seed
stringlengths 25
2.89k
| seed_api
stringlengths 14
102
| index
int64 0
14.8k
|
---|---|---|
import tensorflow as tf
base: Base of the representation.
Returns:
Corresponding number expressed in base.
"""
x_l = tf.to_int32(tf.expand_dims(x_int, axis=-1))
x_labels = []
for i in range(num_bits):
x_labels.append(
tf.floormod(
tf.floordiv(tf.to_int32(x_l),
tf.to_int32(base)**i), tf.to_int32(base)))
res = tf.concat(x_labels, axis=-1)
return tf.to_float(res)
def embed(self, x):
"""Embedding function that takes discrete latent and returns embedding.
Args:
x: Input to the discretization bottleneck.
| tensorflow.to_int32 | 4,400 |
import tensorflow as tf
encoder_inputs_ = tf.reshape(flat_inputs,
tf.stack([batch_size, time_steps, flat_inputs.get_shape()[1].value]))
if pos_embeddings is not None:
pos_inputs_ = tf.range(time_steps, dtype=tf.int32)
pos_inputs_ = tf.nn.embedding_lookup(pos_embeddings, pos_inputs_)
pos_inputs_ = tf.tile(tf.expand_dims(pos_inputs_, axis=0), [batch_size, 1, 1])
encoder_inputs_ = tf.concat([encoder_inputs_, pos_inputs_], axis=2)
if other_inputs is not None:
encoder_inputs_ = tf.concat([encoder_inputs_, other_inputs], axis=2)
| tensorflow.expand_dims | 4,401 |
from tensorflow.python.framework import ops
(prev_count * batch_count / update_count))
update_comoment = state_ops.assign_add(comoment, delta_comoment)
covariance = _safe_div(comoment, count - 1, 'covariance')
with ops.control_dependencies([update_comoment]):
update_op = _safe_div(comoment, count - 1, 'update_op')
if metrics_collections:
| tensorflow.python.framework.ops.control_dependencies | 4,402 |
import tensorflow as tf
l1=tf.nn.relu(l1)
l2 = tf.matmul(l1, self.w2)+self.b2
l2=tf.nn.relu(l2)
l3=tf.matmul(l2, self.w3)+self.b3
l3=tf.nn.relu(l3)
out=tf.matmul(l3, self.w4)+self.b4
return out
def valid_inference(self,images):
images=tf.cast(images,tf.float32)/255.0
| tensorflow.matmul | 4,403 |
import tensorflow as tf
tf.logging.info("label: %s (id = %d)" % (example.label, label_id))
feature = InputFeatures(
input_ids=input_ids,
input_mask=input_mask,
segment_ids=segment_ids,
label_id=label_id)
return feature
def file_based_convert_examples_to_features(
examples, label_list, max_seq_length, tokenizer, output_file):
"""Convert a set of `InputExample`s to a TFRecord file."""
writer = tf.python_io.TFRecordWriter(output_file)
for (ex_index, example) in enumerate(examples):
if ex_index % 10000 == 0:
tf.logging.info("Writing example %d of %d" % (ex_index, len(examples)))
feature = convert_single_example(ex_index, example, label_list,
max_seq_length, tokenizer)
def create_int_feature(values):
f = tf.train.Feature(int64_list=tf.train.Int64List(value=list(values)))
return f
features = collections.OrderedDict()
| tensorflow.python_io.TFRecordWriter | 4,404 |
import tensorflow as tf
kernel_initializer=initializer)
start_logits = tf.transpose(tf.squeeze(start_logits, -1), [1, 0])
start_logits_masked = start_logits * (1 - p_mask) - 1e30 * p_mask
start_log_probs = tf.nn.log_softmax(start_logits_masked, -1)
# logit of the end position
with tf.variable_scope("end_logits"):
if is_training:
# during training, compute the end logits based on the
# ground truth of the start position
start_positions = tf.reshape(features["start_positions"], [-1])
start_index = tf.one_hot(start_positions, depth=seq_len, axis=-1,
dtype=tf.float32)
start_features = tf.einsum("lbh,bl->bh", output, start_index)
start_features = tf.tile(start_features[None], [seq_len, 1, 1])
end_logits = tf.layers.dense(
tf.concat([output, start_features], axis=-1), xlnet_config.d_model,
kernel_initializer=initializer, activation=tf.tanh, name="dense_0")
end_logits = tf.contrib.layers.layer_norm(
end_logits, begin_norm_axis=-1)
| tensorflow.reshape | 4,405 |
import tensorflow as tf
num_train_steps, num_warmup_steps, use_tpu,
use_one_hot_embeddings):
"""Returns `model_fn` closure for TPUEstimator."""
def model_fn(features, labels, mode, params): # pylint: disable=unused-argument
"""The `model_fn` for TPUEstimator."""
tf.logging.info("*** Features ***")
for name in sorted(features.keys()):
tf.logging.info(" name = %s, shape = %s" % (name, features[name].shape))
input_ids = features["input_ids"]
input_mask = features["input_mask"]
segment_ids = features["segment_ids"]
masked_lm_positions = features["masked_lm_positions"]
masked_lm_ids = features["masked_lm_ids"]
masked_lm_weights = features["masked_lm_weights"]
next_sentence_labels = features["next_sentence_labels"]
| tensorflow.logging.info | 4,406 |
import tensorflow as tf
# Layers with auxiliary heads
# Aux heads speed up training of good feature repsentations early in the network
# Add aux heads only if enabled and downsampling width can happen 3 times
aux_head_layers = []
if use_aux_head and w % (2 << 3) == 0:
aux_head_layers.append(reduction_layers[-1] + 1)
with tf.variable_scope('model', reuse=(not is_train)):
# "Stem" convolution layer (layer -1)
with tf.variable_scope('layer_stem'):
X = self._do_conv(X, w, h, in_ch, stem_ch, filter_size=3, no_relu=True, is_train=is_train) # 3x3 convolution
stem = (X, w, h, stem_ch)
# Core layers of cells
block_ch = initial_block_ch
aux_logits_list = [] # Stores list of logits from aux heads
layers = [stem, stem] # Stores previous layers. layers[i] = (<layer (i + 1)>, <width>, <height>, <channels>)
for l in range(L + 2):
utils.logger.log('Building layer {}...'.format(l))
| tensorflow.variable_scope | 4,407 |
import tensorflow as tf
A1 = euclidean_norm_squared(tf.subtract(tf.expand_dims(X, 0), tf.expand_dims(X, 1)), axis=2)
| tensorflow.expand_dims | 4,408 |
import tensorflow as tf
# Summarize losses
with tf.name_scope("losses"):
| tensorflow.name_scope | 4,409 |
import tensorflow as tf
kernel_initializer=modeling.create_initializer(
bert_config.initializer_range))
input_tensor = modeling.layer_norm(input_tensor)
# The output weights are the same as the input embeddings, but there is
# an output-only bias for each token.
output_bias = tf.get_variable(
"output_bias",
shape=[bert_config.vocab_size],
initializer=tf.zeros_initializer())
logits = tf.matmul(input_tensor, output_weights, transpose_b=True)
logits = tf.nn.bias_add(logits, output_bias)
log_probs = tf.nn.log_softmax(logits, axis=-1)
label_ids = tf.reshape(label_ids, [-1])
label_weights = tf.reshape(label_weights, [-1])
one_hot_labels = tf.one_hot(
label_ids, depth=bert_config.vocab_size, dtype=tf.float32)
# The `positions` tensor might be zero-padded (if the sequence is too
# short to have the maximum number of predictions). The `label_weights`
| tensorflow.nn.bias_add | 4,410 |
import tensorflow as tf
dec_inp_dict2["1"] = [
tf.constant(0, tf.int32, shape=[2]) for _ in range(4)]
| tensorflow.constant | 4,411 |
import tensorflow as tf
hidden2 = tf.nn.relu(tf.matmul(hidden1, weights) + biases)
# Linear
with tf.name_scope("softmax_linear"):
weights = tf.Variable(
tf.truncated_normal([32, 10],
stddev=1.0 / math.sqrt(float(32))),
name="weights")
biases = tf.Variable(tf.zeros([10]),
name="biases")
logits = tf.matmul(hidden2, weights) + biases
tf.add_to_collection("logits", logits)
# Runs to logit.
tf.initialize_all_variables().run()
| tensorflow.zeros | 4,412 |
import tensorflow as tf
Returns
-------
A tensor.
"""
if axis < 0:
dims = get_ndim(tensors[0])
if dims:
axis = axis % dims
else:
axis = 0
try:
return tf.concat_v2([x for x in tensors], axis)
except AttributeError:
return tf.concat(axis=axis, values=[x for x in tensors])
def _normalize_axis(axis, ndim):
if isinstance(axis, tuple):
axis = list(axis)
if isinstance(axis, list):
for i, a in enumerate(axis):
if a is not None and a < 0:
axis[i] = a % ndim
| tensorflow.concat_v2 | 4,413 |
import tensorflow as tf
padding="same"
)
shortcut = self.__batch_norm("bn{}".format(shortcut_name_post),
shortcut)
x = self.__conv2d(
name="{}2a".format(conv_name_base),
inputs=inputs, filter_depth=filter_depth1, kernel_size=1,
stride=stride, padding="same",
)
x = self.__batch_norm("{}2a".format(bn_name_base), x)
x = tf.nn.relu(x)
x = self.__conv2d(
name="{}2b".format(conv_name_base),
inputs=x, filter_depth=filter_depth2, kernel_size=kernel_size,
padding="same", stride=1
)
x = self.__batch_norm("{}2b".format(bn_name_base), x)
x = tf.nn.relu(x)
x = self.__conv2d(
name="{}2c".format(conv_name_base),
| tensorflow.nn.relu | 4,414 |
import tensorflow as tf
def file_based_input_fn_builder(input_file, seq_length, is_training,
drop_remainder):
"""Creates an `input_fn` closure to be passed to TPUEstimator."""
name_to_features = {
"input_ids": tf.FixedLenFeature([seq_length], tf.int64),
"input_mask": tf.FixedLenFeature([seq_length], tf.int64),
"segment_ids": tf.FixedLenFeature([seq_length], tf.int64),
"label_ids": tf.FixedLenFeature([], tf.int64),
"is_real_example": tf.FixedLenFeature([], tf.int64),
}
def _decode_record(record, name_to_features):
"""Decodes a record to a TensorFlow example."""
| tensorflow.FixedLenFeature | 4,415 |
import tensorflow.contrib.graph_editor as ge
fwd_ops = [op for op in fwd_ops if not '/Assign' in op.name]
fwd_ops = [op for op in fwd_ops if not '/read' in op.name]
ts_all = ge.filter_ts(fwd_ops, True) # get the tensors
ts_all = [t for t in ts_all if '/read' not in t.name]
| tensorflow.contrib.graph_editor.filter_ts | 4,416 |
import tensorflow as tf
self.synthetic_prob, self.synthetic_logit = self.discriminator(self.gen_out_rotated, reuse=True, scope=scope, **disc_kwargs)
# Compute WGAN losses
self.loss_d = tf.reduce_mean(self.synthetic_logit) - tf.reduce_mean(self.real_logit) # comparing rotated fake and real images
self.loss_g = -tf.reduce_mean(self.synthetic_logit)
| tensorflow.reduce_mean | 4,417 |
from tensorflow.python.framework import ops
self.event_ndims):
ndims = tensor_util.constant_value(ndims)
sample_ndims = (ndims - self._batch_ndims_static -
self._event_ndims_static)
if sample_ndims < 0:
raise ValueError(
"expected batch_ndims(%d) + event_ndims(%d) <= ndims(%d)" %
(self._batch_ndims_static, self._event_ndims_static, ndims))
return ops.convert_to_tensor(sample_ndims, name="sample_ndims")
else:
with ops.name_scope(name="sample_ndims"):
sample_ndims = ndims - self.batch_ndims - self.event_ndims
if self.validate_args:
sample_ndims = control_flow_ops.with_dependencies(
[check_ops.assert_non_negative(sample_ndims)], sample_ndims)
return sample_ndims
def get_dims(self, x, name="get_dims"):
"""Returns dimensions indexing `sample_shape`, `batch_shape`, `event_shape`.
| tensorflow.python.framework.ops.name_scope | 4,418 |
import tensorflow as tf
feed_dict={net.data: blobs['data'], net.im_info: blobs['im_info'], net.keep_prob: 1.0}
else:
feed_dict={net.data: blobs['data'], net.rois: blobs['rois'], net.keep_prob: 1.0}
run_options = None
run_metadata = None
if cfg.TEST.DEBUG_TIMELINE:
run_options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE)
run_metadata = tf.RunMetadata()
#theta_tensor = tf.get_default_graph().get_tensor_by_name('spt_trans_theta')
cls_score, cls_prob, bbox_pred, rois = sess.run([net.get_output('cls_score'),
net.get_output('cls_prob'), net.get_output('bbox_pred'), net.get_output('rois')],
feed_dict=feed_dict,
options=run_options,
run_metadata=run_metadata)
| tensorflow.RunMetadata | 4,419 |
import tensorflow as tf
click_feature[i] = tf.expand_dims(tf.ones_like(self.labels[i]) , -1)
# click_feature[list_size:]=[tf.expand_dims(tf.zeros_like(self.labels[i]) , -1) for _ in range(3*list_size)]
click_feature[list_size:list_size+i] =[tf.expand_dims(self.labels[k] , -1) for k in range(i-1,-1,-1)]
click_feature[2*list_size:2*list_size+i+1]=[tf.expand_dims(self.types[k] , -1) for k in range(i,-1,-1)]
click_feature[3*list_size:3*list_size+list_size-i-1]=[tf.expand_dims(self.types[k] , -1) for k in range(i+1,list_size)]
# Predict propensity with a simple network
output_propensity_list.append(propensity_network(tf.concat(click_feature, 1), i))
self.click_show=[click_feature[h][0] for h in range(4*list_size)]
return tf.concat(output_propensity_list,1)
def step(self, session, input_feed, forward_only):
"""Run a step of the model feeding the given inputs.
| tensorflow.concat | 4,420 |
import tensorflow as tf
with tf.variable_scope(scope, reuse=tf.AUTO_REUSE):
n_out = x.get_shape().as_list()[-1]
beta = tf.get_variable('beta', initializer=tf.constant(0.0, shape=[n_out]))
gamma = tf.get_variable('gamma', initializer=tf.constant(1.0, shape=[n_out]))
batch_mean, batch_var = tf.nn.moments(x, [0], name='moments')
ema = tf.train.ExponentialMovingAverage(decay=0.9)
def mean_var_with_update():
ema_apply_op = ema.apply([batch_mean, batch_var])
with tf.control_dependencies([ema_apply_op]):
return tf.identity(batch_mean), tf.identity(batch_var)
| tensorflow.train.ExponentialMovingAverage | 4,421 |
import tensorflow as tf
learning_rate = tf.train.cosine_decay(
params['initial_learning_rate'],
global_step, decay_steps=params['num_steps']
)
tf.summary.scalar('learning_rate', learning_rate)
update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
with tf.control_dependencies(update_ops), tf.variable_scope('optimizer'):
optimizer = tf.train.AdamOptimizer(learning_rate)
grads_and_vars = optimizer.compute_gradients(total_loss)
train_op = optimizer.apply_gradients(grads_and_vars, global_step)
for g, v in grads_and_vars:
tf.summary.histogram(v.name[:-2] + '_hist', v)
| tensorflow.control_dependencies | 4,422 |
import tensorflow as tf
tf.set_random_seed(93820985)
p = self._testParams()
p.train.lr_schedule = (
schedule.ContinuousLearningRateSchedule.Params().Set(
start_step=350000, half_life_steps=45000))
mdl = p.Instantiate()
mdl.FPropDefaultTheta()
mdl.BProp()
tf.global_variables_initializer().run()
test_utils.CompareToGoldenSingleFloat(self, 4.472597, mdl.loss.eval())
mdl.train_op.run()
def testAllLayerParams(self):
with self.session(use_gpu=False, graph=tf.Graph()):
p = self._testParams()
mdl = p.Instantiate()
| tensorflow.global_variables_initializer | 4,423 |
import tensorflow as tf
loss=total_loss,
eval_metrics=eval_metrics,
scaffold_fn=scaffold_fn)
else:
output_spec = tf.contrib.tpu.TPUEstimatorSpec(
mode=mode,
predictions={"probabilities": probabilities},
scaffold_fn=scaffold_fn)
| tensorflow.contrib.tpu.TPUEstimatorSpec | 4,424 |
from tensorflow.python.platform import tf_logging as logging
# The code should probably use the step from the checkpoint, because
# that's what is being evaluated.
if self._estimator is None:
raise ValueError("Missing call to set_estimator.")
# Check that we are not running evaluation on the same checkpoint.
latest_path = saver_lib.latest_checkpoint(self._estimator.model_dir)
if latest_path is None:
logging.debug("Skipping evaluation since model has not been saved yet "
"at step %d.", step)
return False
if latest_path is not None and latest_path == self._latest_path:
logging.debug("Skipping evaluation due to same checkpoint %s for step %d "
"as for step %d.", latest_path, step,
self._latest_path_step)
return False
self._latest_path = latest_path
self._latest_path_step = step
# Run evaluation and log it.
validation_outputs = self._estimator.evaluate(
x=self.x, y=self.y, input_fn=self.input_fn, batch_size=self.batch_size,
steps=self.eval_steps, metrics=self.metrics, name=self.name)
| tensorflow.python.platform.tf_logging.debug | 4,425 |
import tensorflow as tf
def body(batch, output, i):
self_attention_tmp = din_fcn_attention(batch[:, i, :], batch,
ATTENTION_SIZE, mask, softmax_stag=1, stag=stag,
mode='LIST')
self_attention_tmp = tf.reduce_sum(self_attention_tmp, 1)
output = output.write(i, self_attention_tmp)
return batch, output, i + 1
output_ta = tf.TensorArray(dtype=tf.float32,
size=0,
dynamic_size=True,
element_shape=(facts[:, 0, :].get_shape()))
_, output_op, _ = tf.while_loop(cond, body, [facts, output_ta, 0])
self_attention = output_op.stack()
self_attention = tf.transpose(self_attention, perm = [1, 0, 2])
return self_attention
def din_fcn_shine(query, facts, attention_size, mask, stag='null', mode='SUM', softmax_stag=1, time_major=False, return_alphas=False):
if isinstance(facts, tuple):
# In case of Bi-RNN, concatenate the forward and the backward RNN outputs.
facts = tf.concat(facts, 2)
if time_major:
# (T,B,D) => (B,T,D)
facts = tf.array_ops.transpose(facts, [1, 0, 2])
| tensorflow.while_loop | 4,426 |
import tensorflow as tf
mdl = p.Instantiate()
mdl.FPropDefaultTheta()
var_grads = py_utils.ComputeGradients(mdl.loss, mdl.vars)
summary_utils.CollectVarHistogram(var_grads)
def testGradientMult(self):
with self.session(use_gpu=False, graph=tf.Graph()):
p = self._testParams()
mdl = p.Instantiate()
mdl.FPropDefaultTheta()
var_grads = py_utils.ComputeGradients(mdl.loss, mdl.vars)
py_utils.ApplyGradMultiplier(var_grads, -1.1)
def testLRDecay(self):
with self.session(use_gpu=False, graph=tf.Graph()) as sess:
p = self._testParams()
tp = p.train
tp.lr_schedule.boundaries = [300000, 400000, 500000]
tp.lr_schedule.values = [1.0, 0.1, 0.01, 0.001]
lrs = tp.lr_schedule.Instantiate()
steps = [299999, 300001, 399999, 400001, 499999, 500001]
fetches = [lrs.Value(_) for _ in steps]
values = sess.run(fetches)
self.assertAllClose([1.0, 0.1, 0.1, 0.01, 0.01, 0.001], values)
def testBatchSplit(self):
def Run(num_splits):
| tensorflow.Graph | 4,427 |
import tensorflow as tf
output_stride=model_options.output_stride,
depth_multiplier=model_options.depth_multiplier,
divisible_by=model_options.divisible_by,
weight_decay=weight_decay,
reuse=reuse,
is_training=is_training,
preprocess_images=model_options.preprocess_images,
preprocessed_images_dtype=model_options.preprocessed_images_dtype,
fine_tune_batch_norm=fine_tune_batch_norm,
nas_architecture_options=model_options.nas_architecture_options,
nas_training_hyper_parameters=nas_training_hyper_parameters,
use_bounded_activation=model_options.use_bounded_activation)
if model_options.dense_prediction_cell_config is not None:
tf.logging.info('Using dense prediction cell config.')
dense_prediction_layer = dense_prediction_cell.DensePredictionCell(
config=model_options.dense_prediction_cell_config,
hparams={
'conv_rate_multiplier': 16 // model_options.output_stride,
})
concat_logits = dense_prediction_layer.build_cell(
features,
output_stride=model_options.output_stride,
crop_size=model_options.crop_size,
image_pooling_crop_size=model_options.image_pooling_crop_size,
weight_decay=weight_decay,
reuse=reuse,
is_training=is_training,
| tensorflow.logging.info | 4,428 |
import tensorflow as tf
self._lr_update = tf.assign(self._lr, self._new_lr)
self.saver = tf.train.Saver(tf.global_variables())
| tensorflow.global_variables | 4,429 |
import tensorflow as tf
A tensor with the kappa loss.
"""
with tf.name_scope(name):
labels = tf.to_float(labels)
| tensorflow.name_scope | 4,430 |
from tensorflow.contrib.layers.python.ops import sparse_feature_cross_op
hash_key=layers.SPARSE_FEATURE_CROSS_DEFAULT_HASH_KEY)
# Check actual hashed output to prevent unintentional hashing changes.
expected_out = self._sparse_tensor([[83]])
with self.test_session() as sess:
self._assert_sparse_tensor_equals(expected_out, sess.run(op))
def test_hashed_output_v1_has_collision(self):
"""Tests the old version of the fingerprint concatenation has collisions.
"""
# The last 10 bits of 359 and 1024+359 are identical.
# As a result, all the crosses collide.
t1 = constant_op.constant([[359], [359 + 1024]])
t2 = constant_op.constant([list(range(10)), list(range(10))])
cross = sparse_feature_cross_op.sparse_feature_cross(
[t2, t1], hashed_output=True, num_buckets=1024)
cross_dense = sparse_ops.sparse_tensor_to_dense(cross)
with session.Session():
values = cross_dense.eval()
self.assertTrue(numpy.equal(values[0], values[1]).all())
def test_hashed_output_v2_has_no_collision(self):
"""Tests the new version of the fingerprint concatenation has no collisions.
"""
# Although the last 10 bits of 359 and 1024+359 are identical.
# As a result, all the crosses shouldn't collide.
t1 = constant_op.constant([[359], [359 + 1024]])
| tensorflow.contrib.layers.python.ops.sparse_feature_cross_op.sparse_feature_cross | 4,431 |
import tensorflow as tf
t_params = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope=self.name + '/target_net')
e_params = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope=self.name + '/eval_net')
e_params += tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope=self.name + '/mixing_net' + '/eval_hyper')
t_params += tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope=self.name + '/mixing_net' + '/target_hyper')
with tf.variable_scope('soft_replacement'):
self.target_replace_op = [tf.assign(t, e) for t, e in zip(t_params, e_params)]
self.sess = tf.Session()
self.sess.run(tf.global_variables_initializer())
| tensorflow.variable_scope | 4,432 |
import tensorflow as tf
self.compute_shape(x_shape[2], self.ff_pool_strides[0][1]),
self.compute_shape(x_shape[3], self.ff_pool_strides[0][2]),
final_dim]
l3_shape = [
x_shape[0],
self.compute_shape(l2_shape[1], self.ff_pool_strides[1][0]),
self.compute_shape(l2_shape[2], self.ff_pool_strides[1][1]),
self.compute_shape(l2_shape[3], self.ff_pool_strides[1][2]),
final_dim]
else:
l2_shape = tf.identity(x_shape)
# Initialize hidden layer activities
if self.hidden_init == 'identity':
l1_h2 = tf.identity(x)
l2_h2 = tf.zeros(l2_shape, dtype=self.dtype)
l3_h2 = tf.zeros(l3_shape, dtype=self.dtype)
elif self.hidden_init == 'random':
l1_h2 = tf.random_normal(x_shape, dtype=self.dtype)
l2_h2 = tf.random_normal(l2_shape, dtype=self.dtype)
l3_h2 = tf.random_normal(l3_shape, dtype=self.dtype)
elif self.hidden_init == 'zeros':
l1_h2 = tf.zeros(x_shape, dtype=self.dtype)
l2_h2 = tf.zeros(l2_shape, dtype=self.dtype)
l3_h2 = tf.zeros(l3_shape, dtype=self.dtype)
else:
raise RuntimeError
| tensorflow.identity | 4,433 |
from tensorflow.keras.layers import Dense, Conv2D, MaxPool2D, Flatten
'''
w_init = tf.contrib.layers.variance_scaling_initializer()
# glimpse1 = tf.image.extract_glimpse(inputs, [glimpse_size1,glimpse_size1], self.prev_loc, centered=True, normalized=True)
# glimpse2 = tf.image.extract_glimpse(inputs, [glimpse_size2,glimpse_size2], self.prev_loc, centered=True, normalized=True)
# glimpse2 = tf.image.resize(glimpse2, [glimpse_size1,glimpse_size1])
# glimpse3 = tf.image.extract_glimpse(inputs, [glimpse_size3,glimpse_size3], self.prev_loc, centered=True, normalized=True)
# glimpse3 = tf.image.resize(glimpse3, [glimpse_size1,glimpse_size1])
# self.glimpses = tf.concat([glimpse1,glimpse2,glimpse3],axis=-1)
# Block 1
conv1a = Conv2D(padding="same", filters=RNN_SIZE//8, kernel_size=[8, 8], strides=4, data_format='channels_last', kernel_initializer=w_init,activation=tf.nn.relu)(self.inputs)
conv1b = Conv2D(padding="same", filters=RNN_SIZE//8, kernel_size=[3, 3], strides=1, data_format='channels_last', kernel_initializer=w_init,activation=tf.nn.relu)(conv1a)
conv1c = Conv2D(padding="same", filters=RNN_SIZE//8, kernel_size=[3, 3], strides=1, data_format='channels_last', kernel_initializer=w_init,activation=tf.nn.relu)(conv1b)
pool1 = MaxPool2D(pool_size=[2,2])(conv1c)
# Block 2
conv2a = Conv2D(padding="same", filters=RNN_SIZE//4, kernel_size=[3, 3], strides=1, data_format='channels_last', kernel_initializer=w_init,activation=tf.nn.relu)(pool1)
conv2b = Conv2D(padding="same", filters=RNN_SIZE//4, kernel_size=[3, 3], strides=1, data_format='channels_last', kernel_initializer=w_init,activation=tf.nn.relu)(conv2a)
conv2c = Conv2D(padding="same", filters=RNN_SIZE//4, kernel_size=[3, 3], strides=1, data_format='channels_last', kernel_initializer=w_init,activation=tf.nn.relu)(conv2b)
pool2 = MaxPool2D(pool_size=[2,2])(conv2c)
# Block 3
conv3a = Conv2D(padding="same", filters=RNN_SIZE//2, kernel_size=[3, 3], strides=1, data_format='channels_last', kernel_initializer=w_init,activation=tf.nn.relu)(pool2)
conv3b = Conv2D(padding="same", filters=RNN_SIZE//2, kernel_size=[3, 3], strides=1, data_format='channels_last', kernel_initializer=w_init,activation=tf.nn.relu)(conv3a)
| tensorflow.keras.layers.Conv2D | 4,434 |
import tensorflow as tf
print("------------------list-------------------")
print(outputs)
# Get last time step's output feature for a "many to one" style classifier,
# as in the image describing RNNs at the top of this page
lstm_last_output = outputs[-1] # Get the last element of the array: [?, 32]
print("------------------last outputs-------------------")
print (lstm_last_output)
# Linear activation
return tf.matmul(lstm_last_output, config.W['output']) + config.biases['output']
pred_Y = LSTM_Network(X, config) # shape[?,6]
print("------------------pred_Y-------------------")
print(pred_Y)
# Loss,train_step,evaluation
l2 = config.lambda_loss_amount * \
sum(tf.nn.l2_loss(tf_var) for tf_var in tf.trainable_variables())
# Softmax loss and L2
cost = tf.reduce_mean(
| tensorflow.matmul | 4,435 |
import tensorflow as tf
| tensorflow.concat | 4,436 |
import tensorflow as tf
encoder_outputs.append(encoder_outputs_)
encoder_states.append(encoder_state_)
new_encoder_input_length.append(encoder_input_length_)
encoder_state = tf.concat(encoder_states, 1)
return encoder_outputs, encoder_state, new_encoder_input_length
def compute_energy(hidden, state, encoder, time=None, input_length=None, prev_weights=None, **kwargs):
batch_size = tf.shape(hidden)[0]
time_steps = tf.shape(hidden)[1]
if encoder.attn_keep_prob is not None:
state_noise_shape = [1, tf.shape(state)[1]] if encoder.pervasive_dropout else None
state = tf.nn.dropout(state, keep_prob=encoder.attn_keep_prob, noise_shape=state_noise_shape)
hidden_noise_shape = [1, 1, tf.shape(hidden)[2]] if encoder.pervasive_dropout else None
hidden = tf.nn.dropout(hidden, keep_prob=encoder.attn_keep_prob, noise_shape=hidden_noise_shape)
if encoder.mult_attn:
state = dense(state, encoder.attn_size, use_bias=False, name='state')
hidden = dense(hidden, encoder.attn_size, use_bias=False, name='hidden')
return tf.einsum('ijk,ik->ij', hidden, state)
y = dense(state, encoder.attn_size, use_bias=not encoder.layer_norm, name='W_a')
y = tf.expand_dims(y, axis=1)
if encoder.layer_norm:
y = tf.contrib.layers.layer_norm(y, scope='layer_norm_state')
hidden = tf.contrib.layers.layer_norm(hidden, center=False, scope='layer_norm_hidden')
| tensorflow.nn.dropout | 4,437 |
import tensorflow as tf
if encoder.final_state == 'concat_last': # concats last states of all backward layers (full LSTM states)
encoder_state_ = tf.concat(encoder_states_, axis=1)
elif encoder.final_state == 'average':
| tensorflow.concat | 4,438 |
import tensorflow as tf
def build_anet(self, state_in, name, reuse=False):
reg = tf.contrib.layers.l2_regularizer(1e-3)
with tf.variable_scope(name, reuse=reuse):
layer_a1 = tf.layers.dense(state_in, 512, tf.nn.relu, kernel_regularizer=reg)
layer_a2 = tf.layers.dense(layer_a1, 256, tf.nn.relu, kernel_regularizer=reg)
mu = tf.layers.dense(layer_a2, self.a_dim, tf.nn.tanh, kernel_regularizer=reg)
sigma = tf.layers.dense(layer_a2, self.a_dim, tf.nn.softplus, kernel_regularizer=reg)
# sigma = tf.get_variable(name='pi_sigma', shape=self.a_dim, initializer=tf.constant_initializer(0.5))
sigma = tf.clip_by_value(sigma, 0.0, 1.0)
norm_dist = tf.distributions.Normal(loc=mu * self.a_bound, scale=sigma)
params = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope=name)
return norm_dist, params
class PPO_LSTM(Base):
def __init__(self, env, summary_dir='./', gpu=False):
self.LR = 1e-4
self.MINIBATCH = 64
self.EPOCHS = 8
| tensorflow.get_collection | 4,439 |
import tensorflow as tf
def testAddCollectionDef(self):
test_dir = self._TestDir("good_collection")
filename = os.path.join(test_dir, "metafile")
with self.test_session():
# Creates a graph.
v0 = tf.Variable(10.0, name="v0")
var = tf.Variable(tf.constant(0, dtype=tf.int64))
count_up_to = var.count_up_to(3)
input_queue = tf.FIFOQueue(30, tf.float32, shared_name="collection_queue")
qr = tf.train.QueueRunner(input_queue, [count_up_to])
tf.initialize_all_variables()
# Creates a saver.
save = tf.train.Saver({"v0": v0})
# Adds a set of collections.
tf.add_to_collection("int_collection", 3)
tf.add_to_collection("float_collection", 3.5)
tf.add_to_collection("string_collection", "hello")
tf.add_to_collection("variable_collection", v0)
| tensorflow.train.QueueRunner | 4,440 |
import tensorflow as tf
matrices: A list of Tensors with shape [..., N_i, M_i] (i.e. a list of
matrices with the same batch dimension).
dtype: Data type to use. The Tensors in `matrices` must match this dtype.
Returns:
A matrix with the input matrices stacked along its main diagonal, having
shape [..., \sum_i N_i, \sum_i M_i].
"""
matrices = [tf.convert_to_tensor(matrix, dtype=dtype) for matrix in matrices]
blocked_rows = tf.Dimension(0)
blocked_cols = tf.Dimension(0)
batch_shape = tf.TensorShape(None)
for matrix in matrices:
full_matrix_shape = matrix.get_shape().with_rank_at_least(2)
batch_shape = batch_shape.merge_with(full_matrix_shape[:-2])
blocked_rows += full_matrix_shape[-2]
| tensorflow.convert_to_tensor | 4,441 |
import tensorflow as tf
step = tf.to_float(global_step)
warmup_steps = tf.to_float(params.warmup_steps)
multiplier = params.hidden_size ** -0.5
decay = multiplier * tf.minimum((step + 1) * (warmup_steps ** -1.5),
(step + 1) ** -0.5)
return learning_rate * decay
elif params.learning_rate_decay == "new_warmup_rsqrt_decay":
step = tf.to_float(global_step)
warmup_steps = tf.to_float(params.warmup_steps)
multiplier = params.hidden_size ** -0.5
decay = params.r0 * multiplier * tf.minimum((step + 1) * (warmup_steps ** -1.0) * (warmup_steps ** -0.5),
(step + 1) ** -0.5)
return learning_rate * decay
elif params.learning_rate_decay == "rnnplus_warmup_decay":
step = tf.to_float(global_step)
n = float(len(params.device_list))
warmup_steps = tf.to_float(params.warmup_steps)
decay = tf.minimum(1 + step * (n - 1) / (n * warmup_steps), tf.minimum(n, n * ((2*n) ** ((params.s - n * step) / (params.e - params.s)))))
return tf.maximum(learning_rate * decay, 5e-6)
| tensorflow.minimum | 4,442 |
import tensorflow as tf
print(pred_Y)
# Loss,train_step,evaluation
l2 = config.lambda_loss_amount * \
sum(tf.nn.l2_loss(tf_var) for tf_var in tf.trainable_variables())
# Softmax loss and L2
cost = tf.reduce_mean(
tf.nn.softmax_cross_entropy_with_logits(pred_Y, Y)) + l2
train_step = tf.train.AdamOptimizer(
learning_rate=config.learning_rate).minimize(cost)
correct_prediction = tf.equal(tf.argmax(pred_Y, 1), tf.argmax(Y, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, dtype=tf.float32))
| tensorflow.nn.softmax_cross_entropy_with_logits | 4,443 |
from tensorflow.python.framework import ops
ops.RegisterShape("Sin")(common_shapes.unchanged_shape)
ops.RegisterShape("Sqrt")(common_shapes.unchanged_shape)
| tensorflow.python.framework.ops.RegisterShape | 4,444 |
import tensorflow as tf
cifar10.LEARNING_RATE_DECAY_FACTOR,
staircase=True)
# Create an optimizer that performs gradient descent.
opt = tf.train.GradientDescentOptimizer(lr)
# Calculate the gradients for each model tower.
tower_grads = []
with tf.variable_scope(tf.get_variable_scope()):
for i in xrange(FLAGS.num_gpus):
with tf.device('/gpu:%d' % i):
with tf.name_scope('%s_%d' % (cifar10.TOWER_NAME, i)) as scope:
# Calculate the loss for one tower of the CIFAR model. This function
# constructs the entire CIFAR model but shares the variables across
# all towers.
loss = tower_loss(scope)
# Reuse variables for the next tower.
tf.get_variable_scope().reuse_variables()
| tensorflow.device | 4,445 |
import tensorflow as tf
trainable=False)
batch_action_arguments = tf.Variable(data.batch_actions_arguments, name='actions_arguments',
trainable=False)
histories = tf.gather(batch_histories, self.batch_idx)
actions_template = tf.gather(batch_actions_template, self.batch_idx)
actions_arguments = tf.gather(batch_action_arguments, self.batch_idx)
with tf.name_scope('model'):
encoder_embedding = embedding(
input=histories,
length=histories_vocabulary_length,
| tensorflow.gather | 4,446 |
import tensorflow as tf
y_permute_dim = [y_permute_dim.pop(-2)] + y_permute_dim
xt = tf.reshape(x, [-1, x_shape[-1]])
yt = tf.reshape(tf.transpose(y, perm=y_permute_dim), [y_shape[-2], -1])
return tf.reshape(
tf.matmul(xt, yt), x_shape[:-1] + y_shape[:-2] + y_shape[-1:])
out = tf.matmul(x, y)
return out
def get_ndim(x):
| tensorflow.matmul | 4,447 |
import tensorflow as tf
# values: [batch_size, step_size, vocab_size]
# answers: [batch_size, step_size]
def _mask_and_accuracy(values, answers, loss_weights):
values = tf.argmax(values,axis=2)
x = tf.cast(values, dtype=tf.int32)
y = tf.cast(answers, dtype=tf.int32)
res = tf.equal(x, y)
res = tf.cast(res, dtype=tf.float32)
res = tf.multiply(res, loss_weights)
| tensorflow.cast | 4,448 |
import tensorflow as tf
v_diff = state_ops.assign(vstar, mu_t * (var - vstar), use_locking=self._use_locking)
with ops.control_dependencies([v_diff]): # run v_diff operation before scatter_add
scaled_grad = scatter_add(vstar, indices, grad)
var_update = state_ops.assign_sub(var, lr_t * (scaled_grad + gold))
return control_flow_ops.group(*[var_update, ])
def _apply_sparse(self, grad, var): # sparse grad (only for the shakespeare model)
return self._apply_sparse_shared(
grad.values, var, grad.indices, lambda x, i, v: state_ops.scatter_add(x, i, v))
def set_params(self, cog, avg_gradient, client):
with client.model.graph.as_default():
all_vars = tf.trainable_variables()
for variable, value in zip(all_vars, cog):
vstar = self.get_slot(variable, "vstar")
vstar.load(value, client.model.sess)
# get old gradient
_, gprev = client.get_grads()
# Find g_t - F'(old)
gdiff = [g1 - g2 for g1, g2 in zip(avg_gradient, gprev)]
with client.model.graph.as_default():
all_vars = tf.trainable_variables()
for variable, grad in zip(all_vars, gdiff):
| tensorflow.trainable_variables | 4,449 |
import tensorflow as tf
def get_initial_state(name='initial_state'):
if encoder.train_initial_states:
initial_state = get_variable(name, initializer=tf.zeros(cell_state_size))
return tf.tile(tf.expand_dims(initial_state, axis=0), [batch_size, 1])
| tensorflow.zeros | 4,450 |
import tensorflow as tf
segment_ids = features["segment_ids"]
label_ids = features["label_ids"]
is_real_example = None
if "is_real_example" in features:
is_real_example = tf.cast(features["is_real_example"], dtype=tf.float32)
else:
is_real_example = tf.ones(tf.shape(label_ids), dtype=tf.float32)
| tensorflow.cast | 4,451 |
import tensorflow as tf
predict_input_fn = input_fn_builder(
features=features,
seq_length=FLAGS.max_seq_length,
max_predictions_per_seq=FLAGS.max_predictions_per_seq)
result = estimator.predict(input_fn=predict_input_fn)
output_predict_file = os.path.join(FLAGS.output_dir, FLAGS.input_file.split('.')[0] + ".json")
parse_result(result, all_tokens, output_predict_file)
if __name__ == "__main__":
tf.app.run()
| tensorflow.app.run | 4,452 |
import tensorflow as tf
"""Build the inference graph using canonical LSTM cells."""
# Slightly better results can be obtained with forget gate biases
# initialized to 1 but the hyperparameters of the model would need to be
# different than reported in the paper.
cell = self._get_lstm_cell(config, is_training)
if is_training and config.keep_prob < 1:
cell = tf.contrib.rnn.DropoutWrapper(
cell, output_keep_prob=config.keep_prob)
cell = tf.contrib.rnn.MultiRNNCell(
[cell for _ in range(config.num_layers)], state_is_tuple=True)
| tensorflow.contrib.rnn.DropoutWrapper | 4,453 |
import tensorflow as tf
# (T,B,D) => (B,T,D)
facts = tf.array_ops.transpose(facts, [1, 0, 2])
# Trainable parameters
mask = tf.equal(mask, tf.ones_like(mask))
facts_size = facts.get_shape().as_list()[-1] # D value - hidden size of the RNN layer
querry_size = query.get_shape().as_list()[-1]
query = tf.layers.dense(query, facts_size, activation=None, name='f1_trans_shine' + stag)
query = prelu(query)
queries = tf.tile(query, [1, tf.shape(facts)[1]])
queries = tf.reshape(queries, tf.shape(facts))
din_all = tf.concat([queries, facts, queries-facts, queries*facts], axis=-1)
d_layer_1_all = tf.layers.dense(din_all, facts_size, activation=tf.nn.sigmoid, name='f1_shine_att' + stag)
d_layer_2_all = tf.layers.dense(d_layer_1_all, facts_size, activation=tf.nn.sigmoid, name='f2_shine_att' + stag)
d_layer_2_all = tf.reshape(d_layer_2_all, tf.shape(facts))
output = d_layer_2_all
return output
| tensorflow.layers.dense | 4,454 |
import tensorflow as tf
os.makedirs(model_version_dir)
except OSError as ex:
pass # ignore existing dir
with tf.Session() as sess:
input0_tensor = tf.get_default_graph().get_tensor_by_name(
"TENSOR_INPUT0:0")
input1_tensor = tf.get_default_graph().get_tensor_by_name(
"TENSOR_INPUT1:0")
output0_tensor = tf.get_default_graph().get_tensor_by_name(
"TENSOR_OUTPUT0:0")
output1_tensor = tf.get_default_graph().get_tensor_by_name(
"TENSOR_OUTPUT1:0")
tf.saved_model.simple_save(sess,
model_version_dir + "/model.savedmodel",
inputs={
"INPUT0": input0_tensor,
"INPUT1": input1_tensor
},
outputs={
"OUTPUT0": output0_tensor,
"OUTPUT1": output1_tensor
})
def create_savedmodel_modelconfig(models_dir, max_batch, model_version,
| tensorflow.saved_model.simple_save | 4,455 |
import tensorflow as tf
optimizer,
n_iters=hparams.n_warmup_iters,
n_samples=hparams.n_samples,
step_fn=step_fn)
# Training
samples = tf.random_normal(
shape=[hparams.n_samples, hparams.x_dim], dtype=tf.float32)
start_time = time.time()
fit(dynamics,
samples,
optimizer,
| tensorflow.random_normal | 4,456 |
import tensorflow as tf
log("Checkpoint path: {}".format(checkpoint_fpath))
log("Loading training data from: {}".format(metadat_fpath))
log("Using model: Tacotron")
log(hparams_debug_string())
# Start by setting a seed for repeatability
tf.set_random_seed(hparams.tacotron_random_seed)
# Set up data feeder
coord = tf.train.Coordinator()
with tf.variable_scope("datafeeder") as scope:
feeder = Feeder(coord, metadat_fpath, hparams)
# Set up model:
global_step = tf.Variable(0, name="global_step", trainable=False)
model, stats = model_train_mode(args, feeder, hparams, global_step)
eval_model = model_test_mode(args, feeder, hparams, global_step)
# Embeddings metadata
char_embedding_meta = os.path.join(meta_folder, "CharacterEmbeddings.tsv")
if not os.path.isfile(char_embedding_meta):
with open(char_embedding_meta, "w", encoding="utf-8") as f:
for symbol in symbols:
if symbol == " ":
symbol = "\\s" # For visual purposes, swap space with \s
f.write("{}\n".format(symbol))
| tensorflow.Variable | 4,457 |
from tensorflow.python.framework import ops
self._saved_model_loader_value = None
self._loaded_saved_model_graph = None
# TODO(b/160294509): Use tf.compat.v1 when we stop supporting TF 1.15.
if ops.executing_eagerly_outside_functions():
_check_tensorflow_version()
# The model must be tracked by assigning to an attribute of the Keras
| tensorflow.python.framework.ops.executing_eagerly_outside_functions | 4,458 |
import tensorflow as tf
if input_type == InputType.TENSOR:
self.input = tf.placeholder(tf.float32,
shape=[None, 224, 224, 3],
name="input")
self.input_tensor = self.input
elif input_type == InputType.BASE64_JPEG:
from image_utils import load_base64_tensor
self.input = tf.placeholder(tf.string, shape=(None,), name="input")
self.input_tensor = load_base64_tensor(self.input)
else:
raise ValueError("invalid input type '{}'".format(input_type))
x = self.input_tensor
x = tf.pad(x, [[0, 0], [3, 3], [3, 3], [0, 0]], 'CONSTANT')
| tensorflow.placeholder | 4,459 |
import tensorflow as tf
vf_old, vf_old_params = self.build_cnet(batch['state'], 'oldvf')
self.vf, vf_params = self.build_cnet(batch['state'], 'vf')
self.vf_eval, _ = self.build_cnet(self.state, 'vf', reuse=True)
self.sample_action = tf.squeeze(pi_eval.sample(1), axis=0)
self.eval_action = pi_eval.mode()
self.global_step = tf.train.get_or_create_global_step()
self.saver = tf.train.Saver()
# Loss functions and training
epsilon_decay = tf.train.polynomial_decay(self.EPSILON, self.global_step, self.EPS_LEN, 0.1, power=0)
ratio = tf.maximum(pi.prob(batch['actions']), 1e-6) / tf.maximum(pi_old.prob(batch['actions']), 1e-6)
ratio = tf.clip_by_value(ratio, 0, 10)
surr1 = batch['advantage'] * ratio
surr2 = batch['advantage'] * tf.clip_by_value(ratio, 1 - epsilon_decay, 1 + epsilon_decay)
loss_pg = - 2.0 * tf.reduce_mean(tf.minimum(surr1, surr2))
loss_vf = 0.5 * tf.reduce_mean(tf.square(batch['rewards'] - self.vf))
loss_entropy = - 0.01 * tf.reduce_mean(pi.entropy())
loss = loss_pg + loss_vf + loss_entropy
opt = tf.train.AdamOptimizer(self.LR)
| tensorflow.train.polynomial_decay | 4,460 |
import tensorflow as tf
ValueError: If scale is negative or if scale is not a float.
"""
if isinstance(scale, numbers.Integral):
raise ValueError('scale cannot be an integer: %s' % (scale,))
if isinstance(scale, numbers.Real):
if scale < 0.:
raise ValueError('Setting a scale less than 0 on a regularizer: %g.' % scale)
if scale == 0.:
return lambda _: None
def l2(weights, name='l2_regularizer'):
"""Applies l2 regularization to weights."""
with tf.name_scope(name):
my_scale = tf.convert_to_tensor(scale, dtype=weights.dtype.base_dtype, name='scale')
return tf.multiply(my_scale, nn.l2_loss(weights), name=name)
return l2
def discretized_mix_logistic_loss(inputs,
predictions,
sum_all=True,
name='disretized_mix_logistic_loss'):
"""log-likelihood for mixture of discretized logistics, assumes the data has
been rescaled to.
| tensorflow.convert_to_tensor | 4,461 |
import tensorflow as tf
layer_c2 = tf.layers.dense(layer_c1, 256, tf.nn.relu, kernel_regularizer=reg)
vf = tf.layers.dense(layer_c2, 1, kernel_regularizer=reg)
params = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope=name)
return vf, params
| tensorflow.get_collection | 4,462 |
import tensorflow as tf
axis = _normalize_axis(axis, get_ndim(x))
if x.dtype.base_dtype == tf.bool:
x = tf.cast(x, tf.float32)
m = tf.reduce_mean(x, axis=axis, keep_dims=True)
devs_squared = tf.square(x - m)
return tf.reduce_mean(devs_squared, axis=axis, keep_dims=keepdims)
| tensorflow.reduce_mean | 4,463 |
import tensorflow as tf
attention_states[0] += attns
elif chaining_strategy in ('map_attns', 'map_states', 'map_outputs'):
if chaining_strategy == 'map_attns':
x = attns
elif chaining_strategy == 'map_outputs':
x = decoder_outputs
else:
x = states
shape = [x.get_shape()[-1], attention_states[0].get_shape()[-1]]
w = tf.get_variable("map_attns/matrix", shape=shape)
b = tf.get_variable("map_attns/bias", shape=shape[-1:])
x = tf.einsum('ijk,kl->ijl', x, w) + b
if chaining_non_linearity:
x = tf.nn.tanh(x)
attention_states[0] += x
outputs, attention_weights, _, _, samples, beam_fun, initial_data = attention_decoder(
attention_states=attention_states, initial_state=encoder_state,
| tensorflow.get_variable | 4,464 |
import tensorflow as tf
conv6 = utils.conv2d_basic(pool5, W6, b6)
relu6 = tf.nn.relu(conv6, name="relu6")
| tensorflow.nn.relu | 4,465 |
import tensorflow as tf
q_tp1_best_masked = (1.0 - done_mask_ph) * q_tp1_best
# compute RHS of bellman equation
q_t_selected_target = rew_t_ph + gamma * q_tp1_best_masked
# compute the error (potentially clipped)
td_error = q_t_selected - tf.stop_gradient(q_t_selected_target)
errors = U.huber_loss(td_error)
weighted_error = tf.reduce_mean(importance_weights_ph * errors)
# compute optimization op (potentially with gradient clipping)
if grad_norm_clipping is not None:
| tensorflow.stop_gradient | 4,466 |
import tensorflow as tf
concat = tf.concat([flat1b, loc_layer2],1) # goal_layer2
h1 = Dense(units=RNN_SIZE)(concat)
h2 = Dense(units=RNN_SIZE)(h1)
self.h3 = tf.nn.relu(h2+concat)
#Recurrent network for temporal dependencies
lstm_cell = tf.nn.rnn_cell.BasicLSTMCell(RNN_SIZE,state_is_tuple=True)
c_init = np.zeros((1, lstm_cell.state_size.c), np.float32)
h_init = np.zeros((1, lstm_cell.state_size.h), np.float32)
state_init = [c_init, h_init]
c_in = tf.placeholder(tf.float32, [1, lstm_cell.state_size.c])
h_in = tf.placeholder(tf.float32, [1, lstm_cell.state_size.h])
state_in = (c_in, h_in)
rnn_in = tf.expand_dims(self.h3, [0])
step_size = tf.shape(inputs)[:1]
state_in = tf.nn.rnn_cell.LSTMStateTuple(c_in, h_in)
lstm_outputs, lstm_state = tf.nn.dynamic_rnn(
lstm_cell, rnn_in, initial_state=state_in, sequence_length=step_size,
time_major=False)
lstm_c, lstm_h = lstm_state
state_out = (lstm_c[:1, :], lstm_h[:1, :])
self.rnn_out = tf.reshape(lstm_outputs, [-1, RNN_SIZE])
| tensorflow.placeholder | 4,467 |
import tensorflow as tf
# pylint: disable=no-value-for-parameter,unexpected-keyword-arg
"""LSTM layers."""
import tensorflow as tf
from deepr.layers import base
@base.layer(n_in=2, n_out=3)
def LSTM(tensors, num_units: int, bidirectional: bool = False, **kwargs):
"""LSTM layer."""
words, nwords = tensors
t = tf.transpose(words, perm=[1, 0, 2])
lstm_cell_fw = tf.contrib.rnn.LSTMBlockFusedCell(num_units=num_units, **kwargs)
outputs_fw, (hidden_fw, output_fw) = lstm_cell_fw(t, dtype=tf.float32, sequence_length=nwords)
if bidirectional:
lstm_cell_bw = tf.contrib.rnn.LSTMBlockFusedCell(num_units=num_units, **kwargs)
lstm_cell_bw = tf.contrib.rnn.TimeReversedFusedRNN(lstm_cell_bw)
outputs_bw, (hidden_bw, output_bw) = lstm_cell_bw(t, dtype=tf.float32, sequence_length=nwords)
outputs = tf.concat([outputs_fw, outputs_bw], axis=-1)
hidden = tf.concat([hidden_fw, hidden_bw], axis=-1)
output = tf.concat([output_fw, output_bw], axis=-1)
else:
outputs = outputs_fw
hidden = hidden_fw
| tensorflow.contrib.rnn.LSTMBlockFusedCell | 4,468 |
import tensorflow as tf
return lambda z: tf.maximum(tf.minimum(z, 1), 0)
else:
raise NotImplementedError(nl_type)
def update_params(self, kwargs):
"""Update the class attributes with kwargs."""
if kwargs is not None:
for k, v in kwargs.iteritems():
setattr(self, k, v)
def symmetric_weights(self, w, name):
"""Apply symmetric weight sharing."""
conv_w_t = tf.transpose(w, (2, 3, 0, 1))
conv_w_symm = 0.5 * (conv_w_t + tf.transpose(conv_w_t, (1, 0, 2, 3)))
conv_w = tf.transpose(conv_w_symm, (2, 3, 0, 1), name=name)
return conv_w
def prepare_tensors(self):
""" Prepare recurrent/forward weight matrices.
(np.prod([h, w, k]) / 2) - k params in the surround filter
"""
# FEEDFORWARD AND FEEDBACK KERNELS
lower_feats = self.in_k
for idx, (higher_feats, ff_dhw, fb_dhw) in enumerate(
| tensorflow.transpose | 4,469 |
import tensorflow as tf
inputs = tf.TensorArray(dtype=tf.int64, size=time_steps).unstack(tf.to_int64(tf.transpose(decoder_inputs)))
states = tf.TensorArray(dtype=tf.float32, size=time_steps)
weights = tf.TensorArray(dtype=tf.float32, size=time_steps)
attns = tf.TensorArray(dtype=tf.float32, size=time_steps)
initial_symbol = inputs.read(0) # first symbol is BOS
initial_input = embed(initial_symbol)
initial_pos = tf.zeros([batch_size], tf.float32)
initial_weights = tf.zeros(tf.shape(attention_states[align_encoder_id])[:2])
zero_context = tf.zeros(shape=tf.shape(attention_states[align_encoder_id][:,0])) # FIXME
with tf.variable_scope('decoder_{}'.format(decoder.name)):
initial_context, _ = look(0, initial_output, initial_input, pos=initial_pos, prev_weights=initial_weights,
context=zero_context)
initial_data = tf.concat([initial_state, initial_context, tf.expand_dims(initial_pos, axis=1), initial_weights],
axis=1)
context_size = initial_context.shape[1].value
def get_logits(state, ids, time): # for beam-search decoding
| tensorflow.shape | 4,470 |
from tensorflow.contrib.layers.python.layers import feature_column
for k, v in metrics.items() if k in _METRIC_KEYS})
def benchmarkMatrixData(self):
iris = test_data.prepare_iris_data_for_logistic_regression()
cont_feature = feature_column.real_valued_column('feature', dimension=4)
bucketized_feature = feature_column.bucketized_column(
cont_feature, test_data.get_quantile_based_buckets(iris.data, 10))
| tensorflow.contrib.layers.python.layers.feature_column.real_valued_column | 4,471 |
import tensorflow as tf
with tf.variable_scope(scope):
| tensorflow.variable_scope | 4,472 |
import tensorflow as tf
self.rnn_nunroll = rnn_nunroll
self.do_rnn = do_rnn
self.target_weight_strategy = target_weight_strategy
def assign_lr(self, sess, lr_new):
assert self.mode == 'train'
sess.run(tf.assign(self._lr, lr_new))
return sess.run(self._lr_summary)
def prepare_train_batch(self, charts, randomize_charts=False, **kwargs):
# process kwargs
exclude_kwarg_names = ['exclude_onset_neighbors', 'exclude_pre_onsets', 'exclude_post_onsets', 'include_onsets']
| tensorflow.assign | 4,473 |
from tensorflow.python.ops import math_ops
class_id)
fn = set_ops.set_size(set_ops.set_difference(predictions_idx,
labels,
aminusb=False))
fn = math_ops.to_double(fn)
if weights is not None:
weights = math_ops.to_double(weights)
fn = math_ops.mul(fn, weights)
| tensorflow.python.ops.math_ops.to_double | 4,474 |
import tensorflow as tf
'zero_debias_moving_mean': True,
'fused': fused_batch_norm,
}
inputs.get_shape().assert_has_rank(2)
if log(final_size, 2) != int(log(final_size, 2)):
raise ValueError('`final_size` (%i) must be a power of 2.' % final_size)
if final_size < 8:
raise ValueError('`final_size` (%i) must be greater than 8.' % final_size)
end_points = {}
num_layers = int(log(final_size, 2)) - 1
with tf.compat.v1.variable_scope(scope, values=[inputs], reuse=reuse) as scope:
with slim.arg_scope([normalizer_fn], **normalizer_fn_args):
with slim.arg_scope([slim.conv2d_transpose],
normalizer_fn=normalizer_fn,
stride=2,
kernel_size=4):
net = tf.expand_dims(tf.expand_dims(inputs, 1), 1)
# First upscaling is different because it takes the input vector.
current_depth = depth * 2 ** (num_layers - 1)
scope = 'deconv1'
net = slim.conv2d_transpose(
| tensorflow.compat.v1.variable_scope | 4,475 |
import tensorflow as tf
with tf.variable_scope('fw'):
cell_fw = GetCell()
with tf.variable_scope('bw'):
cell_bw = GetCell()
| tensorflow.variable_scope | 4,476 |
import tensorflow as tf
if y is None:
y = silverman_rule_of_thumb(N)
K = 1/(2*D-3)
A1 = euclidean_norm_squared(tf.subtract(tf.expand_dims(X, 0), tf.expand_dims(X, 1)), axis=2)
A = (1/(N**2)) * tf.reduce_sum((1/tf.sqrt(y + K*A1)))
B1 = euclidean_norm_squared(X, axis=1)
B = (2/N)*tf.reduce_sum((1/tf.sqrt(y + 0.5 + K*B1)))
return (1/tf.sqrt(1+y)) + A - B
def cw_choose(z_dim: int):
if z_dim == 1:
return cw_1d
elif z_dim == 2:
return cw_2d
elif z_dim >= 20:
return cw
else:
| tensorflow.sqrt | 4,477 |
from tensorflow.python.ops import variable_scope
tuple.
"""
with variable_scope.variable_scope(name, 'recall', [predictions, labels]):
predictions, labels = tensor_util.remove_squeezable_dimensions(
| tensorflow.python.ops.variable_scope.variable_scope | 4,478 |
import tensorflow as tf
k = tf.transpose(k, [0, 2, 1, 3])
v = tf.transpose(v, [0, 2, 1, 3])
if attention_mask is not None:
attention_mask = tf.reshape(
attention_mask, [batch_size, 1, to_seq_length, 1])
# 'new_embeddings = [B, N, F, H]'
new_embeddings = dot_product_attention(q, k, v, attention_mask,
attention_probs_dropout_prob)
return tf.transpose(new_embeddings, [0, 2, 1, 3])
def attention_ffn_block(layer_input,
hidden_size=768,
attention_mask=None,
num_attention_heads=1,
attention_head_size=64,
attention_probs_dropout_prob=0.0,
| tensorflow.transpose | 4,479 |
import tensorflow as tf
Kuu = feat.Kuu(kern, jitter=settings.numerics.jitter_level) # M x M
Luu = tf.cholesky(Kuu) # M x M
if not white:
q_mu = tf.matrix_triangular_solve(Luu, q_mu, lower=True)
Luu_tiled = tf.tile(Luu[None, :, :], [num_func, 1, 1]) # remove line once issue 216 is fixed
q_sqrt_r = tf.matrix_triangular_solve(Luu_tiled, q_sqrt_r, lower=True)
Li_eKuf = tf.matrix_triangular_solve(Luu, eKuf, lower=True) # M x N
fmean = tf.matmul(Li_eKuf, q_mu, transpose_a=True)
eKff = expectation(pXnew, kern) # N (psi0)
eKuffu = expectation(pXnew, (kern, feat), (kern, feat)) # N x M x M (psi2)
Luu_tiled = tf.tile(Luu[None, :, :], [num_data, 1, 1]) # remove this line, once issue 216 is fixed
Li_eKuffu = tf.matrix_triangular_solve(Luu_tiled, eKuffu, lower=True)
Li_eKuffu_Lit = tf.matrix_triangular_solve(Luu_tiled, tf.matrix_transpose(Li_eKuffu), lower=True) # N x M x M
cov = tf.matmul(q_sqrt_r, q_sqrt_r, transpose_b=True) # D x M x M
if mean_function is None or isinstance(mean_function, mean_functions.Zero):
e_related_to_mean = tf.zeros((num_data, num_func, num_func), dtype=settings.float_type)
else:
# Update mean: \mu(x) + m(x)
fmean = fmean + expectation(pXnew, mean_function)
# Calculate: m(x) m(x)^T + m(x) \mu(x)^T + \mu(x) m(x)^T,
# where m(x) is the mean_function and \mu(x) is fmean
e_mean_mean = expectation(pXnew, mean_function, mean_function) # N x D x D
Lit_q_mu = tf.matrix_triangular_solve(Luu, q_mu, adjoint=True)
| tensorflow.matrix_triangular_solve | 4,480 |
import tensorflow as tf
output_bias = tf.get_variable(
"output_bias", [num_labels], initializer=tf.zeros_initializer())
with tf.variable_scope("loss"):
if is_training:
# I.e., 0.1 dropout
output_layer = tf.nn.dropout(output_layer, keep_prob=0.9)
logits = tf.matmul(output_layer, output_weights, transpose_b=True)
logits = tf.nn.bias_add(logits, output_bias)
probabilities = tf.nn.softmax(logits, axis=-1)
log_probs = tf.nn.log_softmax(logits, axis=-1)
one_hot_labels = tf.one_hot(labels, depth=num_labels, dtype=tf.float32)
per_example_loss = -tf.reduce_sum(one_hot_labels * log_probs, axis=-1)
loss = tf.reduce_mean(per_example_loss)
return (loss, per_example_loss, logits, probabilities)
| tensorflow.nn.softmax | 4,481 |
import tensorflow as tf
init_sd = 1.0 / np.sqrt(self.embedding_size)
# Embedding variables
entity_var_shape = [entity_cnt, self.embedding_size]
rel_var_shape = [rel_cnt, self.embedding_size]
entity_init = tf.truncated_normal(entity_var_shape, stddev=init_sd)
rel_init = tf.truncated_normal(rel_var_shape, stddev=init_sd)
# Ensure maxnorm constraints are initially satisfied
entity_init = dense_maxnorm(entity_init, self.maxnorm)
self.entity_embedding_vars = tf.Variable(entity_init)
self.rel_embedding_vars = tf.Variable(rel_init)
# Embedding layer for each (head, rel, tail) triple being fed in as input
head_embed = tf.nn.embedding_lookup(self.entity_embedding_vars, self.head_input)
tail_embed = tf.nn.embedding_lookup(self.entity_embedding_vars, self.tail_input)
rel_embed = tf.nn.embedding_lookup(self.rel_embedding_vars, self.rel_input)
# Relationship vector acts as a translation in entity embedding space
diff_vec = tail_embed - (head_embed + rel_embed)
| tensorflow.Variable | 4,482 |
import tensorflow as tf
'image/object/bbox/ymin':
tf.io.VarLenFeature(tf.float32),
'image/object/bbox/ymax':
tf.io.VarLenFeature(tf.float32),
'image/object/class/label':
tf.io.VarLenFeature(tf.int64),
| tensorflow.io.VarLenFeature | 4,483 |
import tensorflow as tf
output_1 = contrib.layers.fully_connected(dropout3_1, n_output_1, activation_fn=None, scope="output_1")
output_2 = contrib.layers.fully_connected(dropout3_2, n_output_2, activation_fn=None, scope="output_2")
with tf.variable_scope("loss"):
loss_base_1 = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y_1, logits=output_1))
loss_base_2 = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y_2, logits=output_2))
reg_losses = tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES)
loss_total = loss_base_1 + loss_base_2 + tf.reduce_sum(reg_losses)
with tf.variable_scope("evaluation"):
accuracy_1 = tf.reduce_mean(tf.cast(tf.equal(
tf.argmax(output_1, axis=-1),
tf.argmax(y_1, axis=-1)), tf.float32), name="accuracy_1")
accuracy_2 = tf.reduce_mean(tf.cast(tf.equal(
tf.argmax(output_2, axis=-1),
tf.argmax(y_2, axis=-1)), tf.float32), name="accuracy_2")
accuracy = tf.divide(accuracy_1 + accuracy_2, 2.0, name="accuracy")
with tf.variable_scope("train"):
global_step = tf.get_variable("global_step", shape=(), dtype=tf.int32, trainable=False)
train_op = tf.train.AdamOptimizer(learning_rate=lr).minimize(loss_total, global_step=global_step)
with tf.variable_scope("summary"):
summary_loss_total = tf.summary.scalar("loss_total", loss_total)
summary_accuracy_test = tf.summary.scalar("accuracy_test", accuracy)
summary_accuracy_train = tf.summary.scalar("accuracy_train", accuracy)
# standardization
train_X_reshaped = train_X.reshape([train_X.shape[0], -1])
train_X_means = np.mean(train_X_reshaped, axis=0, keepdims=True)
| tensorflow.argmax | 4,484 |
import tensorflow as tf
# @1. split sequence
with tf.variable_scope('split_seq'):
block_num = tf.cast(tf.ceil(tf.divide(tf.cast(sl, tf.float32), tf.cast(block_len, tf.float32))), tf.int32)
comp_len = block_num * block_len - sl
rep_tensor_comp = tf.concat([rep_tensor, tf.zeros([bs, comp_len, input_dim], tf.float32)], 1)
rep_mask_comp = tf.concat([rep_mask, tf.cast(tf.zeros([bs, comp_len], tf.int32), tf.bool)], 1)
rep_tensor_split = tf.reshape(rep_tensor_comp, [bs, block_num, block_len, input_dim]) # bs,bn,bl,d
rep_mask_split = tf.reshape(rep_mask_comp, [bs, block_num, block_len]) # bs,bn,bl
# non-linear
| tensorflow.zeros | 4,485 |
import tensorflow as tf
self.enqueue_op = queue.enqueue(self.queue_input_tensors)
self.input_tensors = queue.dequeue()
self.predictions, self.loss = self.get_predictions_and_loss(*self.input_tensors)
self.global_step = tf.Variable(0, name="global_step", trainable=False)
self.reset_global_step = tf.assign(self.global_step, 0)
learning_rate = tf.train.exponential_decay(self.config["learning_rate"], self.global_step,
self.config["decay_frequency"], self.config["decay_rate"], staircase=True)
trainable_params = tf.trainable_variables()
gradients = tf.gradients(self.loss, trainable_params)
gradients, _ = tf.clip_by_global_norm(gradients, self.config["max_gradient_norm"])
optimizers = {
"adam" : tf.train.AdamOptimizer,
"sgd" : tf.train.GradientDescentOptimizer
}
optimizer = optimizers[self.config["optimizer"]](learning_rate)
self.train_op = optimizer.apply_gradients(zip(gradients, trainable_params), global_step=self.global_step)
def start_enqueue_thread(self, session):
with open(self.config["train_path"]) as f:
| tensorflow.clip_by_global_norm | 4,486 |
import tensorflow as tf
train_file, task_name)
tf.logging.info("***** Running training *****")
| tensorflow.logging.info | 4,487 |
import tensorflow as tf
batch_nums = tf.expand_dims(batch_nums, axis=1) # shape (batch_size, 1)
batch_nums = tf.tile(batch_nums, [1, passage_length]) # shape (batch_size, passage_length)
step_nums = tf.range(0, limit=passage_length) # [passage_length]
step_nums = tf.expand_dims(step_nums, axis=0) # shape (1, passage_length)
step_nums = tf.tile(step_nums, [batch_size, 1]) # shape (batch_size, passage_length)
indices = tf.stack((batch_nums, step_nums, passage_word_idx), axis=2) # shape (batch_size, passage_length, 3)
indices = tf.reshape(indices, [-1, 3]) #[batch_size * passage_length, 3]
indices = tf.cast(indices, tf.int64)
shape = [batch_size, passage_length, extended_vsize]
shape = tf.cast(shape, tf.int64)
attn_dist = tf.reshape(attn_dist, shape=[-1]) # [batch_size*passage_length]
one_hot_spare_rep = tf.SparseTensor(indices=indices, values=attn_dist, dense_shape=shape) # [batch_size, passage_length, extended_vsize]
if passage_mask is not None:
passage_mask = tf.expand_dims(passage_mask, axis=-1)
one_hot_spare_rep = one_hot_spare_rep * passage_mask
one_hot_spare_rep = tf.sparse_reduce_sum(one_hot_spare_rep, axis=1) # [batch_size, extended_vsize]
vocab_dist = tf.add(vocab_dist, one_hot_spare_rep)
if self.options.add_first_word_prob_for_phrase:
vocab_dist = tf.nn.softmax(vocab_dist) # normalize
return vocab_dist # [batch_size, extended_vsize]
| tensorflow.SparseTensor | 4,488 |
import tensorflow as tf
save_path = os.path.join(self.get_temp_dir(), "gpu")
with tf.Session("", graph=tf.Graph()) as sess:
with sess.graph.device("/gpu:0"):
v0_1 = tf.Variable(123.45)
save = tf.train.Saver({"v0": v0_1})
tf.initialize_all_variables().run()
save.save(sess, save_path)
| tensorflow.train.Saver | 4,489 |
from tensorflow.python.framework import ops
@ops.RegisterGradient("SparseScatter")
def _sparse_scatter_grad(op, grad):
| tensorflow.python.framework.ops.RegisterGradient | 4,490 |
import tensorflow as tf
scaffold_fn = None
if init_checkpoint:
(assignment_map, initialized_variable_names
) = modeling.get_assignment_map_from_checkpoint(tvars, init_checkpoint)
if use_tpu:
def tpu_scaffold():
tf.train.init_from_checkpoint(init_checkpoint, assignment_map)
return tf.train.Scaffold()
scaffold_fn = tpu_scaffold
else:
tf.train.init_from_checkpoint(init_checkpoint, assignment_map)
| tensorflow.train.init_from_checkpoint | 4,491 |
import tensorflow as tf
def pool(inp, name, kind, size, stride, padding='SAME'):
assert kind in ['max', 'avg']
strides = [1, stride, stride, 1]
sizes = [1, size, size, 1]
with tf.variable_scope(name):
if kind == 'max':
out = tf.nn.max_pool(inp, sizes, strides=strides, padding=padding, name=kind)
else:
out = tf.nn.avg_pool(inp, sizes, strides=strides, padding=padding, name=kind)
return out
def ResNet18(inp, phase, num_outputs=1000, alpha=0.0):
def residual_block(inp, phase, alpha=0.0,nom='a',increase_dim=False,last=False):
input_num_filters = inp.get_shape().as_list()[3]
if increase_dim:
first_stride = [1, 2, 2, 1]
out_num_filters = input_num_filters*2
else:
| tensorflow.nn.avg_pool | 4,492 |
import tensorflow as tf
dec_inp_dict2 = {}
dec_inp_dict2["0"] = [
tf.constant(0, tf.int32, shape=[2]) for _ in range(3)]
dec_inp_dict2["1"] = [
tf.constant(0, tf.int32, shape=[2]) for _ in range(4)]
with tf.variable_scope("other"):
outputs_dict3, _ = tf.nn.seq2seq.one2many_rnn_seq2seq(
enc_inp, dec_inp_dict2, cell, 2, dec_symbols_dict,
embedding_size=2, feed_previous=tf.constant(True))
sess.run([tf.global_variables_initializer()])
tf.get_variable_scope().reuse_variables()
outputs_dict1, _ = tf.nn.seq2seq.one2many_rnn_seq2seq(
enc_inp, dec_inp_dict, cell, 2, dec_symbols_dict,
embedding_size=2, feed_previous=True)
outputs_dict2, _ = tf.nn.seq2seq.one2many_rnn_seq2seq(
enc_inp, dec_inp_dict2, cell, 2, dec_symbols_dict,
embedding_size=2, feed_previous=True)
res1 = sess.run(outputs_dict1["0"])
| tensorflow.global_variables_initializer | 4,493 |
import tensorflow as tf
box_coder.decode(boxes, anchors).get()
for boxes in tf.unstack(encoded_boxes)
| tensorflow.unstack | 4,494 |
import tensorflow as tf
'image/encoded':
tf.io.FixedLenFeature((), tf.string),
'image/source_id':
tf.io.FixedLenFeature((), tf.string),
'image/height':
tf.io.FixedLenFeature((), tf.int64),
'image/width':
tf.io.FixedLenFeature((), tf.int64),
'image/object/bbox/xmin':
tf.io.VarLenFeature(tf.float32),
'image/object/bbox/xmax':
tf.io.VarLenFeature(tf.float32),
'image/object/bbox/ymin':
tf.io.VarLenFeature(tf.float32),
'image/object/bbox/ymax':
tf.io.VarLenFeature(tf.float32),
'image/object/class/label':
tf.io.VarLenFeature(tf.int64),
| tensorflow.io.VarLenFeature | 4,495 |
import tensorflow as tf
down1 = d_layer(image,self.df, norm=False,name='down1') #256x256 -> 128x128
#rint('down1',np.shape(down1))
down2 = d_layer(down1,self.df*2,name='down2') #128x128 -> 64x64
#rint('down2',np.shape(down2))
down3 = d_layer(down2,self.df*4,name='down3') #64x64 -> 32x32
#rint('down3',np.shape(down3))
down4 = d_layer(down3,self.df*8,name='down4') # 32x32 -> 16x16
#rint('down4',np.shape(down4))
down5 = tf.contrib.layers.conv2d(down4,1,kernel_size=4,stride=1,padding='valid')
#rint('down5',np.shape(down5))
#rint(np.shape(down5))
#logits = tf.reduce_mean(down5, [1,2,3])
return down5
def build_network(self):
| tensorflow.contrib.layers.conv2d | 4,496 |
import tensorflow as tf
ls = [-1] + l.get_shape().as_list()[1:]
xs = ls[:-1] + [3]
# unpack parameters
logit_probs = l[:, :, :, :nr_mix]
l = tf.reshape(l[:, :, :, nr_mix:], xs + [nr_mix * 3])
# sample mixture indicator from softmax
sel = tf.one_hot(tf.argmax(logit_probs - tf.log(-tf.log(tf.random_uniform(
tf.shape(logit_probs), minval=1e-5, maxval=1. - 1e-5))), 3), depth=nr_mix, dtype=tf.float32)
sel = tf.reshape(sel, xs[:-1] + [1, nr_mix])
# select logistic parameters
means = tf.reduce_sum(l[:, :, :, :, :nr_mix] * sel, 4)
log_scales = tf.maximum(tf.reduce_sum(
l[:, :, :, :, nr_mix:2 * nr_mix] * sel, 4), -7.)
coeffs = tf.reduce_sum(tf.nn.tanh(
l[:, :, :, :, 2 * nr_mix:3 * nr_mix]) * sel, 4)
# sample from logistic & clip to interval
| tensorflow.reshape | 4,497 |
import tensorflow as tf
"""
kwargs = {**{self.input_arg: x}, **{k: 1.0 * w for k, w in self.qnode_weights.items()}}
return self.qnode(**kwargs)
def compute_output_shape(self, input_shape):
"""Computes the output shape after passing data of shape ``input_shape`` through the
QNode.
Args:
input_shape (tuple or tf.TensorShape): shape of input data
Returns:
tf.TensorShape: shape of output data
"""
return tf.TensorShape([input_shape[0]]).concatenate(self.output_dim)
def __str__(self):
detail = "<Quantum Keras Layer: func={}>"
return detail.format(self.qnode.func.__name__)
__repr__ = __str__
_input_arg = "inputs"
@property
def input_arg(self):
"""Name of the argument to be used as the input to the Keras
`Layer <https://www.tensorflow.org/api_docs/python/tf/keras/layers/Layer>`__. Set to
| tensorflow.TensorShape | 4,498 |
import tensorflow as tf
variables.
"""
inputs = tf.placeholder(dtype=tf.int32, shape=[None, None])
| tensorflow.placeholder | 4,499 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.