3,k_w=3,stddev=0.02) : assert k_h%2==1 and k_w%2==1, 'kernel size should be odd numbers to ensure exact size' with tf.variable_scope(name) : self.w = tf.get_variable('w', [k_h, k_w, input_dim, output_dim], initializer=tf.random_normal_initializer(stddev=stddev)) self.b = tf.get_variable('b',[output_dim], initializer=tf.constant_initializer(0.0)) self.padding = [ [0,0],[k_h//2,k_h//2],[k_w//2,k_w//2],[0,0] ] def __call__(self,input_var,name=None,**kwargs): _,h,w,c = input_var.shape.as_list() _t = tf.image.resize_nearest_neighbor(input_var, [h*2, w*2]) _t = tf.pad(_t,self.padding, mode='SYMMETRIC') return tf.nn.bias_add( tf.nn.conv2d(_t, self.w, data_format='NHWC', #we can't use cudnn due to resize method... strides=[1,1,1,1], padding="VALID"), self.b,data_format='NHWC',name=name) def get_variables(self): return {'w':self.w,'b':self.b} class WeightNormSymPadConv2d(object): #Resize and Convolution(upsacle by 2)
tensorflow.image.resize_nearest_neighbor
4,268
import tensorflow as tf :return: does not return anything """ # Reconstruction Phase with tf.variable_scope(tf.get_variable_scope()): encoder_output_label, encoder_output_latent = encoder(x_input) # Concat class label and the encoder output decoder_input = tf.concat([encoder_output_label, encoder_output_latent], 1) decoder_output = decoder(decoder_input) # Regularization Phase with tf.variable_scope(tf.get_variable_scope()): d_g_real = discriminator_gauss(real_distribution) d_g_fake = discriminator_gauss(encoder_output_latent, reuse=True) with tf.variable_scope(tf.get_variable_scope()): d_c_real = discriminator_categorical(categorial_distribution) d_c_fake = discriminator_categorical(encoder_output_label, reuse=True) # Semi-Supervised Classification Phase with tf.variable_scope(tf.get_variable_scope()): encoder_output_label_, _ = encoder(x_input_l, reuse=True, supervised=True)
tensorflow.get_variable_scope
4,269
import tensorflow as tf v_norm = tf.nn.l2_normalize(self.v,axis=0) t = tf.matmul(input_var,v_norm) mu,var = tf.nn.moments(t,axes=[0]) std = tf.sqrt(var+self.epsilon)
tensorflow.nn.moments
4,270
import tensorflow as tf transformed_features = self.bottom(features) with tf.variable_scope("body"): log_info("Building model body")
tensorflow.variable_scope
4,271
import tensorflow as tf with h5py.File(embedding_weight_file, 'r') as fin: # +1 for padding self._n_tokens_vocab = fin['embedding'].shape[0] + 1 else: self._n_tokens_vocab = None with tf.variable_scope('bilm', custom_getter=custom_getter): self._build() def _build(self): if self.use_character_inputs: self._build_word_char_embeddings()
tensorflow.variable_scope
4,272
import tensorflow as tf config=tf.ConfigProto(device_count={"CPU": 2})) as sess: with sess.graph.device("/cpu:0"): v0 = tf.Variable(111, name="v0") with sess.graph.device("/cpu:1"):
tensorflow.Variable
4,273
import tensorflow as tf reduce_sum(tf.square(grad), reduction_indices=red_ind, keepdims=True)) normalized_grad = old_div(grad, tf.sqrt(square)) else: normalized_grad = tf.sign(grad) normalized_grad = tf.stop_gradient(normalized_grad) scaled_grad = eps * normalized_grad #目标是让loss下降 adv_x = x - scaled_grad if (clip_min is not None) and (clip_max is not None): adv_x = tf.clip_by_value(adv_x, clip_min, clip_max) return adv_x #DeepFool 仅实现了目标攻击 def deepfool(x, loss=None, bounds=(0,1)): (clip_min, clip_max)=bounds grad, = tf.gradients(loss, x) r=old_div(grad*loss,tf.reduce_sum(tf.square(grad)))
tensorflow.clip_by_value
4,274
import tensorflow as tf # Single thread; fairer comparison against eager session_conf = tf.ConfigProto(inter_op_parallelism_threads=1)
tensorflow.ConfigProto
4,275
import tensorflow as tf # TPU loop is finished, setting max_queue value to the same as number of # iterations will make the summary writer only flush the data to storage # once per loop. with (tf.contrib.summary.create_file_writer( params['model_dir'], max_queue=params['iterations_per_loop']).as_default()): with tf.contrib.summary.always_record_summaries(): tf.contrib.summary.scalar( 'total_loss', tf.reduce_mean(total_loss), step=global_step) tf.contrib.summary.scalar( 'total_rpn_loss', tf.reduce_mean(total_rpn_loss), step=global_step)
tensorflow.contrib.summary.always_record_summaries
4,276
import tensorflow as tf flattened_lm_emb = tf.reshape(lm_emb, [num_sentences * max_sentence_length * lm_emb_size, lm_num_layers]) flattened_aggregated_lm_emb = tf.matmul(flattened_lm_emb, tf.expand_dims(self.lm_weights, 1)) # [num_sentences * max_sentence_length * emb, 1] aggregated_lm_emb = tf.reshape(flattened_aggregated_lm_emb, [num_sentences, max_sentence_length, lm_emb_size]) aggregated_lm_emb *= self.lm_scaling context_emb_list.append(aggregated_lm_emb) context_emb = tf.concat(context_emb_list, 2) # [num_sentences, max_sentence_length, emb] head_emb = tf.concat(head_emb_list, 2) # [num_sentences, max_sentence_length, emb] context_emb = tf.nn.dropout(context_emb, self.lexical_dropout) # [num_sentences, max_sentence_length, emb] head_emb = tf.nn.dropout(head_emb, self.lexical_dropout) # [num_sentences, max_sentence_length, emb] text_len_mask = tf.sequence_mask(text_len, maxlen=max_sentence_length) # [num_sentence, max_sentence_length] context_outputs = self.lstm_contextualize(context_emb, text_len, text_len_mask) # [num_words, emb] num_words = util.shape(context_outputs, 0) genre_emb = tf.gather(tf.get_variable("genre_embeddings", [len(self.genres), self.config["feature_size"]]), genre) # [emb] sentence_indices = tf.tile(tf.expand_dims(tf.range(num_sentences), 1), [1, max_sentence_length]) # [num_sentences, max_sentence_length] flattened_sentence_indices = self.flatten_emb_by_sentence(sentence_indices, text_len_mask) # [num_words] flattened_head_emb = self.flatten_emb_by_sentence(head_emb, text_len_mask) # [num_words]
tensorflow.sequence_mask
4,277
import tensorflow as tf m = train_X.shape[0] n_output_1 = test_y_1.shape[1] n_output_2 = test_y_2.shape[1] lr = args.lr n_epoch = args.n_epoch n_batch_size = args.n_batch_size reg_lambda = args.reg_lambda keep_prob = args.keep_prob cross_stitch_enabled = args.cross_stitch_enabled with tf.variable_scope("placeholder"): X = tf.placeholder(tf.float32, (None, 128), "X") y_1 = tf.placeholder(tf.float32, (None, n_output_1), "y_1") y_2 = tf.placeholder(tf.float32, (None, n_output_2), "y_2") is_training = tf.placeholder(tf.bool, (), "is_training") with tf.variable_scope("network"): with contrib.framework.arg_scope( [contrib.layers.fully_connected], # he initialization weights_initializer=contrib.layers.variance_scaling_initializer(), # l2 regularization weights_regularizer=contrib.layers.l2_regularizer(reg_lambda),
tensorflow.placeholder
4,278
import tensorflow as tf return 49.0 * 21.0 / 1024.0 elif kh == 14 and kw == 14: return 196.0 * 21.0 / 4096.0 else: rec = tf.cast(kw * kh, tf.float32) n_max = 7 + tf.math.ceil(tf.math.log(rec) / tf.math.log(2.)) ns = tf.range(0., n_max) ns_pow = tf.pow(2., ns) ks = tf.round(ns_pow / rec) diffs = tf.math.abs(ks / ns_pow - 1 / rec) n = tf.argmin(diffs) k = ks[n] scale = k / tf.pow(2., tf.cast(n, tf.float32)) scale *= rec return scale @register_keras_serializable( package='Vitis', name='VitisGlobalAveragePooling2D') class VitisGlobalAveragePooling2D(tf.keras.layers.GlobalAveragePooling2D): """Vitis version of GlobalAveragePooling2D layer. This is an Vitis version of average pooling to simulate DPU behaviour which to integer approximations for averaging of specific sizes.
tensorflow.cast
4,279
import tensorflow as tf ''' # for summary with tf.name_scope('accuracy') as scope: correct = tf.equal(tf.arg_max(logits,1), tf.arg_max(labels,1)) correct = tf.cast(correct, tf.float32) accuracy = tf.reduce_mean(correct)*100.0 tf.summary.scalar(scope+'accuracy',accuracy) return accuracy def num_correct_prediction(logits, labels): ''' Evaluate the quality of the logits at predicting the label ''' correct = tf.equal(tf.arg_max(logits,1), tf.arg_max(labels,1)) correct = tf.cast(correct, tf.int32) n_correct = tf.reduce_sum(correct) return n_correct def optimize(loss, learning_rate, global_step): ''' Optimization, use Gradient Descent as default ''' with tf.name_scope('optimizer'): optimizer = tf.train.GradientDescentOptimizer(learning_rate=learning_rate) train_op = optimizer.minimize(loss, global_step=global_step)
tensorflow.arg_max
4,280
import tensorflow as tf from tensorflow.contrib.tensorboard.plugins import projector from Bunch import Bunch tf.app.flags.DEFINE_string('input_path', '../data/tmp/grid03.14.c.tar.gz', 'input folder') tf.app.flags.DEFINE_string('input_name', '', 'input folder') tf.app.flags.DEFINE_string('test_path', '', 'test set folder') tf.app.flags.DEFINE_string('net', 'f100-f3', 'model configuration') tf.app.flags.DEFINE_string('model', 'noise', 'Type of the model to use: Autoencoder (ae)' 'WhatWhereAe (ww) U-netAe (u)') tf.app.flags.DEFINE_string('postfix', '', 'Postfix for the training folder')
tensorflow.app.flags.DEFINE_string
4,281
import tensorflow as tf beta = tf.nn.softmax(s, axis=-1) # attention map
tensorflow.nn.softmax
4,282
from tensorflow.python.ops import math_ops update_op = state_ops.assign_add(total_cm, current_cm) def compute_mean_iou(name): """Compute the mean intersection-over-union via the confusion matrix.""" sum_over_row = math_ops.to_float(math_ops.reduce_sum(total_cm, 0)) sum_over_col = math_ops.to_float(math_ops.reduce_sum(total_cm, 1)) cm_diag = math_ops.to_float(array_ops.diag_part(total_cm)) denominator = sum_over_row + sum_over_col - cm_diag # If the value of the denominator is 0, set it to 1 to avoid # zero division. denominator = math_ops.select( math_ops.greater(denominator, 0), denominator, array_ops.ones_like(denominator)) iou = math_ops.div(cm_diag, denominator) return math_ops.reduce_mean(iou, name=name) mean_iou = compute_mean_iou('mean_iou') if metrics_collections: ops.add_to_collections(metrics_collections, mean_iou) if updates_collections:
tensorflow.python.ops.math_ops.greater
4,283
from tensorflow.python.platform import tf_logging as logging self._model_dir = tempfile.mkdtemp() logging.info('Using temporary folder as model directory: %s',
tensorflow.python.platform.tf_logging.info
4,284
import tensorflow as tf (tf.Tensor) A single value tensor containing the loss. """ loss = None with tf.name_scope(name, "softmax_loss",[output]): label_dis = labels / tf.reduce_sum(labels, 1, keep_dims=True) loss = tf.nn.softmax_cross_entropy_with_logits(logits=output, labels=label_dis) * tf.reduce_sum(labels, 1) return tf.reduce_sum(loss) / tf.reduce_sum(labels) def get_normalized_weights(self, propensity): """Computes listwise softmax loss with propensity weighting. Args: propensity: (tf.Tensor) A tensor of the same shape as `output` containing the weight of each element.
tensorflow.reduce_sum
4,285
import tensorflow as tf setattr( self, 'alpha_%s' % layer, tf.constant(0.)) else: setattr(
tensorflow.constant
4,286
from tensorflow.python.ops import math_ops # `retrieved_per_k` (int32) - Number of predicted values at each k. This is # the precision denominator. # `precision_per_k` (float64) - Precision at each k. This is the "P_{i}" # term from the formula above. # `relevant_precision_per_k` (float64) - Relevant precisions; i.e., # precisions at all k for which relevance indicator is true. relevant_per_k = _sparse_true_positive_at_k( predictions_idx_per_k, labels_per_k, name='relevant_per_k') tp_per_k = math_ops.cumsum(relevant_per_k, axis=-1, name='tp_per_k') retrieved_per_k = math_ops.cumsum( array_ops.ones_like(relevant_per_k), axis=-1, name='retrieved_per_k') precision_per_k = math_ops.div( math_ops.to_double(tp_per_k), math_ops.to_double(retrieved_per_k), name='precision_per_k') relevant_precision_per_k = math_ops.mul( precision_per_k, math_ops.to_double(relevant_per_k), name='relevant_precision_per_k') # Reduce along k dimension to get the sum, yielding a [D1, ... DN] tensor. precision_sum = math_ops.reduce_sum( relevant_precision_per_k, reduction_indices=(-1,), name='precision_sum') # Divide by number of relevant items to get average precision. These are # the "num_relevant_items" and "AveP" terms from the formula above.
tensorflow.python.ops.math_ops.to_double
4,287
import tensorflow as tf mdl = p.Instantiate() mdl.FPropDefaultTheta() all_vars = tf.trainable_variables() py_utils.SumSquared(all_vars) def testCollectVarHistogram(self): with self.session(use_gpu=False, graph=tf.Graph()): p = self._testParams() mdl = p.Instantiate() mdl.FPropDefaultTheta() var_grads = py_utils.ComputeGradients(mdl.loss, mdl.vars) summary_utils.CollectVarHistogram(var_grads)
tensorflow.Graph
4,288
import tensorflow as tf return uint8_resize_bicubic(image, shape) def center_crop(image, size): image_height = tf.shape(image)[0] image_width = tf.shape(image)[1] offset_height = (image_height - size) // 2 offset_width = (image_width - size) // 2 image = tf.slice(image, [offset_height, offset_width, 0], [size, size, -1]) return image def lighting(image, std, eigval, eigvec): v = tf.random_normal(shape=[3], stddev=std) * eigval inc = tf.matmul(eigvec, tf.reshape(v, [3, 1])) image = tf.cast(tf.cast(image, tf.float32) + tf.reshape(inc, [3]), image.dtype) return image def validation_mapper(byte): image = tf.image.decode_jpeg( tf.reshape(byte, shape=[]), 3, **JPEG_OPT) image = resize_shortest_edge(image, tf.shape(image), 256) image = center_crop(image, 224) image = tf.reverse(image, axis=[2]) # to BGR return image def training_mapper(byte): jpeg_shape = tf.image.extract_jpeg_shape(byte) # hwc
tensorflow.reshape
4,289
import tensorflow as tf class_pred = tf.reshape(y_pred[2], [num_batch * num_prior, num_class]) loc_true = tf.reshape(y_true[..., :4], [num_batch * num_prior, 4]) landm_true = tf.reshape(y_true[..., 4:14], [num_batch * num_prior, 10]) landm_valid = tf.reshape(y_true[..., 14], [num_batch * num_prior, 1]) class_true = tf.reshape(y_true[..., 15], [num_batch * num_prior, 1]) # define filter mask: class_true = 1 (pos), 0 (neg), -1 (ignore) # landm_valid = 1 (w landm), 0 (w/o landm)
tensorflow.reshape
4,290
import tensorflow as tf td_map[self.train_model.states_ph] = states td_map[self.train_model.dones_ph] = masks td_map[self.polyak_model.states_ph] = states td_map[self.polyak_model.dones_ph] = masks if writer is not None: # run loss backprop with summary, but once every 10 runs save the metadata (memory, compute time, ...) if self.full_tensorboard_log and (1 + (steps / self.n_batch)) % 10 == 0: run_options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE) run_metadata = tf.RunMetadata() step_return = self.sess.run([self.summary] + self.run_ops, td_map, options=run_options, run_metadata=run_metadata) writer.add_run_metadata(run_metadata, 'step%d' % steps) else: step_return = self.sess.run([self.summary] + self.run_ops, td_map) writer.add_summary(step_return[0], steps) step_return = step_return[1:] else:
tensorflow.RunMetadata
4,291
import tensorflow as tf neighbor, weight, _ = get_full_neighbor(nodes, hop_edge_types) next_nodes, next_idx = tf.unique(neighbor.values, out_idx=tf.int64) next_indices = tf.stack([neighbor.indices[:, 0], next_idx], 1) next_values = weight.values
tensorflow.stack
4,292
import tensorflow as tf tf.app.flags.DEFINE_integer('seed', 1, "initial random seed") tf.app.flags.DEFINE_bool('validation', False, "") tf.app.flags.DEFINE_integer('batch_size', 32, "the number of examples in a batch") tf.app.flags.DEFINE_integer('ul_batch_size', 128, "the number of unlabeled examples in a batch") tf.app.flags.DEFINE_integer('eval_batch_size', 100, "the number of eval examples in a batch") tf.app.flags.DEFINE_integer('eval_freq', 5, "") tf.app.flags.DEFINE_integer('num_epochs', 120, "the number of epochs for training") tf.app.flags.DEFINE_integer('epoch_decay_start', 80, "epoch of starting learning rate decay") tf.app.flags.DEFINE_integer('num_iter_per_epoch', 400, "the number of updates per epoch") tf.app.flags.DEFINE_float('learning_rate', 0.001, "initial leanring rate") tf.app.flags.DEFINE_float('mom1', 0.9, "initial momentum rate") tf.app.flags.DEFINE_float('mom2', 0.5, "momentum rate after epoch_decay_start") tf.app.flags.DEFINE_string('method', 'vat', "{vat, vatent, baseline}")
tensorflow.app.flags.DEFINE_integer
4,293
from tensorflow.python.ops import state_ops else: batch_count = math_ops.reduce_sum( _broadcast_weights(weights, labels)) # n_B in eqn weighted_predictions = predictions * weights weighted_labels = labels * weights update_count = state_ops.assign_add(count, batch_count) # n_AB in eqn prev_count = update_count - batch_count # n_A in update equation # We update the means by Delta=Error*BatchCount/(BatchCount+PrevCount) # batch_mean_prediction is E[x_B] in the update equation batch_mean_prediction = _safe_div(
tensorflow.python.ops.state_ops.assign_add
4,294
import tensorflow as tf # Apply 1 x 1 convolution to each half separately W_half_1 = self._make_var('W_half_1', (1, 1, in_ch, out_ch >> 1)) X_half_1 = tf.nn.conv2d(half_1, W_half_1, (1, 1, 1, 1), padding='VALID') W_half_2 = self._make_var('W_half_2', (1, 1, in_ch, out_ch >> 1)) X_half_2 = tf.nn.conv2d(half_2, W_half_2, (1, 1, 1, 1), padding='VALID') # Concat both halves across channels X = tf.concat([X_half_1, X_half_2], axis=3) # Apply batch normalization X = self._add_batch_norm(X, out_ch, is_train=is_train) X = tf.reshape(X, (-1, in_w // 2, in_h // 2, out_ch)) # Sanity shape check
tensorflow.concat
4,295
import tensorflow as tf with tf.variable_scope(name, reuse=reuse): layer_c1 = tf.layers.dense(state_in, 512, tf.nn.relu, kernel_regularizer=reg) layer_c2 = tf.layers.dense(layer_c1, 256, tf.nn.relu, kernel_regularizer=reg) vf = tf.layers.dense(layer_c2, 1, kernel_regularizer=reg) params = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope=name) return vf, params # Update the network
tensorflow.get_collection
4,296
import tensorflow as tf keep_prob=1., is_train=None, wd=0., activation='elu', hn=None): assert direction is not None def scaled_tanh(x, scale=5.): return scale * tf.nn.tanh(1. / scale * x) bs, sl, vec = tf.shape(rep_tensor)[0], tf.shape(rep_tensor)[1], tf.shape(rep_tensor)[2] ivec = hn or rep_tensor.get_shape().as_list()[2] input_dim = rep_tensor.get_shape().as_list()[2] with tf.variable_scope(scope or 'block_simple'): # @1. split sequence with tf.variable_scope('split_seq'):
tensorflow.shape
4,297
import tensorflow as tf config.log_device_placement=True sess = tf.Session(config=config)
tensorflow.Session
4,298
import tensorflow as tf alpha_fixed_progress = [ sess.run( networks._discriminator_alpha(block_id, tf.constant(1.2, tf.float32))) for block_id in range(1, 5) ] self.assertArrayNear(alpha_fixed_block_id, [1, 1, 1, 0.8, 0, 0, 0], 1.0e-6) self.assertArrayNear(alpha_fixed_progress, [0, 0.8, 1, 1], 1.0e-6) def test_blend_images_in_stable_stage(self): x_np = np.random.normal(size=[2, 8, 8, 3]) x = tf.constant(x_np, tf.float32) x_blend = networks.blend_images( x, progress=tf.constant(0.0), resolution_schedule=networks.ResolutionSchedule( scale_base=2, num_resolutions=2), num_blocks=2) with self.test_session(use_gpu=True) as sess: x_blend_np = sess.run(x_blend) x_blend_expected_np = sess.run(layers.upscale(layers.downscale(x, 2), 2)) self.assertNDArrayNear(x_blend_np, x_blend_expected_np, 1.0e-6) def test_blend_images_in_transition_stage(self): x_np = np.random.normal(size=[2, 8, 8, 3]) x = tf.constant(x_np, tf.float32) x_blend = networks.blend_images( x, tf.constant(0.2),
tensorflow.constant
4,299