seed
stringlengths 25
2.89k
| seed_api
stringlengths 14
102
| index
int64 0
14.8k
|
---|---|---|
import tensorflow as tf
for mtype, (classes, sdfs, poses) in enumerate([
(labeled_classes, labeled_sdfs, labeled_poses),
(predicted_classes, predicted_sdfs, predicted_poses)]):
for i in range(classes.shape[0]):
if class_id == classes[i]:
sdf = tf.expand_dims(sdfs[i], -1)
sdf = sdf * -1.0 # inside positive, outside zero
samples_object = centernet_utils.transform_pointcloud(
tf.reshape(samples_world, [1, 1, -1, 3]),
tf.reshape(poses[2][i], [1, 1, 3]),
tf.reshape(poses[0][i], [1, 1, 3, 3]),
tf.reshape(poses[1][i], [1, 1, 3]), inverse=True) * 2.0
samples_object = \
(samples_object * (29.0/32.0) / 2.0 + 0.5) * 32.0 - 0.5
samples = tf.squeeze(samples_object)
interpolated = trilinear.interpolate(sdf, samples)
| tensorflow.reshape | 4,100 |
import tensorflow as tf
# Running this command requires an internet connection and a few minutes to download all the images.
(X_train, y_train), (X_test, y_test) = tf.contrib.keras.datasets.cifar10.load_data()
| tensorflow.contrib.keras.datasets.cifar10.load_data | 4,101 |
import tensorflow as tf
with tf.variable_scope(tf.get_variable_scope(), reuse=True):
outputs_to_scales_to_logits_reversed = multi_scale_logits(
tf.reverse_v2(images, [2]),
model_options=model_options,
image_pyramid=[image_scale],
is_training=False,
fine_tune_batch_norm=False)
for output in sorted(outputs_to_scales_to_logits):
scales_to_logits = outputs_to_scales_to_logits[output]
logits = tf.image.resize_bilinear(
scales_to_logits[_MERGED_LOGITS_SCOPE],
tf.shape(images)[1:3],
align_corners=True)
outputs_to_predictions[output].append(
tf.expand_dims(tf.nn.softmax(logits), 4))
if add_flipped_images:
scales_to_logits_reversed = (
outputs_to_scales_to_logits_reversed[output])
logits_reversed = tf.image.resize_bilinear(
tf.reverse_v2(scales_to_logits_reversed[_MERGED_LOGITS_SCOPE], [2]),
tf.shape(images)[1:3],
align_corners=True)
| tensorflow.shape | 4,102 |
import tensorflow as tf
import numpy as np
import tensorflow as tf
class VariationalDense:
"""Variational Dense Layer Class"""
def __init__(self, n_in, n_out, dropout_mask_ph,
model_prob=0.9, model_lam=3e-4, activation=None, name="hidden"):
self.model_prob = model_prob # probability to keep units
self.model_lam = model_lam # l^2 / 2*tau: l=1e-2, tau=[0.1, 0.15, 0.2]
self.dropout_mask_ph = dropout_mask_ph # placeholder: p_s * i_s
self.p_s = tf.shape(self.dropout_mask_ph)[0] # post sample size
self.DM = tf.zeros(shape=[self.p_s, n_in, n_in]) # Dropout masks: p_s * i_s * i_s
self.DM = tf.linalg.set_diag(self.DM, self.dropout_mask_ph)
kernel_initializer = tf.initializers.truncated_normal(mean=0.0, stddev=0.01)
self.model_W = tf.get_variable("{}_W".format(name), initializer=kernel_initializer([n_in, n_out])) # variational parameters
self.model_b = tf.get_variable("{}_b".format(name), initializer=tf.zeros([n_out]))
self.model_DMW = tf.einsum('pij,jk->pik', self.DM, self.model_W) # Masked weight: p_s * i_s * o_s
self.model_tiled_b = tf.tile(tf.reshape(self.model_b, [1, n_out]), [self.p_s, 1])
if activation is None:
self.activation = tf.identity
else:
self.activation = activation
| tensorflow.linalg.set_diag | 4,103 |
import tensorflow as tf
tf.reshape(samples_world, [1, 1, -1, 3]),
tf.reshape(poses[2][i], [1, 1, 3]),
tf.reshape(poses[0][i], [1, 1, 3, 3]),
tf.reshape(poses[1][i], [1, 1, 3]), inverse=True) * 2.0
samples_object = (samples_object * (29.0/32.0) / 2.0 + 0.5) * 32.0 - 0.5
samples = tf.squeeze(samples_object)
interpolated = trilinear.interpolate(sdf, samples)
occupancy_value = tf.math.sign(tf.nn.relu(interpolated + self.tol))
sdf_values += occupancy_value
intersection = tf.reduce_sum(tf.math.sign(tf.nn.relu(sdf_values - 1)))
| tensorflow.squeeze | 4,104 |
import tensorflow as tf
averages_op = averages.apply(ops)
for op in ops:
tf.scalar_summary(scope_pfix + op.name + raw_pfix, op)
tf.scalar_summary(scope_pfix + op.name + avg_pfix,
averages.average(op))
with tf.control_dependencies([averages_op]):
for i, dep_op in enumerate(dep_ops):
dep_ops[i] = tf.identity(dep_op, name=dep_op.name.split(':')[0])
return dep_ops
def exp_average(vec, curr_avg, decay=0.9):
vec_avg = tf.reduce_mean(vec, 0)
avg = tf.assign(curr_avg, curr_avg * decay + vec_avg * (1-decay))
return avg
def gather_vec_pairs(vecs, gather_inds):
"""
gather obj-subj feature pairs
"""
vec_pairs = tf.gather(vecs, gather_inds)
vec_len = int(vec_pairs.get_shape()[2]) * 2
vec_pairs = tf.reshape(vec_pairs, [-1, vec_len])
return vec_pairs
def pad_and_gather(vecs, mask_inds, pad=None):
| tensorflow.reduce_mean | 4,105 |
import tensorflow as tf
return (loss, per_example_loss, logits, probabilities)
def model_fn_builder(bert_config, num_labels, init_checkpoint, learning_rate,
num_train_steps, num_warmup_steps, use_tpu,
use_one_hot_embeddings):
"""Returns `model_fn` closure for TPUEstimator."""
def model_fn(features, labels, mode, params): # pylint: disable=unused-argument
"""The `model_fn` for TPUEstimator."""
tf.logging.info("*** Features ***")
for name in sorted(features.keys()):
tf.logging.info(" name = %s, shape = %s" % (name, features[name].shape))
input_ids = features["input_ids"]
input_mask = features["input_mask"]
segment_ids = features["segment_ids"]
label_ids = features["label_ids"]
is_training = (mode == tf.estimator.ModeKeys.TRAIN)
| tensorflow.logging.info | 4,106 |
import tensorflow as tf
xlnet_config=xlnet_config,
run_config=run_config,
input_ids=inp,
seg_ids=seg_id,
input_mask=inp_mask)
summary = xlnet_model.get_pooled_out(FLAGS.summary_type, FLAGS.use_summ_proj)
with tf.variable_scope("model", reuse=tf.AUTO_REUSE):
per_example_loss, logits = modeling.regression_loss(
hidden=summary,
labels=label,
initializer=xlnet_model.get_initializer(),
scope="regression_{}".format(FLAGS.task_name.lower()),
return_logits=True)
| tensorflow.variable_scope | 4,107 |
import tensorflow as tf
if boundaries is None:
boundaries = tf.range(11, dtype=tf.float32) / 10.0
elif isinstance(boundaries, int) or (isinstance(boundaries, tf.Tensor) and
boundaries.get_shape().ndims == 0):
min_value, max_value = _min_and_max(x, True)
boundaries = tf.linspace(
tf.cast(min_value, tf.float32), tf.cast(max_value, tf.float32),
tf.cast(boundaries, tf.int64))
# Shift the boundaries slightly to account for floating point errors,
# and due to the fact that the rightmost boundary is essentially ignored.
boundaries = tf.expand_dims(tf.cast(boundaries, tf.float32), 0) - 0.0001
bucket_indices = tf_utils.assign_buckets(
tf.cast(x, tf.float32), remove_leftmost_boundary(boundaries))
| tensorflow.cast | 4,108 |
import tensorflow as tf
predictions = tf.reshape(predictions, [1, -1, heatmap_size*heatmap_size])
pred_max = tf.reduce_max(predictions, axis=-1)
pred_indices = tf.argmax(predictions, axis=-1)
pred_x, pred_y = tf.cast(tf.floormod(pred_indices, heatmap_size), tf.float32), tf.cast(tf.floordiv(pred_indices, heatmap_size), tf.float32)
| tensorflow.argmax | 4,109 |
import tensorflow as tf
self.assertEqual(3, len(res))
self.assertEqual((2, 5), res[0].shape)
res = sess.run([mem])
self.assertEqual((2, 2), res[0].c.shape)
self.assertEqual((2, 2), res[0].h.shape)
# Test when num_decoder_symbols is provided, the size of decoder output
# is num_decoder_symbols.
with tf.variable_scope("decoder_symbols_seq2seq"):
dec, mem = tf.nn.seq2seq.embedding_tied_rnn_seq2seq(
enc_inp, dec_inp, cell, num_symbols=5, num_decoder_symbols=3,
embedding_size=2)
sess.run([tf.global_variables_initializer()])
res = sess.run(dec)
self.assertEqual(3, len(res))
self.assertEqual((2, 3), res[0].shape)
# Test externally provided output projection.
w = tf.get_variable("proj_w", [2, 5])
| tensorflow.nn.seq2seq.embedding_tied_rnn_seq2seq | 4,110 |
import tensorflow as tf
strides)
h_scale = strides[1]
w_scale = strides[2]
scale = tf.stack([1, h_scale, w_scale])
indices *= scale
# Since we always use VALID to perform pooling, shift is needed here.
shift = tf.stack([0, (ksize[1] - 1) // 2, (ksize[2] - 1) // 2])
indices += shift
indices_ = tf.expand_dims(tf.expand_dims(indices, 1), 2)
# indices_ = tf.tile(indices_, [1, ksize[1], ksize[2], 1])
offset = _get_offset_array(ksize[0:3])
indices_ += offset
| tensorflow.stack | 4,111 |
import tensorflow as tf
def minibatch_discrimination(x, n_kernels, dim_per_kernel, name):
with tf.variable_scope(name):
batch_size, nf = x.get_shape().as_list()
h = linear(x, [nf, n_kernels*dim_per_kernel], 'h1')
activation = tf.reshape(h, (batch_size, n_kernels, dim_per_kernel))
big = tf.eye(batch_size)
big = tf.expand_dims(big, 1)
abs_dif = tf.reduce_sum(tf.abs(tf.expand_dims(activation, 3) - tf.expand_dims(tf.transpose(activation, [1, 2, 0]), 0)), 2)
mask = 1. - big
masked = tf.exp(-abs_dif) * mask
def half(tens, second):
m, n, _ = tens.get_shape().as_list()
return tf.slice(tens, [0, 0, second*(batch_size/2)], [m, n, batch_size/2])
f1 = tf.reduce_sum(half(masked, 0), 2) / tf.reduce_sum(half(mask, 0))
f2 = tf.reduce_sum(half(masked, 1), 2) / tf.reduce_sum(half(mask, 1))
return tf.concat([x, f1, f2], 1)
def batch_norm(x, train, name, decay=0.99, epsilon=1e-5):
shape = x.get_shape().as_list()
| tensorflow.exp | 4,112 |
import tensorflow as tf
logits = tf.matmul(input_tensor, output_weights, transpose_b=True)
logits = tf.nn.bias_add(logits, output_bias)
log_probs = tf.nn.log_softmax(logits, axis=-1)
labels = tf.reshape(labels, [-1])
one_hot_labels = tf.one_hot(labels, depth=2, dtype=tf.float32)
per_example_loss = -tf.reduce_sum(one_hot_labels * log_probs, axis=-1)
loss = tf.reduce_mean(per_example_loss)
return (loss, per_example_loss, log_probs)
| tensorflow.one_hot | 4,113 |
import tensorflow as tf
self.d_loss += self._lambda * penalty_loss
z_projs = tf.concat([z_projs_real, z_projs_fake], 0)
z_aug_projs = tf.concat([z_aug_projs_real, z_aug_projs_fake], 0)
sims_logits = tf.matmul(z_projs, z_aug_projs, transpose_b=True)
logits_max = tf.reduce_max(sims_logits,1)
sims_logits = sims_logits - tf.reshape(logits_max, [-1, 1])
sims_probs = tf.nn.softmax(sims_logits)
sim_labels = tf.constant(np.arange(bs * 2, dtype=np.int32))
sims_onehot = tf.one_hot(sim_labels, bs * 2)
| tensorflow.reduce_max | 4,114 |
import tensorflow as tf
elif not do_serve:
tf.train.init_from_checkpoint(init_checkpoint, assignment_map)
tf.logging.info("**** Trainable Variables ****")
for var in tvars:
init_string = ""
if var.name in initialized_variable_names:
init_string = ", *INIT_FROM_CKPT*"
tf.logging.info(" name = %s, shape = %s%s", var.name, var.shape,
init_string)
output_spec = None
if mode == tf.estimator.ModeKeys.TRAIN:
train_op = optimization.create_optimizer(
total_loss, learning_rate, num_train_steps, num_warmup_steps, use_tpu)
| tensorflow.logging.info | 4,115 |
import tensorflow as tf
)
any_condition = tf.reduce_any(
input_tensor=[divisbility_condition, less_than_condition],
| tensorflow.reduce_any | 4,116 |
from tensorflow.python.ops import math_ops
# whether we should use the first or last index in case of ties.
min_val = math_ops.reduce_min(math_ops.abs(sensitivities - sensitivity))
| tensorflow.python.ops.math_ops.abs | 4,117 |
import tensorflow as tf
epsilon = 1e-5
mean, var = tf.nn.moments(x, [1, 2], keep_dims=True)
scale = tf.get_variable('scale',[x.get_shape()[-1]],
initializer=tf.truncated_normal_initializer(mean=1.0, stddev=0.02))
offset = tf.get_variable('offset',[x.get_shape()[-1]],initializer=tf.constant_initializer(0.0))
out = scale*tf.div(x-mean, tf.sqrt(var+epsilon)) + offset
return out
| tensorflow.truncated_normal_initializer | 4,118 |
import tensorflow as tf
filter_shape = [encoder.attn_filter_length * 2 + 1, 1, 1, encoder.attn_filters]
filter_ = get_variable('filter', filter_shape)
prev_weights = tf.reshape(prev_weights, tf.stack([batch_size, time_steps, 1, 1]))
conv = tf.nn.conv2d(prev_weights, filter_, [1, 1, 1, 1], 'SAME')
conv = tf.squeeze(conv, axis=2)
y += dense(conv, encoder.attn_size, use_bias=False, name='C_a')
v = get_variable('v_a', [encoder.attn_size])
return tf.reduce_sum(v * tf.tanh(y), axis=2)
def global_attention(state, hidden_states, encoder, encoder_input_length, scope=None, context=None, **kwargs):
with tf.variable_scope(scope or 'attention_{}'.format(encoder.name)):
if context is not None and encoder.use_context:
state = tf.concat([state, context], axis=1)
e = compute_energy(hidden_states, state, encoder, input_length=encoder_input_length, **kwargs)
mask = tf.sequence_mask(encoder_input_length, maxlen=tf.shape(hidden_states)[1], dtype=tf.float32)
e *= mask
if encoder.attn_norm_fun == 'none':
weights = e
elif encoder.attn_norm_fun == 'sigmoid':
weights = tf.nn.sigmoid(e)
elif encoder.attn_norm_fun == 'max':
weights = tf.one_hot(tf.argmax(e, -1), depth=tf.shape(e)[1])
else:
e -= tf.reduce_max(e, axis=1, keep_dims=True)
T = encoder.attn_temperature or 1.0
| tensorflow.concat | 4,119 |
import tensorflow as tf
# early.
if tf.executing_eagerly():
return
# Test case 3.
x = tf.placeholder_with_default(input=1, shape=None)
is_scalar = normal._is_scalar_helper(x.shape, lambda: tf.shape(x))
self.assertTrue(self.evaluate(is_scalar))
x = tf.placeholder_with_default(input=[1], shape=None)
is_scalar = normal._is_scalar_helper(x.shape, lambda: tf.shape(x))
self.assertFalse(self.evaluate(is_scalar))
def _GetFakeDistribution(self):
class FakeDistribution(tfd.Distribution):
"""Fake Distribution for testing _set_sample_static_shape."""
def __init__(self, batch_shape=None, event_shape=None):
| tensorflow.placeholder_with_default | 4,120 |
import tensorflow as tf
eval_config.batch_size = 1
eval_config.num_steps = 1
with tf.Graph().as_default():
initializer = tf.random_uniform_initializer(-config.init_scale,
config.init_scale)
with tf.name_scope("Train"):
train_input = PTBInput(config=config, data=train_data, name="TrainInput")
with tf.variable_scope("Model", reuse=None, initializer=initializer):
m = PTBModel(is_training=True, config=config, input_=train_input)
tf.summary.scalar("Training Loss", m.cost)
tf.summary.scalar("Learning Rate", m.lr)
with tf.name_scope("Valid"):
valid_input = PTBInput(config=config, data=valid_data, name="ValidInput")
with tf.variable_scope("Model", reuse=True, initializer=initializer):
mvalid = PTBModel(is_training=False, config=config, input_=valid_input)
tf.summary.scalar("Validation Loss", mvalid.cost)
with tf.name_scope("Test"):
test_input = PTBInput(
| tensorflow.summary.scalar | 4,121 |
import tensorflow as tf
def extract_output(self, accumulator):
result = accumulator.GetQuantiles(self._num_quantiles).to_pylist()
if not result:
return [np.zeros(self._output_shape, self._bucket_numpy_dtype)]
result = np.array(result, self._bucket_numpy_dtype)
# Trim elementwise results if max and min should be excluded.
if not self._include_max_and_min:
result = result[:, 1:-1]
return [np.reshape(result, self._output_shape)]
def output_tensor_infos(self):
return [
analyzer_nodes.TensorInfo(
tf.as_dtype(self._bucket_numpy_dtype), self._output_shape, None)
]
@property
def accumulator_coder(self):
return _QuantilesSketchCacheCoder()
class _QuantilesSketchCacheCoder(analyzer_nodes.CacheCoder):
"""Cache coder for the quantiles accumulator."""
def encode_cache(self, accumulator):
# TODO(b/174549940): Consider exposing and calling
# `QuantilesSketch::Serialize` directly.
| tensorflow.as_dtype | 4,122 |
import tensorflow as tf
loss: Loss tensor of type float.
"""
with tf.name_scope('segment_loss'):
# logits = tf.reshape(logits, (-1, num_classes))
epsilon = tf.constant(value=1e-7)
labels = tf.to_float(labels)
# labels = tf.to_float(tf.reshape(labels, (-1, num_classes)))
softmax = tf.nn.softmax(logits) + epsilon
if head is not None:
cross_entropy = -tf.reduce_sum(tf.mul(labels * tf.log(softmax), head), axis=[1])
else:
cross_entropy = -tf.reduce_sum(labels * tf.log(softmax), axis=[1])
cross_entropy_mean = tf.reduce_mean(cross_entropy, name='xentropy_mean')
return cross_entropy_mean
def triplet_loss(anchor, positive, negative, alpha=0.2, name='triplet_loss'):
"""Calculate the triplet loss according to the FaceNet paper.
Args:
anchor: 2-D `tensor` [batch_size, embedding_size], the embeddings for the anchor images.
positive: 2-D `tensor` [batch_size, embedding_size], the embeddings for the positive images.
negative: 2-D `tensor` [batch_size, embedding_size], the embeddings for the negative images.
alpha: positive to negative triplet distance margin
Returns:
the triplet loss.
| tensorflow.reduce_mean | 4,123 |
import tensorflow as tf
W_out_initializer = tf.constant_initializer(
0.1 * np.random.uniform(-1, 1, size=(self.N_out, self.N_rec)))
b_rec_initializer = tf.constant_initializer(0.0)
b_out_initializer = tf.constant_initializer(0.0)
else:
print("Loading Weights")
weights = np.load(self.load_weights_path)
init_state_initializer = tf.constant_initializer(weights['init_state'])
W_in_initializer = tf.constant_initializer(weights['W_in'])
W_rec_initializer = tf.constant_initializer(weights['W_rec'])
W_out_initializer = tf.constant_initializer(weights['W_out'])
b_rec_initializer = tf.constant_initializer(weights['b_rec'])
b_out_initializer = tf.constant_initializer(weights['b_out'])
self.input_connectivity_mask = weights['input_Connectivity']
self.recurrent_connectivity_mask = weights['rec_Connectivity']
self.output_connectivity_mask = weights['output_Connectivity']
self.init_state = tf.get_variable('init_state', [N_batch, N_rec],
initializer=init_state_initializer)
| tensorflow.constant_initializer | 4,124 |
import tensorflow as tf
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
# nut.print_model_info()
# nut.list_checkpoint_vars(self.get_latest_checkpoint().replace(EMB_SUFFIX, ''))
self.saver = tf.train.Saver()
self._restore_model(sess)
# nut.print_model_info()
encoding, decoding = None, None
| tensorflow.train.Saver | 4,125 |
import tensorflow as tf
@gin.configurable(module='trax.data', denylist=['dataset', 'training'])
def pad_dataset_to_length(dataset, training, len_map=None):
"""Pad features less than specified length to specified length."""
del training
if len_map is None:
return dataset
def pad_to_len(x):
for key, max_len in len_map.items():
x_shape = tf.shape(x[key])
x_len = x_shape[0]
if x_len < max_len:
pad_shape = [
max_len - x_len,
]
zeros = tf.zeros(pad_shape, dtype=x[key].dtype)
x[key] = tf.concat([x[key], zeros], 0)
return x
| tensorflow.shape | 4,126 |
import tensorflow as tf
"""
with tf.name_scope(name):
learning_rate = tf.cast(learning_rate, dtype=tf.float32)
global_step = tf.cast(global_step, dtype=tf.float32)
step_size = tf.cast(step_size, dtype=tf.float32)
max_lr = tf.cast(max_lr, dtype=tf.float32)
if mode == 'tri':
periodic_comp = tf.mod((global_step + step_size / 4) / step_size, 1)
first_factor = tf.abs(periodic_comp - 0.5)
second_factor = 2 * (max_lr - learning_rate)
second_comp = learning_rate
elif mode == 'sin':
first_factor = (learning_rate - max_lr) / 2.
second_factor = tf.sin((pi * global_step) / step_size)
second_comp = (learning_rate + max_lr) / 2.
elif mode == 'saw':
first_factor = max_lr - learning_rate
second_factor = tf.mod(global_step / step_size, 1)
second_comp = learning_rate
return first_factor * second_factor + second_comp
| tensorflow.sin | 4,127 |
import tensorflow as tf
Create the summary part of the graph
:return:
"""
with tf.variable_scope('train-summary-per-epoch'):
for tag in self.scalar_summary_tags:
self.summary_tags += tag
self.summary_placeholders[tag] = tf.placeholder('float32', None, name=tag)
self.summary_ops[tag] = tf.summary.scalar(tag, self.summary_placeholders[tag])
for tag, shape in self.images_summary_tags:
self.summary_tags += tag
self.summary_placeholders[tag] = tf.placeholder('float32', shape, name=tag)
self.summary_ops[tag] = tf.summary.image(tag, self.summary_placeholders[tag], max_outputs=10)
def add_summary(self, step, summaries_dict=None, summaries_merged=None):
"""
Add the summaries to tensorboard
:param step:
:param summaries_dict:
:param summaries_merged:
:return:
"""
if summaries_dict is not None:
| tensorflow.summary.image | 4,128 |
import tensorflow as tf
log_r *= tf.to_float(t < self.seq_lengths - 1)
weights += log_r - prev_log_r
new_state = TrainableVRNNState(rnn_state=next_rnn_state,
rnn_out=rnn_out,
latent_encoded=latent_encoded)
return weights, new_state
_DEFAULT_INITIALIZERS = {"w": tf.contrib.layers.xavier_initializer(),
"b": tf.zeros_initializer()}
def create_vrnn(
data_size,
latent_size,
emission_class,
rnn_hidden_size=None,
fcnet_hidden_sizes=None,
| tensorflow.zeros_initializer | 4,129 |
import tensorflow as tf
assert_op = tf.Assert(tf.is_finite(domain_loss), [domain_loss])
with tf.control_dependencies([assert_op]):
tag_loss = 'losses/domain_loss'
| tensorflow.control_dependencies | 4,130 |
import tensorflow as tf
l1 = tf.matmul(images, self.w1)+self.b1
l1=tf.nn.relu(l1)
l2 = tf.matmul(l1, self.w2)+self.b2
l2=tf.nn.relu(l2)
l3=tf.matmul(l2, self.w3)+self.b3
l3=tf.nn.relu(l3)
out=tf.matmul(l3, self.w4)+self.b4
return out
def valid_inference(self,images):
images=tf.cast(images,tf.float32)/255.0
l1 = tf.matmul(images, self.w1)+self.b1
l1=tf.nn.relu(l1)
l2 = tf.matmul(l1, self.w2)+self.b2
l2=tf.nn.relu(l2)
l3=tf.matmul(l2, self.w3)+self.b3
l3=tf.nn.relu(l3)
out=tf.matmul(l3, self.w4)+self.b4
return out
| tensorflow.cast | 4,131 |
import tensorflow as tf
same_start = tf.equal(tf.expand_dims(labeled_starts, 1), tf.expand_dims(candidate_starts, 0)) # [num_labeled, num_candidates]
same_end = tf.equal(tf.expand_dims(labeled_ends, 1), tf.expand_dims(candidate_ends, 0)) # [num_labeled, num_candidates]
| tensorflow.expand_dims | 4,132 |
from tensorflow.python.ops import math_ops
labels, labels, weights=weights, name='variance_labels')
pearson_r = _safe_div(
cov,
math_ops.mul(math_ops.sqrt(var_predictions), math_ops.sqrt(var_labels)),
'pearson_r')
with ops.control_dependencies(
[update_cov, update_var_predictions, update_var_labels]):
update_op = _safe_div(update_cov, math_ops.mul(
math_ops.sqrt(update_var_predictions),
math_ops.sqrt(update_var_labels)), 'update_op')
if metrics_collections:
ops.add_to_collections(metrics_collections, pearson_r)
if updates_collections:
ops.add_to_collections(updates_collections, update_op)
| tensorflow.python.ops.math_ops.sqrt | 4,133 |
import tensorflow as tf
"url.")
tf.flags.DEFINE_string(
"tpu_zone", None,
| tensorflow.flags.DEFINE_string | 4,134 |
import tensorflow as tf
IMAGE_SIZE = 42
WARP_TARGET_SIZE = 28
HALF_DIFF = (IMAGE_SIZE - WARP_TARGET_SIZE) // 2
class Model(ModelDesc):
def _get_inputs(self):
return [InputDesc(tf.float32, (None, IMAGE_SIZE, IMAGE_SIZE, 2), 'input'),
InputDesc(tf.int32, (None,), 'label')]
def _build_graph(self, inputs):
xys = np.array([(y, x, 1) for y in range(WARP_TARGET_SIZE)
for x in range(WARP_TARGET_SIZE)], dtype='float32')
xys = tf.constant(xys, dtype=tf.float32, name='xys') # p x 3
image, label = inputs
image = image / 255.0 - 0.5 # bhw2
def get_stn(image):
stn = (LinearWrap(image)
.AvgPooling('downsample', 2)
.Conv2D('conv0', 20, 5, padding='VALID')
.MaxPooling('pool0', 2)
.Conv2D('conv1', 20, 5, padding='VALID')
.FullyConnected('fc1', out_dim=32)
.FullyConnected('fct', out_dim=6, nl=tf.identity,
| tensorflow.constant | 4,135 |
import tensorflow as tf
def main(_):
tf.reset_default_graph()
# Import data
cifar = cf.cifar10(batchSize=FLAGS.batch_size, downloadDir=FLAGS.data_dir)
with tf.variable_scope('inputs'):
# Create the model
x = tf.placeholder(tf.float32, [None, FLAGS.img_width * FLAGS.img_height * FLAGS.img_channels])
# Define loss and optimizer
y_ = tf.placeholder(tf.float32, [None, FLAGS.num_classes])
# Whether model is training
train = tf.placeholder(tf.bool, [])
# Build the graph for the deep net
y_conv, img_summary = deepnn(x, train)
# Define your loss function - softmax_cross_entropy
with tf.variable_scope('x_entropy'):
cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y_, logits=y_conv))
# Define your AdamOptimiser, using FLAGS.learning_rate to minimixe the loss function
decayed_learning_rate = tf.train.exponential_decay(FLAGS.learning_rate, tf.Variable(0, trainable=False), 1000, 0.8)
update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
| tensorflow.placeholder | 4,136 |
import tensorflow as tf
if start >= self.train_data_len:
start = 0
new_epoch_flag = True
yield x_batch, y_batch
def init_summaries(self):
"""
Create the summary part of the graph
:return:
"""
with tf.variable_scope('train-summary-per-epoch'):
for tag in self.scalar_summary_tags:
self.summary_tags += tag
self.summary_placeholders[tag] = tf.placeholder('float32', None, name=tag)
self.summary_ops[tag] = tf.summary.scalar(tag, self.summary_placeholders[tag])
for tag, shape in self.images_summary_tags:
self.summary_tags += tag
self.summary_placeholders[tag] = tf.placeholder('float32', shape, name=tag)
self.summary_ops[tag] = tf.summary.image(tag, self.summary_placeholders[tag], max_outputs=10)
def add_summary(self, step, summaries_dict=None, summaries_merged=None):
| tensorflow.variable_scope | 4,137 |
import tensorflow as tf
self.summary_writer.add_summary(summary, global_step=self.get_past_epochs())
def _add_decoding_summary(self, name, var, collection='train'):
var = var[:FLAGS.visualiza_max]
var = tf.concat(tf.unstack(var), axis=0)
var = tf.expand_dims(var, dim=0)
color_s = tf.summary.image(name, var[..., :3], max_outputs=FLAGS.visualiza_max)
var = tf.expand_dims(var[..., 3], dim=3)
bw_s = tf.summary.image('depth_' + name, var, max_outputs=FLAGS.visualiza_max)
return tf.summary.merge([color_s, bw_s])
| tensorflow.summary.image | 4,138 |
import tensorflow as tf
def batch_shaped(t):
return graph_typecheck.assert_shape(t, [batch_size])
def batch_win_shaped(t):
return graph_typecheck.assert_shape(t, [batch_size, window_size])
def batch_2win_shaped(t):
return graph_typecheck.assert_shape(t, [batch_size, 2 * window_size])
def tile_to_2win(t):
return tf.tile(tf.expand_dims(t, 1), [1, 2 * window_size])
closest_time = batch_shaped(band_features['closest_time_in_band'])
closest_flux = batch_shaped(band_features['closest_flux_in_band'])
self.in_window = tf.less(
batch_shaped(band_features["closest_time_diff"]), band_time_diff
)
# Before and after flux.
before_flux = batch_win_shaped(band_features["before_flux"])
| tensorflow.expand_dims | 4,139 |
import tensorflow as tf
Raises:
IOError: The logging directory does not contain a configuration file.
Returns:
Configuration object.
"""
print(logdir)
config_path = logdir and os.path.join(logdir, 'config.yaml')
if not config_path or not tf.gfile.Exists(config_path):
message = (
'Cannot resume an existing run since the logging directory does not '
'contain a configuration file.')
raise IOError(message)
with tf.gfile.GFile(config_path, 'r') as file_:
print('try to load')
config = yaml.load(file_, yaml.Loader)
message = 'Resume run and write summaries and checkpoints to {}.'
| tensorflow.gfile.Exists | 4,140 |
import tensorflow as tf
output: (tf.Tensor) A tensor with shape [batch_size, list_size]. Each value is
the ranking score of the corresponding example.
labels: (tf.Tensor) A tensor of the same shape as `output`. A value >= 1 means a
relevant example.
propensity: No use.
name: A string used as the name for this variable scope.
Returns:
(tf.Tensor) A single value tensor containing the loss.
"""
loss = None
with tf.name_scope(name, "softmax_loss",[output]):
label_dis = labels / tf.reduce_sum(labels, 1, keep_dims=True)
loss = tf.nn.softmax_cross_entropy_with_logits(logits=output, labels=label_dis) * tf.reduce_sum(labels, 1)
return tf.reduce_sum(loss) / tf.reduce_sum(labels)
def get_normalized_weights(self, propensity):
"""Computes listwise softmax loss with propensity weighting.
Args:
propensity: (tf.Tensor) A tensor of the same shape as `output` containing the weight of each element.
Returns:
(tf.Tensor) A tensor containing the propensity weights.
"""
| tensorflow.reduce_sum | 4,141 |
import tensorflow as tf
dtype=self.dtype))
else:
bias_init = tf.ones(bias_shape, dtype=self.dtype)
setattr(
self,
'gain_bias_%s' % layer,
tf.get_variable(
name='%s_gain_bias' % self.layer_name,
dtype=self.dtype,
trainable=True,
initializer=bias_init))
if self.gate_bias_init == 'chronos':
bias_init = -bias_init
else:
bias_init = tf.ones(bias_shape, dtype=self.dtype)
setattr(
self,
'mix_bias_%s' % layer,
tf.get_variable(
name='%s_mix_bias' % self.layer_name,
dtype=self.dtype,
trainable=True,
initializer=bias_init))
# Divisive params
if self.alpha and not self.lesion_alpha:
setattr(
self,
| tensorflow.ones | 4,142 |
import tensorflow as tf
batch_mean, batch_var = tf.nn.moments(x, range(len(shape) - 1))
update_mean = tf.assign_sub(pop_mean, (1 - decay)*(pop_mean - batch_mean))
update_var = tf.assign_sub(pop_var, (1 - decay)*(pop_var - batch_var))
with tf.control_dependencies([update_mean, update_var]):
return tf.nn.batch_normalization(x, batch_mean, batch_var, beta, gamma, epsilon)
def func2():
# execute at test time
| tensorflow.nn.batch_normalization | 4,143 |
import tensorflow as tf
# Memory allocation on the GPU as needed
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
config.allow_soft_placement = True
# Train
with tf.Session(config=config) as sess:
try:
summary_writer = tf.summary.FileWriter(tensorboard_dir, sess.graph)
sess.run(tf.global_variables_initializer())
# saved model restoring
if args.restore:
# Restore saved model if the user requested it, default = True
try:
| tensorflow.summary.FileWriter | 4,144 |
from tensorflow.python.platform import gfile
self.assertTrue(gfile.Exists(s1))
s2 = save.save(sess, os.path.join(save_dir, "s2"))
self.assertEqual([s1, s2], save.last_checkpoints)
self.assertTrue(gfile.Exists(s1))
self.assertTrue(gfile.Exists(s2))
s3 = save.save(sess, os.path.join(save_dir, "s3"))
| tensorflow.python.platform.gfile.Exists | 4,145 |
import tensorflow as tf
if x.dtype.base_dtype == tf.bool:
x = tf.cast(x, tf.float32)
m = tf.reduce_mean(x, axis=axis, keep_dims=True)
devs_squared = tf.square(x - m)
return tf.reduce_mean(devs_squared, axis=axis, keep_dims=keepdims)
def euclidean_distance(test, support, max_dist_sq=20):
| tensorflow.reduce_mean | 4,146 |
from tensorflow.python.framework import ops
@ops.RegisterShape("Assign")
def _AssignShape(op):
| tensorflow.python.framework.ops.RegisterShape | 4,147 |
import tensorflow as tf
t_vars = tf.trainable_variables()
else:
try: # TF1.0+
t_vars = tf.global_variables()
except Exception: # TF0.12
t_vars = tf.all_variables()
d_vars = [var for var in t_vars if name in var.name]
if printable:
for idx, v in enumerate(d_vars):
| tensorflow.all_variables | 4,148 |
import tensorflow as tf
self.D_A_loss = (self.D_A_loss_real + self.D_A_loss_fake) / 2.0
self.discriminator_loss = self.D_B_loss + self.D_A_loss
self.loss_GABA_sum = tf.summary.scalar("g_loss_a2b", self.loss_GABA)
self.loss_GBAB_sum = tf.summary.scalar("g_loss_b2a", self.loss_GBAB)
self.g_total_loss_sum = tf.summary.scalar("g_loss", self.generator_loss)
self.g_sum = tf.summary.merge([self.loss_GABA_sum,self.loss_GBAB_sum,self.g_total_loss_sum])
self.loss_db_sum = tf.summary.scalar("db_loss", self.D_B_loss)
self.loss_da_sum = tf.summary.scalar("da_loss", self.D_A_loss)
self.loss_d_sum = tf.summary.scalar("d_loss",self.discriminator_loss)
self.db_loss_real_sum = tf.summary.scalar("db_loss_real", self.D_B_loss_real)
self.db_loss_fake_sum = tf.summary.scalar("db_loss_fake", self.D_B_loss_fake)
self.da_loss_real_sum = tf.summary.scalar("da_loss_real", self.D_A_loss_real)
self.da_loss_fake_sum = tf.summary.scalar("da_loss_fake", self.D_A_loss_fake)
self.d_sum = tf.summary.merge(
[self.loss_da_sum, self.da_loss_real_sum, self.da_loss_fake_sum,
self.loss_db_sum, self.db_loss_real_sum, self.db_loss_fake_sum,
| tensorflow.summary.scalar | 4,149 |
import tensorflow as tf
d_layer_2_all = tf.layers.dense(d_layer_1_all, 40, activation=tf.nn.sigmoid, name='f2_att' + stag)
d_layer_3_all = tf.layers.dense(d_layer_2_all, 1, activation=None, name='f3_att' + stag)
| tensorflow.layers.dense | 4,150 |
import tensorflow as tf
antecedent_offsets = tf.expand_dims(top_span_range, 1) - tf.expand_dims(top_span_range, 0) # [k, k]
antecedents_mask = antecedent_offsets >= 1 # [k, k]
fast_antecedent_scores = tf.expand_dims(top_span_mention_scores, 1) + tf.expand_dims(top_span_mention_scores, 0) # [k, k]
fast_antecedent_scores += tf.log(tf.to_float(antecedents_mask)) # [k, k]
fast_antecedent_scores += self.get_fast_antecedent_scores(top_span_emb) # [k, k]
_, top_antecedents = tf.nn.top_k(fast_antecedent_scores, c, sorted=False) # [k, c]
top_antecedents_mask = util.batch_gather(antecedents_mask, top_antecedents) # [k, c]
top_fast_antecedent_scores = util.batch_gather(fast_antecedent_scores, top_antecedents) # [k, c]
top_antecedent_offsets = util.batch_gather(antecedent_offsets, top_antecedents) # [k, c]
return top_antecedents, top_antecedents_mask, top_fast_antecedent_scores, top_antecedent_offsets
| tensorflow.nn.top_k | 4,151 |
import tensorflow as tf
G = tf.Graph()
with G.as_default():
# Data input
X = tf.placeholder(tf.float32, [None, input_node], name = 'x-Input')
y_ = tf.placeholder(tf.float32, [None, output_node], name = 'label-Input')
# hidden layers
self.nnweights = [] # collect weights of network
prev_node = input_node
prev_x = X
for i in range(len(hidden_layers_node)):
layer_name = 'layer' + str(i+1)
with tf.variable_scope(layer_name, reuse=tf.AUTO_REUSE):
weights = tf.get_variable('weights', [prev_node, hidden_layers_node[i]],
initializer=tf.truncated_normal_initializer(stddev=0.1))
self.nnweights.append(weights)
biases = tf.get_variable('biases', [hidden_layers_node[i]],
initializer=tf.constant_initializer(0.0))
layer_out = tf.nn.dropout(tf.matmul(prev_x, weights) + biases, dropout_keep_prob)
if activation == 'relu':
layer_out = tf.nn.relu(layer_out)
elif activation == 'sigmoid':
layer_out = tf.nn.sigmoid(layer_out)
elif activation == 'tanh':
| tensorflow.truncated_normal_initializer | 4,152 |
import tensorflow as tf
weights=1.0 / tf.cast(cur_batch_size, tf.float32),
scope='loss_{}'.format(len(pred_outputs) - 1),
loss_collection=None,#tf.GraphKeys.LOSSES,
# mean all elements of all pixels in all batch
reduction=tf.losses.Reduction.MEAN))
else:
for pred_ind in list(range(len(pred_outputs))):
mse_loss_list.append(tf.losses.mean_squared_error(targets_list[pred_ind], pred_outputs[pred_ind],
weights=1.0 / tf.cast(cur_batch_size, tf.float32),
scope='loss_{}'.format(pred_ind),
loss_collection=None,#tf.GraphKeys.LOSSES,
# mean all elements of all pixels in all batch
reduction=tf.losses.Reduction.MEAN))# SUM, SUM_OVER_BATCH_SIZE, default mean by all elements
mse_loss = tf.multiply(params['mse_weight'], tf.add_n(mse_loss_list), name='mse_loss')
tf.summary.scalar('mse', mse_loss)
| tensorflow.cast | 4,153 |
from tensorflow.python.ops import gen_math_ops
# tensor `imag` is [4.75, 5.75]
tf.complex(real, imag) ==> [[2.25 + 4.74j], [3.25 + 5.75j]]
```
Args:
real: A `Tensor` of type `float`.
imag: A `Tensor` of type `float`.
name: A name for the operation (optional).
Returns:
A `Tensor` of type `complex64`.
"""
with ops.op_scope([real, imag], name, "Complex") as name:
return gen_math_ops._complex(real, imag, name=name)
def round(x, name=None):
"""Rounds the values of a tensor to the nearest integer, element-wise.
For example:
```python
# 'a' is [0.9, 2.5, 2.3, -4.4]
tf.round(a) ==> [ 1.0, 3.0, 2.0, -4.0 ]
```
| tensorflow.python.ops.gen_math_ops._complex | 4,154 |
import tensorflow as tf
if s.ndim < 4:
s = s[np.newaxis, :]
return self.sess.run(self.v, {self.tfs: s})[0, 0]
def load(self):
saver = tf.train.Saver()
saver.restore(self.sess, './model_save/params')
def save(self):
saver = tf.train.Saver()
| tensorflow.train.Saver | 4,155 |
import tensorflow as tf
if self.lesion_omega:
setattr(
self,
'omega_%s' % layer,
tf.constant(0.))
if self.lesion_kappa:
setattr(
self,
'kappa_%s' % layer,
tf.constant(0.))
if self.reuse:
# Make the batchnorm variables
scopes = ['g1_bn', 'g2_bn', 'c1_bn', 'c2_bn']
bn_vars = ['moving_mean', 'moving_variance', 'gamma']
for s in scopes:
with tf.variable_scope(s):
for v in bn_vars:
tf.get_variable(
trainable=self.param_trainable[v],
name=v,
dtype=self.dtype,
shape=[self.hgru_k[idx]],
collections=self.param_collections[v],
initializer=self.param_initializer[v])
self.param_initializer = None
def resize_x_to_y(
self,
x,
y,
| tensorflow.variable_scope | 4,156 |
import tensorflow as tf
vocab_dist = tf.concat(values=[vocab_dist, extra_zeros], axis=1) # [batch_size, extended_vsize]
if self.options.add_first_word_prob_for_phrase: # add prob of the first word to each phrase
attn_dist = add_first_word_prob_to_atten_dists(self.in_passage_words, self.phrase_starts,
vocab_dist, attn_dist)
# match attn_dist[batch_size, passage_length] to sparse one-hot representation [batch_size, passage_length, extended_vsize]
batch_nums = tf.range(0, limit=batch_size) # shape (batch_size)
batch_nums = tf.expand_dims(batch_nums, axis=1) # shape (batch_size, 1)
batch_nums = tf.tile(batch_nums, [1, passage_length]) # shape (batch_size, passage_length)
step_nums = tf.range(0, limit=passage_length) # [passage_length]
step_nums = tf.expand_dims(step_nums, axis=0) # shape (1, passage_length)
step_nums = tf.tile(step_nums, [batch_size, 1]) # shape (batch_size, passage_length)
indices = tf.stack((batch_nums, step_nums, passage_word_idx), axis=2) # shape (batch_size, passage_length, 3)
indices = tf.reshape(indices, [-1, 3]) #[batch_size * passage_length, 3]
indices = tf.cast(indices, tf.int64)
shape = [batch_size, passage_length, extended_vsize]
shape = tf.cast(shape, tf.int64)
attn_dist = tf.reshape(attn_dist, shape=[-1]) # [batch_size*passage_length]
one_hot_spare_rep = tf.SparseTensor(indices=indices, values=attn_dist, dense_shape=shape) # [batch_size, passage_length, extended_vsize]
if passage_mask is not None:
passage_mask = tf.expand_dims(passage_mask, axis=-1)
| tensorflow.stack | 4,157 |
import tensorflow as tf
tf.constant(
all_segment_ids,
shape=[num_examples, seq_length],
dtype=tf.int32),
"label_ids":
tf.constant(all_label_ids, shape=[num_examples], dtype=tf.int32),
})
if is_training:
d = d.repeat()
| tensorflow.constant | 4,158 |
import tensorflow as tf
Tout=tf.float32)
img = inputs_list[i][0]
img_shape = inputs_list[i][-2:]
img = tf.image.crop_to_bounding_box(image=img,
offset_height=0,
offset_width=0,
target_height=tf.cast(img_shape[0], tf.int32),
target_width=tf.cast(img_shape[1], tf.int32))
outputs = r3det_dcl.build_whole_detection_network(input_img_batch=img,
gtboxes_batch_h=gtboxes_and_label_h,
gtboxes_batch_r=gtboxes_and_label_r,
gt_encode_label=gt_encode_label,
gpu_id=i)
gtboxes_in_img_h = self.drawer.draw_boxes_with_categories(img_batch=img,
| tensorflow.cast | 4,159 |
import tensorflow as tf
options.gen_hidden_size,
initializer=tf.random_uniform_initializer(-0.1, 0.1, seed=113),
state_is_tuple=True)
self.placeholders = placeholders
with tf.variable_scope("embedding"), tf.device('/cpu:0'):
self.embedding = tf.get_variable('word_embedding', trainable=(options.fix_word_vec==False),
initializer=tf.constant(self.vocab.word_vecs), dtype=tf.float32)
if options.with_phrase_projection:
self.max_phrase_size = placeholders.max_phrase_size
if options.add_first_word_prob_for_phrase:
self.in_passage_words = placeholders.in_passage_words
self.phrase_starts = placeholders.phrase_starts
| tensorflow.constant | 4,160 |
import tensorflow as tf
with tf.name_scope('LossB'):
| tensorflow.name_scope | 4,161 |
import tensorflow as tf
[int(feature.is_real_example)])
tf_example = tf.train.Example(features=tf.train.Features(feature=features))
writer.write(tf_example.SerializeToString())
writer.close()
def file_based_input_fn_builder(input_file, seq_length, is_training,
drop_remainder):
"""Creates an `input_fn` closure to be passed to TPUEstimator."""
name_to_features = {
"input_ids": tf.FixedLenFeature([seq_length], tf.int64),
"input_mask": tf.FixedLenFeature([seq_length], tf.int64),
"segment_ids": tf.FixedLenFeature([seq_length], tf.int64),
"label_ids": tf.FixedLenFeature([], tf.int64),
"is_real_example": tf.FixedLenFeature([], tf.int64),
}
def _decode_record(record, name_to_features):
"""Decodes a record to a TensorFlow example."""
example = tf.parse_single_example(record, name_to_features)
# tf.Example only supports tf.int64, but the TPU only supports tf.int32.
# So cast all int64 to int32.
for name in list(example.keys()):
| tensorflow.FixedLenFeature | 4,162 |
import tensorflow as tf
conf_mat = tf.matmul(tf.transpose(pred_norm), labels)
nom = tf.reduce_sum(weights * conf_mat)
denom = tf.reduce_sum(weights * tf.matmul(
tf.reshape(hist_rater_a, [num_ratings, 1]), tf.reshape(hist_rater_b, [1, num_ratings])) /
tf.to_float(batch_size))
try:
return -(1 - nom / denom)
| tensorflow.reshape | 4,163 |
from tensorflow.python.platform import gfile
# Deleted by the first helper.
self.assertFalse(gfile.Exists(s3))
| tensorflow.python.platform.gfile.Exists | 4,164 |
import tensorflow as tf
tf.initialize_all_variables().run()
self.assertAllClose(543.21, v0_2.eval())
save.restore(sess, save_path)
self.assertAllClose(123.45, v0_2.eval())
def testVariables(self):
save_path = os.path.join(self.get_temp_dir(), "variables")
with tf.Session("", graph=tf.Graph()) as sess:
one = tf.Variable(1.0)
twos = tf.Variable([2.0, 2.0, 2.0])
init = tf.initialize_all_variables()
save = tf.train.Saver(tf.all_variables())
init.run()
save.save(sess, save_path)
with tf.Session("", graph=tf.Graph()) as sess:
| tensorflow.Variable | 4,165 |
import tensorflow as tf
tf.equal(sl_unhead, 0),
lambda: tf.zeros([bs, 0, hn], tf.float32),
lambda: mean_pooling_for_unselected_head(
unhead_org_idx, sl_unhead, rep_unhead_mask,
input_idx, sl, rep_mask, rep_map, None) # todo: point !
)
with tf.variable_scope('output'):
if keep_unselected:
range_head = tf.tile(tf.expand_dims(tf.range(bs), -1), [1, sl_head])
scatter_attn = tf.cond(
tf.equal(sl_head, 0),
lambda: tf.zeros([bs, sl+1, hn], tf.float32),
lambda: tf.scatter_nd(
tf.stack([range_head, head_org_idx], -1), attn_result, [bs, sl+1, hn])
)
range_unhead = tf.tile(tf.expand_dims(tf.range(bs), -1), [1, sl_unhead])
scatter_pooling = tf.cond(
tf.equal(sl_unhead, 0),
lambda: tf.zeros([bs, sl+1, hn], tf.float32),
lambda: tf.scatter_nd(
tf.stack([range_unhead, unhead_org_idx], -1), pooling_result, [bs, sl+1, hn])
)
| tensorflow.zeros | 4,166 |
import tensorflow as tf
h = norm(n+m, 'ln_2')
return h
def embed(X, we):
#X [-1,,2]
we = convert_gradient_to_tensor(we)
e = tf.gather(we, X)
h = tf.reduce_sum(e, 2)
return h
def clf(x, ny, w_init=tf.random_normal_initializer(stddev=0.02), b_init=tf.constant_initializer(0), train=False):
with tf.variable_scope('clf'):
nx = shape_list(x)[-1]
w = tf.get_variable("w", [nx, ny], initializer=w_init)
b = tf.get_variable("b", [ny], initializer=b_init)
return tf.matmul(x, w)+b
def model(X, M, Y, train=False, reuse=False):
with tf.variable_scope('model', reuse=reuse):
we = tf.get_variable("we", [n_vocab+n_special+n_ctx, n_embd], initializer=tf.random_normal_initializer(stddev=0.02))
| tensorflow.random_normal_initializer | 4,167 |
import tensorflow as tf
try:
sess.run(var)
except tf.errors.FailedPreconditionError:
uninitialized_vars.append(var)
init_new_vars_op = tf.variables_initializer(uninitialized_vars)
sess.run(init_new_vars_op)
# Evalute the network for the given image
pred = sess.run(net.get_output(), feed_dict={input_node: img})
| tensorflow.variables_initializer | 4,168 |
from tensorflow.contrib.layers.python.layers import utils
return (tf.no_op(), tf.no_op())
# Only make the ops if we know that `is_training=True`, or the value of
# `is_training` is unknown.
is_training_const = utils.constant_value(is_training)
if is_training_const is None or is_training_const:
update_mean_op, update_variance_op = utils.smart_cond(
is_training,
| tensorflow.contrib.layers.python.layers.utils.constant_value | 4,169 |
import tensorflow as tf
def _reshape_layer(self, bottom, num_dim, name):
input_shape = tf.shape(bottom)
with tf.variable_scope(name):
# change the channel to the caffe format
# 18个通道[,18,none,none],分别显示得分,前9个为前景得分,后9个为背景得分
# 第二次[1,2,none,none]
to_caffe = tf.transpose(bottom, [0, 3, 1, 2])
# then force it to have channel 2
#[1,2,none.none],将9个anchor的前景得分和背景得分分开
# 第二次[1,18,none,none]
reshaped = tf.reshape(to_caffe, tf.concat(axis=0, values=[[self._batch_size], [num_dim, -1], [input_shape[2]]]))
# then swap the channel back
# [1,none,none,2], 第一个none应该为(行*9)
# 第二次[1,none,none,18]
to_tf = tf.transpose(reshaped, [0, 2, 3, 1])
return to_tf
def _softmax_layer(self, bottom, name):
if name == 'rpn_cls_prob_reshape':
input_shape = tf.shape(bottom)
| tensorflow.concat | 4,170 |
import tensorflow as tf
m = Model(is_training=True, config=config, input_=train_input, graph=train_graph)
tf.summary.scalar('Training Loss', m.cost)
| tensorflow.summary.scalar | 4,171 |
import tensorflow as tf
def train_input_fn(params={}):
# make some fake noise
data_size = 100
noise_tensor = tf.random_normal((data_size, INPUT_DIM))
real_data_tensor = tf.random_uniform((data_size, OUTPUT_DIM))
| tensorflow.random_normal | 4,172 |
import tensorflow as tf
print('\nselfAdjointEig(D):')
print(sess.run(tf.self_adjoint_eig(D)))
print(sess.run(tf.div(13, 4)))
print(sess.run(tf.truediv(13, 4)))
print(sess.run(tf.floordiv(13, 4)))
print(sess.run(tf.mod(13.2, 4)))
print(sess.run(tf.cross([1, 0, 0], [0, 1, 0])))
print(sess.run(tf.square([1, 2, 3])))
def custom_polynomial(local_tf, value):
return local_tf.subtract(3 * local_tf.square(value), value) + 10
print((sess.run(custom_polynomial(tf, 11))))
| tensorflow.square | 4,173 |
import tensorflow as tf
input_size_ = input_size if layer == 0 else 2 * num_units
gru_fw = tf.contrib.rnn.GRUCell(num_units)
gru_bw = tf.contrib.rnn.GRUCell(num_units)
init_fw = tf.tile(tf.Variable(
tf.zeros([1, num_units])), [batch_size, 1])
init_bw = tf.tile(tf.Variable(
tf.zeros([1, num_units])), [batch_size, 1])
mask_fw = dropout(tf.ones([batch_size, 1, input_size_], dtype=tf.float32),
keep_prob=keep_prob, is_train=is_train, mode=None)
mask_bw = dropout(tf.ones([batch_size, 1, input_size_], dtype=tf.float32),
keep_prob=keep_prob, is_train=is_train, mode=None)
self.grus.append((gru_fw, gru_bw, ))
| tensorflow.zeros | 4,174 |
import tensorflow as tf
input_mask = [1] * len(input_ids)
# Zero-pad up to the sequence length.
while len(input_ids) < max_seq_length:
input_ids.append(0)
input_mask.append(0)
segment_ids.append(0)
assert len(input_ids) == max_seq_length
assert len(input_mask) == max_seq_length
assert len(segment_ids) == max_seq_length
label_id = label_map[example.label]
if ex_index < 5:
tf.logging.info("*** Example ***")
tf.logging.info("guid: %s" % (example.guid))
tf.logging.info("tokens: %s" % " ".join(
[tokenization.printable_text(x) for x in tokens]))
tf.logging.info("input_ids: %s" % " ".join([str(x) for x in input_ids]))
tf.logging.info("input_mask: %s" % " ".join([str(x) for x in input_mask]))
tf.logging.info("segment_ids: %s" % " ".join([str(x) for x in segment_ids]))
tf.logging.info("label: %s (id = %d)" % (example.label, label_id))
feature = InputFeatures(
input_ids=input_ids,
input_mask=input_mask,
segment_ids=segment_ids,
label_id=label_id,
| tensorflow.logging.info | 4,175 |
import tensorflow as tf
self.evaluate(log_cdf),
self._scipy_pareto(concentration_v, scale_v).logcdf(x))
cdf = pareto.cdf(x)
self.assertEqual(cdf.shape, (6, 3))
self.assertAllClose(
self.evaluate(cdf),
self._scipy_pareto(concentration_v, scale_v).cdf(x))
def testParetoPDFGradientZeroOutsideSupport(self):
scale = tf.constant(1.)
concentration = tf.constant(3.)
# Check the gradient on the undefined portion.
x = scale - 1
pareto = tfd.Pareto(concentration, scale)
compute_pdf = lambda x: pareto.prob(x) # pylint:disable=unnecessary-lambda
self.assertAlmostEqual(self.compute_gradients(
compute_pdf, args=[x])[0], 0.)
def testParetoCDFGradientZeroOutsideSupport(self):
scale = tf.constant(1.)
| tensorflow.constant | 4,176 |
import tensorflow as tf
mask = tf.pad(
tf.zeros(cutout_shape, dtype=images.dtype),
padding_dims, constant_values=1)
patch = tf.ones_like(images, dtype=images.dtype) * replace,
mask = tf.expand_dims(mask, -1)
mask = tf.tile(mask, [1, 1, num_channels])
| tensorflow.ones_like | 4,177 |
import tensorflow as tf
if FLAGS.ckpt_no is not None and not tf.gfile.Exists(path_ckpt):
with tf.gfile.GFile(path_ckpt, "w") as writer:
writer.write('model_checkpoint_path: "%s-%s"\n' % (os.path.join(FLAGS.recover_dir, "model.ckpt"), str(FLAGS.ckpt_no)))
| tensorflow.gfile.GFile | 4,178 |
from tensorflow.python.ops import control_flow_ops
def initializer(self):
return control_flow_ops.group([v.initializer for v in self._vars])
| tensorflow.python.ops.control_flow_ops.group | 4,179 |
import tensorflow as tf
"segment_ids": tf.FixedLenFeature([seq_length], tf.int64),
"label_ids": tf.FixedLenFeature([], tf.int64),
"is_real_example": tf.FixedLenFeature([], tf.int64),
}
| tensorflow.FixedLenFeature | 4,180 |
import tensorflow as tf
biases_regularizer = tf.no_regularizer
weights_regularizer = tf.contrib.layers.l2_regularizer(cfgs.WEIGHT_DECAY)
| tensorflow.contrib.layers.l2_regularizer | 4,181 |
import tensorflow as tf
if mode_gen == 'greedy':
wordidx_t = tf.argmax(output_t, 1) # [batch_size]
wordidx_t = tf.reshape(wordidx_t, [-1]) # [batch_size]
elif mode_gen == 'sample':
log_score_t = tf.log(output_t) # [batch_size, vsize]
wordidx_t = tf.multinomial(log_score_t, 1) # [batch_size, 1]
wordidx_t = tf.reshape(wordidx_t, [-1]) # [batch_size]
elif mode_gen in ('ce_train', 'loss',):
wordidx_t = answer_batch_unstack[i]
else:
| tensorflow.multinomial | 4,182 |
import tensorflow as tf
nfeats_tot = nfeats_conv + nfeats
feats_all = tf.concat(1, [feats_conv, feats_other])
print('feats_cnn: {}'.format(feats_conv.get_shape()))
print('feats_all: {}'.format(feats_all.get_shape()))
# Project to RNN size
rnn_output = feats_all
rnn_output_size = nfeats_tot
if do_rnn:
with tf.variable_scope('rnn_proj'):
rnn_proj_w = tf.get_variable('W', [nfeats_tot, rnn_size], initializer=tf.uniform_unit_scaling_initializer(factor=1.0, dtype=dtype), dtype=dtype)
rnn_proj_b = tf.get_variable('b', [rnn_size], initializer=tf.constant_initializer(0.0), dtype=dtype)
rnn_inputs = tf.nn.bias_add(tf.matmul(feats_all, rnn_proj_w), rnn_proj_b)
rnn_inputs = tf.reshape(rnn_inputs, [batch_size, rnn_nunroll, rnn_size])
rnn_inputs = tf.split(rnn_inputs, rnn_nunroll, axis=1)
rnn_inputs = [tf.squeeze(input_, [1]) for input_ in rnn_inputs]
if rnn_cell_type == 'rnn':
cell_fn = tf.nn.rnn_cell.BasicRNNCell
elif rnn_cell_type == 'gru':
cell_fn = tf.nn.rnn_cell.GRUCell
elif rnn_cell_type == 'lstm':
cell_fn = tf.nn.rnn_cell.BasicLSTMCell
else:
raise NotImplementedError()
cell = cell_fn(rnn_size)
if mode == 'train' and rnn_keep_prob < 1.0:
cell = tf.nn.rnn_cell.DropoutWrapper(cell, output_keep_prob=rnn_keep_prob)
| tensorflow.split | 4,183 |
import tensorflow as tf
def din_attention(query, facts, attention_size, mask, stag='null', mode='SUM', softmax_stag=1, time_major=False, return_alphas=False):
if isinstance(facts, tuple):
# In case of Bi-RNN, concatenate the forward and the backward RNN outputs.
facts = tf.concat(facts, 2)
print ("querry_size mismatch")
query = tf.concat(values = [
query,
query,
], axis=1)
if time_major:
# (T,B,D) => (B,T,D)
facts = tf.array_ops.transpose(facts, [1, 0, 2])
mask = tf.equal(mask, tf.ones_like(mask))
facts_size = facts.get_shape().as_list()[-1] # D value - hidden size of the RNN layer
querry_size = query.get_shape().as_list()[-1]
queries = tf.tile(query, [1, tf.shape(facts)[1]])
queries = tf.reshape(queries, tf.shape(facts))
din_all = tf.concat([queries, facts, queries-facts, queries*facts], axis=-1)
d_layer_1_all = tf.layers.dense(din_all, 80, activation=tf.nn.sigmoid, name='f1_att' + stag)
d_layer_2_all = tf.layers.dense(d_layer_1_all, 40, activation=tf.nn.sigmoid, name='f2_att' + stag)
d_layer_3_all = tf.layers.dense(d_layer_2_all, 1, activation=None, name='f3_att' + stag)
d_layer_3_all = tf.reshape(d_layer_3_all, [-1, 1, tf.shape(facts)[1]])
scores = d_layer_3_all
# Mask
# key_masks = tf.sequence_mask(facts_length, tf.shape(facts)[1]) # [B, T]
key_masks = tf.expand_dims(mask, 1) # [B, 1, T]
| tensorflow.ones_like | 4,184 |
import tensorflow as tf
op_Xs.append(op_X)
# Stack operation outputs and index by op
op_Xs = tf.stack(op_Xs)
X = op_Xs[op]
| tensorflow.stack | 4,185 |
import tensorflow as tf
if not config.aug_same and config.aug:
recon_feat = tf.concat([features, target['aug']], -1)
print('Use recon feature ', name, recon_feat)
logprob = heads[name](recon_feat).log_prob(target[name])
# logprob = heads[name](features).log_prob(target['ori_img'])
else:
logprob = heads[name](features).log_prob(target[name])
objectives.append(Objective(name, logprob, max, include, exclude))
objectives = [o._replace(value=tf.reduce_mean(o.value)) for o in objectives]
return objectives, cstr_pct
def contra_step_lossV1(pred, tgt, temp=10.0):
# Step-wise contrastive loss
pred1, pred2 = tf.split(pred, 2, axis=0)
| tensorflow.reduce_mean | 4,186 |
import tensorflow as tf
super().release()
self.sess.close()
tf.reset_default_graph()
| tensorflow.reset_default_graph | 4,187 |
from tensorflow.python.framework import ops
@ops.RegisterStatistics("Conv2D", "flops")
def _calc_conv_flops(graph, node):
| tensorflow.python.framework.ops.RegisterStatistics | 4,188 |
import tensorflow as tf
# target q network evalution
q_tp1 = q_func(obs_tp1_input.get(), num_actions, scope="target_q_func")
target_q_func_vars = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope=tf.get_variable_scope().name + "/target_q_func")
# q scores for actions which we know were selected in the given state.
| tensorflow.get_variable_scope | 4,189 |
import tensorflow as tf
# Embedding + 2 LSTM layers + hidden layers + logits layer
expected_num_vars = 1 + 2 * 2 * FLAGS.rnn_num_layers + 2 * (
FLAGS.cl_num_layers) + 2
self.assertEqual(len(tf.trainable_variables()), expected_num_vars)
def testEvalGraph(self):
| tensorflow.trainable_variables | 4,190 |
import tensorflow as tf
do_reuse = True if i > 0 else None
with tf.device(assign_to_gpu(i, "/gpu:0")), tf.variable_scope(tf.get_variable_scope(), reuse=do_reuse):
clf_logits, clf_losses, lm_losses = model(*xs, train=True, reuse=do_reuse)
if lm_coef > 0:
train_loss = tf.reduce_mean(clf_losses) + lm_coef*tf.reduce_mean(lm_losses)
else:
train_loss = tf.reduce_mean(clf_losses)
params = find_trainable_variables("model")
grads = tf.gradients(train_loss, params)
grads = list(zip(grads, params))
gpu_grads.append(grads)
gpu_ops.append([clf_logits, clf_losses, lm_losses])
ops = [tf.concat(op, 0) for op in zip(*gpu_ops)]
grads = average_grads(gpu_grads)
grads = [g for g, p in grads]
train = opt_fns[opt](params, grads, lr, partial(lr_schedules[lr_schedule], warmup=lr_warmup), n_updates_total, l2=l2, max_grad_norm=max_grad_norm, vector_l2=vector_l2, b1=b1, b2=b2, e=e)
| tensorflow.gradients | 4,191 |
import tensorflow as tf
self.deconv_5 = self.deconv_bn_relu(self.deconv_4, name = 'deconv_5',kernel_size = 3, output_channels = 64,
initializer =tf.contrib.layers.variance_scaling_initializer(), stride=2, bn=True, training=self.is_training)# 224*224
| tensorflow.contrib.layers.variance_scaling_initializer | 4,192 |
from tensorflow.contrib.learn.python.learn.estimators import test_data
self.report_benchmark(
iters=metrics['global_step'],
extras={k: v
for k, v in metrics.items() if k in _METRIC_KEYS})
def benchmarkMatrixData(self):
iris = test_data.prepare_iris_data_for_logistic_regression()
cont_feature = feature_column.real_valued_column('feature', dimension=4)
bucketized_feature = feature_column.bucketized_column(
cont_feature, test_data.get_quantile_based_buckets(iris.data, 10))
classifier = dnn_linear_combined.DNNLinearCombinedClassifier(
| tensorflow.contrib.learn.python.learn.estimators.test_data.prepare_iris_data_for_logistic_regression | 4,193 |
import tensorflow as tf
self._moving_variance = tf.get_variable(
"moving_variance",
shape=self._mean_shape,
collections=[tf.GraphKeys.MOVING_AVERAGE_VARIABLES,
tf.GraphKeys.GLOBAL_VARIABLES],
initializer=tf.ones_initializer(),
trainable=False)
def build_batch_stats():
"""Builds the batch statistics calculation ops."""
# We use the moving mean as an estimate of the mean in order to perform
# a more numerically stable calculation of the batch mean.
# Copy for better stability.
shift = tf.add(self._moving_mean, 0)
counts, shifted_sum_x, shifted_sum_x2, _ = tf.nn.sufficient_statistics(
input_batch,
reduction_indices,
keep_dims=True,
shift=shift,
name="batch_norm_ss")
mean, variance = tf.nn.normalize_moments(counts,
shifted_sum_x,
shifted_sum_x2,
shift,
name="normalize_moments")
return mean, variance
| tensorflow.nn.sufficient_statistics | 4,194 |
import tensorflow as tf
dtype=tf.float32)
U = tf.get_variable(name="attn_U",
shape=[2 * self.config.hidden_size, 2 * self.config.hidden_size],
initializer=tf.contrib.layers.xavier_initializer(),
# initializer=tf.truncated_normal_initializer(),
# initializer=tf.keras.initializers.lecun_normal(),
dtype=tf.float32)
self.position_emb = tf.reshape(self.position_emb, [-1, 2 * self.config.hidden_size])
shape = tf.shape(output)
output = tf.reshape(output, [-1, 2 * self.config.hidden_size])
atten_hidden = tf.tanh(
tf.add(
tf.matmul(self.position_emb, W),
tf.matmul(output, U)))
alpha = tf.nn.softmax(
tf.reshape(tf.matmul(atten_hidden, V), [-1, shape[1], 1]), axis=1)
output = tf.reshape(output, [-1, shape[1], 2 * self.config.hidden_size])
C = tf.multiply(alpha, output)
| tensorflow.reshape | 4,195 |
import tensorflow as tf
return output, new_state
def update_pos(pos, symbol, max_pos=None):
if not decoder.pred_edits:
return pos
is_keep = tf.equal(symbol, utils.KEEP_ID)
is_del = tf.equal(symbol, utils.DEL_ID)
is_not_ins = tf.logical_or(is_keep, is_del)
pos = beam_search.resize_like(pos, symbol)
max_pos = beam_search.resize_like(max_pos, symbol)
pos += tf.to_float(is_not_ins)
if max_pos is not None:
pos = tf.minimum(pos, tf.to_float(max_pos))
| tensorflow.logical_or | 4,196 |
import tensorflow as tf
name='batching_many_small',
sess=session,
op_or_tensor=op_to_benchmark,
burn_iters=10,
min_iters=50)
def benchmark_batching_large(self):
with tf.Session() as session:
@dynamic_batching.batch_fn
def f(a, b):
return a + b
outputs = []
for _ in xrange(1000):
outputs.append(f(tf.ones([1, 100000]), tf.ones([1, 100000])))
op_to_benchmark = tf.group(*outputs)
tf.train.start_queue_runners()
self.run_op_benchmark(
name='batching_many_large',
sess=session,
op_or_tensor=op_to_benchmark,
burn_iters=10,
min_iters=50)
if __name__ == '__main__':
| tensorflow.ones | 4,197 |
import tensorflow as tf
class SaverTest(tf.test.TestCase):
def testBasics(self):
save_path = os.path.join(self.get_temp_dir(), "basics")
with self.test_session() as sess:
# Build a graph with 2 parameter nodes, and Save and
# Restore nodes for them.
v0 = tf.Variable(10.0, name="v0")
v1 = tf.Variable(20.0, name="v1")
save = tf.train.Saver({"v0": v0, "v1": v1}, restore_sequentially=True)
tf.initialize_all_variables().run()
# Check that the parameter nodes have been initialized.
self.assertEqual(10.0, v0.eval())
self.assertEqual(20.0, v1.eval())
| tensorflow.Variable | 4,198 |
import tensorflow as tf
dtype=tf.float32,
initializer=tf.constant_initializer(
self.vocab.char_embeddings[2:],
dtype=tf.float32),
trainable=False)
self.char_pad_unk_mat = tf.get_variable("char_unk_pad",
[2, self.pretrained_char_mat.get_shape()[1]],
dtype=tf.float32,
initializer=tf.constant_initializer(
self.vocab.char_embeddings[:2],
dtype=tf.float32),
trainable=True)
self.char_mat = tf.concat([self.char_pad_unk_mat, self.pretrained_char_mat], axis=0)
else:
| tensorflow.constant_initializer | 4,199 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.