seed
stringlengths
25
2.89k
seed_api
stringlengths
14
102
index
int64
0
14.8k
from tensorflow.python.framework import ops def _apply_dense(self, grad, var): return training_ops.apply_gradient_descent( var, self._learning_rate_tensor, grad, use_locking=self._use_locking).op def _apply_sparse(self, grad, var): delta = ops.IndexedSlices(grad.values * self._learning_rate_tensor, grad.indices, grad.dense_shape) return var.scatter_sub(delta, use_locking=self._use_locking) def _prepare(self): self._learning_rate_tensor = ops.convert_to_tensor(self._learning_rate, name="learning_rate")
tensorflow.python.framework.ops.convert_to_tensor
4,000
import tensorflow as tf A training Optimizer. Raises: NotImplementedError: If an unsupported optimizer is requested. """ # TODO(user): gradient clipping (see Minimize) if optimizer == 'adagrad': train_op = tf.train.AdagradOptimizer(learning_rate) elif optimizer == 'adam': train_op = tf.train.AdamOptimizer(learning_rate) elif optimizer == 'momentum': train_op = tf.train.MomentumOptimizer(learning_rate, momentum) elif optimizer == 'rmsprop': train_op = tf.train.RMSPropOptimizer(learning_rate, momentum) elif optimizer == 'sgd': train_op = tf.train.GradientDescentOptimizer(learning_rate) else: raise NotImplementedError('Unsupported optimizer %s' % optimizer) return train_op
tensorflow.train.GradientDescentOptimizer
4,001
import tensorflow as tf cluster=tpu_cluster_resolver, master=FLAGS.master, model_dir=FLAGS.output_dir, save_checkpoints_steps=FLAGS.save_checkpoints_steps, tpu_config=tf.contrib.tpu.TPUConfig( iterations_per_loop=FLAGS.iterations_per_loop, num_shards=FLAGS.num_tpu_cores, per_host_input_for_training=is_per_host))
tensorflow.contrib.tpu.TPUConfig
4,002
from tensorflow.python.ops import math_ops predictions.get_shape().assert_is_compatible_with(labels.get_shape()) is_false_positive = math_ops.logical_and(math_ops.equal(labels, 0), math_ops.equal(predictions, 1)) return _count_condition(is_false_positive, weights, metrics_collections,
tensorflow.python.ops.math_ops.equal
4,003
import tensorflow as tf inputs (list[tf.Tensor]): List of input placeholders. extra_inputs (list[tf.Tensor]): List of extra input placeholders. kwargs (dict): Extra unused keyword arguments. Some optimizers have extra input, e.g. KL constraint. """ del kwargs with tf.name_scope(self._name): self._target = target self._train_op = self._tf_optimizer.minimize( loss, var_list=target.get_params()) if extra_inputs is None:
tensorflow.name_scope
4,004
import tensorflow as tf x = tf.nn.embedding_lookup(w, inputs, name='word_vector') # (N, T, M) or (N, M) return x def _project_features(self, features): with tf.variable_scope('project_features'): w = tf.get_variable('w', [self.D, self.D], initializer=self.weight_initializer) features_flat = tf.reshape(features, [-1, self.D]) features_proj = tf.matmul(features_flat, w) features_proj = tf.reshape(features_proj, [-1, self.L, self.D]) return features_proj def _attention_layer(self, features, features_proj, h, reuse=False): with tf.variable_scope('attention_layer', reuse=reuse): w = tf.get_variable('w', [self.H, self.D], initializer=self.weight_initializer)
tensorflow.matmul
4,005
import tensorflow as tf for l in range(len(outputs)): outputs_all[l].append(outputs[l]) # merge outputs on CPU with tf.device('/cpu:0'): merged = [] for outputs in outputs_all: merged.append(merge(outputs, mode='concat', concat_axis=0))
tensorflow.device
4,006
import tensorflow as tf 'l2_h2_bn', reuse=self.scope_reuse) as scope: l2_h2 = tf.contrib.layers.batch_norm( inputs=l2_h2,
tensorflow.contrib.layers.batch_norm
4,007
import tensorflow as tf for grad, var in itertools.chain(*tower_gradvars): if grad is not None: all_grads.setdefault(var, []).append(grad) for var, grads in all_grads.items(): if len(grads) == 1: avg_grad = grads[0] else: avg_grad = tf.multiply(tf.add_n(grads), 1. / len(grads)) gradvars.append((avg_grad, var)) self.loss = tf.reduce_mean(tower_losses) tf.summary.scalar('loss', self.loss) # Create optimizer ops self.global_step = tf.Variable(0, trainable=False, name='global_step') opt = tf.train.RMSPropOptimizer(self.config['learning_rate']) with tf.control_dependencies(update_ops): self.trainer = opt.apply_gradients( gradvars, global_step=self.global_step) def _eval_graph(self, data): tower_metrics = self._gpu_tower(data, Mode.EVAL) with tf.device('/cpu:0'): self.metrics = {m: tf.reduce_mean(tf.stack([t[m] for t in tower_metrics])) for m in tower_metrics[0]} def _pred_graph(self, data): with tf.name_scope('pred'): with tf.device('/gpu:0'):
tensorflow.train.RMSPropOptimizer
4,008
import tensorflow as tf self.tail_input = tf.placeholder(tf.int32, shape=[None]) self.target = tf.placeholder(tf.float32, shape=[None])
tensorflow.placeholder
4,009
import tensorflow as tf encoded_history = reduce_max(conv3, [1, 2]) with tf.name_scope("Decoder"): second_to_last_user_utterance = encoded_utterances[:, history_length - 3, 0, :] last_system_utterance = encoded_utterances[:, history_length - 2, 0, :] last_user_utterance = encoded_utterances[:, history_length - 1, 0, :] dialogue_state = tf.concat( 1, [ encoded_history, last_user_utterance, last_system_utterance, second_to_last_user_utterance, ],
tensorflow.concat
4,010
import tensorflow as tf def test_output_must_have_batch_dimension(self): with self.test_session() as session: @dynamic_batching.batch_fn def f(_): return tf.constant(1) output = f(tf.constant([1])) coord = tf.train.Coordinator() tf.train.start_queue_runners(coord=coord) with self.assertRaises(tf.errors.CancelledError): session.run(output)
tensorflow.constant
4,011
import tensorflow as tf # Calculate: m(x) m(x)^T + m(x) \mu(x)^T + \mu(x) m(x)^T, # where m(x) is the mean_function and \mu(x) is fmean e_mean_mean = expectation(pXnew, mean_function, mean_function) # N x D x D Lit_q_mu = tf.matrix_triangular_solve(Luu, q_mu, adjoint=True) e_mean_Kuf = expectation(pXnew, mean_function, (kern, feat)) # N x D x M # einsum isn't able to infer the rank of e_mean_Kuf, hence we explicitly set the rank of the tensor: e_mean_Kuf = tf.reshape(e_mean_Kuf, [num_data, num_func, num_ind]) e_fmean_mean = tf.einsum("nqm,mz->nqz", e_mean_Kuf, Lit_q_mu) # N x D x D e_related_to_mean = e_fmean_mean + tf.matrix_transpose(e_fmean_mean) + e_mean_mean if full_output_cov: fvar = ( tf.matrix_diag(tf.tile((eKff - tf.trace(Li_eKuffu_Lit))[:, None], [1, num_func])) +
tensorflow.reshape
4,012
import tensorflow as tf eps=hparams.eps) optimizer = tf.train.AdamOptimizer(learning_rate=hparams.learning_rate)
tensorflow.train.AdamOptimizer
4,013
import tensorflow as tf #Place Holders for the input/output data def create_placeholders(Nfeat, Nlab): """ Creates the placeholders for the tensorflow session. Arguments: Nfeat -- scalar, size of the feature vector (number of features) Nlab -- scalar, size of the label vector (number of labels) Returns: X -- placeholder for the data input, of shape [n_x, None] and dtype "float" Y -- placeholder for the input labels, of shape [n_y, None] and dtype "float" """ X = tf.placeholder(shape= [Nfeat, None], dtype= "float64" ) Y = tf.placeholder(shape= [Nlab, None], dtype= "float64" ) return X, Y #parameters initialization def initialize_parameters(layers, activation, stbeta): ''' Initialise the parameters of the model: Arguments: layers: Topology of the network. Array contaning number of layers and number of units in each layer. activation: list of activation functions, for each layer in the network.
tensorflow.placeholder
4,014
import tensorflow as tf self.terminals_ph = tf.placeholder(tf.float32, shape=(None, 1), name='terminals') self.rewards_ph = tf.placeholder(tf.float32, shape=(None, 1), name='rewards')
tensorflow.placeholder
4,015
import tensorflow as tf dtype = initial_learning_rate.dtype maximal_learning_rate = tf.cast(self.maximal_learning_rate, dtype) step_size = tf.cast(self.step_size, dtype) cycle = tf.floor(1 + step / (2 * step_size))
tensorflow.cast
4,016
import tensorflow as tf def get_keypoint(image, targets, predictions, heatmap_size, height, width, category, clip_at_zero=True, data_format='channels_last', name=None): predictions = tf.reshape(predictions, [1, -1, heatmap_size*heatmap_size]) pred_max = tf.reduce_max(predictions, axis=-1) pred_indices = tf.argmax(predictions, axis=-1) pred_x, pred_y = tf.cast(tf.floormod(pred_indices, heatmap_size), tf.float32), tf.cast(tf.floordiv(pred_indices, heatmap_size), tf.float32) width, height = tf.cast(width, tf.float32), tf.cast(height, tf.float32) pred_x, pred_y = pred_x * width / tf.cast(heatmap_size, tf.float32), pred_y * height / tf.cast(heatmap_size, tf.float32) if clip_at_zero: pred_x, pred_y = pred_x * tf.cast(pred_max>0, tf.float32), pred_y * tf.cast(pred_max>0, tf.float32) pred_x = pred_x * tf.cast(pred_max>0, tf.float32) + tf.cast(pred_max<=0, tf.float32) * (width / 2.) pred_y = pred_y * tf.cast(pred_max>0, tf.float32) + tf.cast(pred_max<=0, tf.float32) * (height / 2.) if config.PRED_DEBUG:
tensorflow.cast
4,017
import tensorflow as tf loss_entropy = - 0.01 * tf.reduce_mean(pi.entropy()) loss = loss_pg + loss_vf + loss_entropy opt = tf.train.AdamOptimizer(self.LR) self.train_op = opt.minimize(loss, global_step=self.global_step, var_list=pi_params + vf_params) self.pi_new_params = [oldp.assign(p) for p, oldp in zip(pi_params, pi_old_params)] self.vf_new_params = [oldp.assign(p) for p, oldp in zip(vf_params, vf_old_params)] self.sess.run(tf.global_variables_initializer()) # Tensorboard if summary_dir is not None: self.writer = tf.summary.FileWriter(summary_dir) tf.summary.scalar('Loss/Policy', loss_pg) tf.summary.scalar('Loss/Value', loss_vf) tf.summary.scalar('Loss/Entropy', loss_entropy) tf.summary.scalar('Loss/Total', loss) tf.summary.scalar('Var/Epsilon', epsilon_decay) tf.summary.scalar('Var/Policy Mode', tf.reduce_mean(pi.mode())) tf.summary.scalar('Var/Policy Sigma', tf.reduce_mean(pi.stddev())) tf.summary.scalar('Var/Value', tf.reduce_mean(self.vf)) self.summarise = tf.summary.merge(tf.get_collection(tf.GraphKeys.SUMMARIES)) # AC net def build_anet(self, state_in, name, reuse=False): reg = tf.contrib.layers.l2_regularizer(1e-3) with tf.variable_scope(name, reuse=reuse):
tensorflow.summary.scalar
4,018
import tensorflow as tf idx_z1_y0_x1 = base_z1_y0 + x1_clip idx_z1_y1_x0 = base_z1_y1 + x0_clip idx_z1_y1_x1 = base_z1_y1 + x1_clip # Use indices to lookup pixels in the flat image and restore # channels dim im_flat = tf.reshape(im, tf.stack([-1, channels])) im_flat = tf.to_float(im_flat) i_z0_y0_x0 = tf.gather(im_flat, idx_z0_y0_x0) i_z0_y0_x1 = tf.gather(im_flat, idx_z0_y0_x1) i_z0_y1_x0 = tf.gather(im_flat, idx_z0_y1_x0) i_z0_y1_x1 = tf.gather(im_flat, idx_z0_y1_x1) i_z1_y0_x0 = tf.gather(im_flat, idx_z1_y0_x0) i_z1_y0_x1 = tf.gather(im_flat, idx_z1_y0_x1) i_z1_y1_x0 = tf.gather(im_flat, idx_z1_y1_x0) i_z1_y1_x1 = tf.gather(im_flat, idx_z1_y1_x1) # Finally calculate interpolated values. x0_f = tf.to_float(x0) x1_f = tf.to_float(x1) y0_f = tf.to_float(y0) y1_f = tf.to_float(y1) z0_f = tf.to_float(z0) z1_f = tf.to_float(z1) # Check the out-of-boundary case. x0_valid = tf.to_float( tf.less_equal(x0, max_x) & tf.greater_equal(x0, 0)) x1_valid = tf.to_float(
tensorflow.gather
4,019
from tensorflow.contrib.metrics.python.ops import metric_ops def _predictions_streaming_mean(predictions, unused_labels, weights=None): return metric_ops.streaming_mean(predictions, weights=weights)
tensorflow.contrib.metrics.python.ops.metric_ops.streaming_mean
4,020
import tensorflow as tf label_ids = features["label_ids"] is_real_example = None if "is_real_example" in features: is_real_example = tf.cast(features["is_real_example"], dtype=tf.float32) else: is_real_example = tf.ones(tf.shape(label_ids), dtype=tf.float32) is_training = (mode == tf.estimator.ModeKeys.TRAIN) (total_loss, per_example_loss, logits, probabilities) = create_model(
tensorflow.shape
4,021
import tensorflow as tf if not shape[1]: raise ValueError("Linear expects shape[1] of arguments: %s" % str(shapes)) else: total_arg_size += shape[1] # Now the computation. with tf.variable_scope(scope or "Linear"): matrix = tf.get_variable("Matrix", [total_arg_size, output_size]) if len(args) == 1: res = tf.matmul(args[0], matrix) else: res = tf.matmul(tf.concat(values=args, axis=1), matrix) if not bias: return res bias_term = tf.get_variable("Bias", [output_size], initializer=tf.constant_initializer(bias_start)) return res + bias_term def _clip_and_normalize(word_probs, epsilon): ''' word_probs: 1D tensor of [vsize] ''' word_probs = tf.clip_by_value(word_probs, epsilon, 1.0 - epsilon) return word_probs / tf.reduce_sum(word_probs, axis=-1, keep_dims=True) # scale preds so that the class probas of each sample sum to 1 def CE_loss(word_probs, answers, loss_weights): ''' word_probs: [batch_size, max_dec_steps, vocab]
tensorflow.constant_initializer
4,022
import tensorflow as tf batch_size = tf.shape(a)[0] return a + b, tf.tile([batch_size], [batch_size]) outputs = [ f(tf.constant([1]), tf.constant([2])), f(tf.constant([1]), tf.constant([2])), f(tf.constant([1]), tf.constant([2])), f(tf.constant([1]), tf.constant([2])), f(tf.constant([1]), tf.constant([2])), ] tf.train.start_queue_runners() results = session.run(outputs)
tensorflow.constant
4,023
import tensorflow as tf def _input_fn_builder(self, input_file, is_training): """Creates an `input_fn` closure to be passed to TPUEstimator.""" def input_fn(params): """The actual input function.""" d = tf.data.TFRecordDataset(input_file) if is_training: d = d.repeat() d = d.shuffle(buffer_size=100) return d.apply(
tensorflow.data.TFRecordDataset
4,024
import tensorflow as tf # # If the input is a 2D tensor of shape [batch_size, seq_length], we # reshape to [batch_size, seq_length, 1]. if input_ids.shape.ndims == 2: input_ids = tf.expand_dims(input_ids, axis=[-1]) embedding_table = tf.get_variable( name=word_embedding_name, shape=[vocab_size, embedding_size], initializer=create_initializer(initializer_range)) if use_one_hot_embeddings: flat_input_ids = tf.reshape(input_ids, [-1]) one_hot_input_ids = tf.one_hot(flat_input_ids, depth=vocab_size) output = tf.matmul(one_hot_input_ids, embedding_table) else: output = tf.nn.embedding_lookup(embedding_table, input_ids) input_shape = get_shape_list(input_ids) output = tf.reshape(output, input_shape[0:-1] + [input_shape[-1] * embedding_size]) return (output, embedding_table) def embedding_postprocessor(input_tensor,
tensorflow.one_hot
4,025
import tensorflow as tf """ with tf.variable_scope(name_or_scope=self.name, reuse=tf.AUTO_REUSE):
tensorflow.variable_scope
4,026
import tensorflow as tf # Create the output to the network. This is our one hot encoding of 2 possible values (TODO)! Y = tf.placeholder(name='Y', shape=[None,data_y.shape[1]], dtype=tf.float32) print ("building network ") for i, filter_size in enumerate(filter_list): with tf.variable_scope("conv/stack/{}".format(i), reuse=None): # initialize filter W = tf.get_variable( name='W', shape=[filter_size, num_feature, 1, num_filter], initializer=tf.contrib.layers.xavier_initializer_conv2d()) # convolve w and input conv = tf.nn.conv2d( name='conv', input=X, filter=W, strides=[1, 1, 1, 1], padding='VALID') #add bias of size = out cannels b = tf.get_variable( name='b', shape=[num_filter], initializer=tf.constant_initializer(0.0)) H = tf.nn.bias_add(
tensorflow.nn.conv2d
4,027
import tensorflow as tf gru_bw = tf.contrib.cudnn_rnn.CudnnGRU(1, num_units) init_fw = tf.tile(tf.Variable( tf.zeros([1, 1, num_units])), [1, batch_size, 1]) init_bw = tf.tile(tf.Variable( tf.zeros([1, 1, num_units])), [1, batch_size, 1]) mask_fw = dropout(tf.ones([1, batch_size, input_size_], dtype=tf.float32), keep_prob=keep_prob, is_train=is_train, mode=None) mask_bw = dropout(tf.ones([1, batch_size, input_size_], dtype=tf.float32),
tensorflow.zeros
4,028
import tensorflow as tf with self.assertRaisesRegexp(tf.errors.InvalidArgumentError, 'Shapes of inputs much be equal'): coord.join() def test_output_must_have_batch_dimension(self): with self.test_session() as session: @dynamic_batching.batch_fn def f(_): return tf.constant(1) output = f(tf.constant([1])) coord = tf.train.Coordinator() tf.train.start_queue_runners(coord=coord) with self.assertRaises(tf.errors.CancelledError): session.run(output)
tensorflow.constant
4,029
import tensorflow as tf self.assertEqual(3, len(res)) self.assertEqual((2, 4), res[0].shape) res = sess.run([mem]) self.assertEqual((2, 2), res[0].shape) def testDynamicAttentionDecoder2(self): with self.test_session() as sess: with tf.variable_scope("root", initializer=tf.constant_initializer(0.5)): cell = tf.nn.rnn_cell.GRUCell(2) inp = tf.constant(0.5, shape=[2, 2, 2]) enc_outputs, enc_state = tf.nn.dynamic_rnn(cell, inp, dtype=tf.float32) attn_states = enc_outputs dec_inp = [tf.constant(0.4, shape=[2, 2])] * 3 dec, mem = tf.nn.seq2seq.attention_decoder( dec_inp, enc_state, attn_states, cell, output_size=4, num_heads=2) sess.run([tf.global_variables_initializer()]) res = sess.run(dec) self.assertEqual(3, len(res)) self.assertEqual((2, 4), res[0].shape)
tensorflow.nn.dynamic_rnn
4,030
from tensorflow.python.platform import test with session.Session(worker.target): var0, var1, update_op = self._setupSparse(True, dtype) self._assertSparseCorrect(var0, var1, update_op) if __name__ == "__main__": test.main()
tensorflow.python.platform.test.main
4,031
import tensorflow as tf tf.nn.softmax_cross_entropy_with_logits(labels=y_input, logits=encoder_output_label_)) all_variables = tf.trainable_variables() dc_g_var = [var for var in all_variables if 'dc_g_' in var.name] dc_c_var = [var for var in all_variables if 'dc_c_' in var.name] en_var = [var for var in all_variables if 'e_' in var.name] # Optimizers autoencoder_optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate, beta1=beta1).minimize(autoencoder_loss) discriminator_g_optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate, beta1=beta1).minimize(dc_g_loss, var_list=dc_g_var) discriminator_c_optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate, beta1=beta1).minimize(dc_c_loss, var_list=dc_c_var) generator_optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate, beta1=beta1).minimize(generator_loss, var_list=en_var) supervised_encoder_optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate, beta1=beta1).minimize(supervised_encoder_loss, var_list=en_var) init = tf.global_variables_initializer() # Reshape immages to display them input_images = tf.reshape(x_input, [-1, 28, 28, 1])
tensorflow.train.AdamOptimizer
4,032
import tensorflow as tf if self.irl_model.score_trajectories: # TODO: should I add to reward here or after advantage computation? for i, path in enumerate(paths): path['rewards'][-1] += self.irl_model_wt * probs[i] else: for i, path in enumerate(paths): path['rewards'] += self.irl_model_wt * probs[i] return paths def train(self,weightname): sess = tf.get_default_session() sess.run(tf.global_variables_initializer()) if self.init_pol_params is not None: self.policy.set_param_values(self.init_pol_params) if self.init_irl_params is not None: self.irl_model.set_params(self.init_irl_params) self.start_worker() start_time = time.time() returns = [] self.myweights.append(self.irl_model.get_weights())
tensorflow.get_default_session
4,033
import tensorflow as tf eval_examples = processor.get_dev_examples(FLAGS.data_dir) eval_file = os.path.join(FLAGS.output_dir, "eval.tf_record") file_based_convert_examples_to_features( eval_examples, label_list, FLAGS.max_seq_length, tokenizer, eval_file) tf.logging.info("***** Running evaluation *****") tf.logging.info(" Num examples = %d", len(eval_examples)) tf.logging.info(" Batch size = %d", FLAGS.eval_batch_size) # This tells the estimator to run through the entire set. eval_steps = None # However, if running eval on the TPU, you will need to specify the # number of steps. if FLAGS.use_tpu:
tensorflow.logging.info
4,034
import tensorflow as tf @property def state_size(self): return sum(self.cell.state_size) @property def output_size(self): return self.cell.output_size def __call__(self, inputs, state, scope=None): state = tf.split(value=state, num_or_size_splits=self.num_splits, axis=1) new_h, new_state = self.cell(inputs, state, scope=scope) return new_h, tf.concat(new_state, 1) def multi_encoder(encoder_inputs, encoders, encoder_input_length, other_inputs=None, training=True, **kwargs): """ Build multiple encoders according to the configuration in `encoders`, reading from `encoder_inputs`. The result is a list of the outputs produced by those encoders (for each time-step), and their final state. :param encoder_inputs: list of tensors of shape (batch_size, input_length), one tensor for each encoder. :param encoders: list of encoder configurations :param encoder_input_length: list of tensors of shape (batch_size,) (one tensor for each encoder)
tensorflow.concat
4,035
import tensorflow as tf intersections = pairwise_intersection(boxlist1, boxlist2) areas1 = area(boxlist1) areas2 = area(boxlist2) unions = ( tf.expand_dims(areas1, 1) + tf.expand_dims(areas2, 0) - intersections) return tf.where( tf.equal(intersections, 0.0), tf.zeros_like(intersections), tf.truediv(intersections, unions))
tensorflow.expand_dims
4,036
import tensorflow as tf h = h z = tf.matmul(x, wx) + tf.matmul(h, wh) + b i, f, o, u = tf.split(axis=1, num_or_size_splits=4, value=z) i = tf.nn.sigmoid(i) f = tf.nn.sigmoid(f) o = tf.nn.sigmoid(o) u = tf.tanh(u) c = f*c + i*u h = o*tf.tanh(c) xs[idx] = h s = tf.concat(axis=1, values=[c, h]) return xs, s def ortho_init(scale=1.0): def _ortho_init(shape, dtype, partition_info=None):
tensorflow.tanh
4,037
import tensorflow as tf def lstm_network(input, scope='lstm_network'): with tf.variable_scope(scope): # tf.nn.rnn_cell lstm_cell1 = tf.contrib.rnn.BasicLSTMCell(lstm_hidden_size_layer1, forget_bias=1.0) lstm_cell2 = tf.contrib.rnn.BasicLSTMCell(lstm_hidden_size_layer2, forget_bias=1.0) lstm_cells = tf.contrib.rnn.MultiRNNCell(cells=[lstm_cell1, lstm_cell2], state_is_tuple=True)
tensorflow.contrib.rnn.BasicLSTMCell
4,038
import tensorflow as tf @pytest.mark.parametrize('white', [True, False]) def test_oned(session_tf, white, mu, sqrt, K_batch): """ Check that the KL divergence matches a 1D by-hand calculation. """ m = 0 mu1d = mu[m,:][None,:] # 1 x N s1d = sqrt[:,m,m][:,None,None] # N x 1 x 1 K1d = K_batch[:,m,m][:,None,None] # N x 1 x 1 kl = gauss_kl(mu1d,s1d,K1d if not white else None) kl_tf = tf_kl_1d(tf.reshape(mu1d,(-1,)), # N tf.reshape(s1d,(-1,)), # N None if white else tf.reshape(K1d,(-1,))) # N np.testing.assert_allclose(kl.eval(), kl_tf.eval()) if __name__ == "__main__": tf.test.main()
tensorflow.reshape
4,039
import tensorflow as tf # augmentation functions # augment def random_crop_and_resize(images, ratio=0.8): b, h, w, c = images.get_shape().as_list() ch, cw = map(lambda x: int(x * ratio), (h, w)) crop = tf.random_crop(images, size=[b, ch, cw, 3]) crop = tf.image.resize(crop, [h, w]) return crop def random_apply(fn, image, prob=1.): b, *_ = image.get_shape().as_list() chance = tf.less(tf.random_uniform([b], 0, 1.0), prob) return tf.where(chance, fn(image), tf.identity(image)) def color_distortion(image, s=1.0): lower, upper, x = (1 - 0.8 * s), (1 + 0.8 * s), image x = tf.image.random_brightness(x, max_delta=0.8*s) x = tf.image.random_contrast(x, lower=lower, upper=upper) x = tf.image.random_saturation(x, lower=lower, upper=upper) x = tf.image.random_hue(x, max_delta=0.2*s) x = tf.clip_by_value(x, 0, 1) return x def color_drop(image):
tensorflow.random_uniform
4,040
from tensorflow.python.ops import math_ops if weight_tensor is None: return math_ops.reduce_mean(loss_unweighted, name="loss") loss_weighted = self._weighted_loss(loss_unweighted, weight_tensor) return math_ops.div(math_ops.reduce_sum(loss_weighted), math_ops.to_float(math_ops.reduce_sum(weight_tensor)), name="loss")
tensorflow.python.ops.math_ops.reduce_sum
4,041
import tensorflow as tf b = tf.get_variable("b", [nh*4], initializer=tf.constant_initializer(0.0)) gc = tf.get_variable("gc", [nh], initializer=tf.constant_initializer(1.0)) bc = tf.get_variable("bc", [nh], initializer=tf.constant_initializer(0.0)) c, h = tf.split(axis=1, num_or_size_splits=2, value=s)
tensorflow.constant_initializer
4,042
import tensorflow as tf else: return tf.reshape(tf.stack(values=h, axis=1), [-1]) def lstm(xs, ms, s, scope, nh, init_scale=1.0): nbatch, nin = [v.value for v in xs[0].get_shape()] with tf.variable_scope(scope): wx = tf.get_variable("wx", [nin, nh*4], initializer=ortho_init(init_scale)) wh = tf.get_variable("wh", [nh, nh*4], initializer=ortho_init(init_scale)) b = tf.get_variable("b", [nh*4], initializer=tf.constant_initializer(0.0)) c, h = tf.split(axis=1, num_or_size_splits=2, value=s) for idx, (x, m) in enumerate(zip(xs, ms)): c = c*(1-m) h = h*(1-m) z = tf.matmul(x, wx) + tf.matmul(h, wh) + b i, f, o, u = tf.split(axis=1, num_or_size_splits=4, value=z) i = tf.nn.sigmoid(i) f = tf.nn.sigmoid(f) o = tf.nn.sigmoid(o) u = tf.tanh(u) c = f*c + i*u h = o*tf.tanh(c) xs[idx] = h s = tf.concat(axis=1, values=[c, h]) return xs, s def _ln(x, g, b, e=1e-5, axes=[1]): u, s = tf.nn.moments(x, axes=axes, keep_dims=True) x = (x-u)/tf.sqrt(s+e) x = x*g+b
tensorflow.split
4,043
import tensorflow as tf from deepr.layers import base @base.layer(n_in=2, n_out=3) def LSTM(tensors, num_units: int, bidirectional: bool = False, **kwargs): """LSTM layer.""" words, nwords = tensors t = tf.transpose(words, perm=[1, 0, 2]) lstm_cell_fw = tf.contrib.rnn.LSTMBlockFusedCell(num_units=num_units, **kwargs) outputs_fw, (hidden_fw, output_fw) = lstm_cell_fw(t, dtype=tf.float32, sequence_length=nwords) if bidirectional: lstm_cell_bw = tf.contrib.rnn.LSTMBlockFusedCell(num_units=num_units, **kwargs) lstm_cell_bw = tf.contrib.rnn.TimeReversedFusedRNN(lstm_cell_bw)
tensorflow.transpose
4,044
import tensorflow as tf ENV_NAME = 'BipedalWalker-v2' GLOBAL_STEP = tf.Variable(0, trainable=False) INCREASE_GS = GLOBAL_STEP.assign(tf.add(GLOBAL_STEP, 1))
tensorflow.Variable
4,045
import tensorflow as tf elif activation == 'relu': gru=tf.nn.rnn_cell.GRUCell(state_size, activation = tf.nn.relu) cell_drop=tf.contrib.rnn.DropoutWrapper(gru,variational_recurrent=True,dtype=tf.float32, input_size=num_input,input_keep_prob=input_prob,state_keep_prob=state_prob) else:
tensorflow.contrib.rnn.DropoutWrapper
4,046
import tensorflow as tf a = np.array([1, 2, 3], dtype=np.float32) tf_v = tf.Variable(5, dtype=tf.float32)
tensorflow.Variable
4,047
import tensorflow as tf x = tf.placeholder(tf.float32, [None, num_steps, input_size_x], name='x') y = tf.placeholder(tf.float32, [None, num_steps, input_size_y], name='y') input_prob = tf.placeholder(tf.float32, name='input_prob') state_prob = tf.placeholder(tf.float32,name='state_prob') output_prob = tf.placeholder(tf.float32,name='output_prob') rnn_inputs = x
tensorflow.placeholder
4,048
import tensorflow as tf logits = tf.matmul(output_layer, output_weights, transpose_b=True) logits = tf.nn.bias_add(logits, output_bias) if task_name != "sts-b": probabilities = tf.nn.softmax(logits, axis=-1) predictions = tf.argmax(probabilities, axis=-1, output_type=tf.int32) log_probs = tf.nn.log_softmax(logits, axis=-1)
tensorflow.nn.softmax
4,049
import tensorflow as tf For tf padding, refer to: https://www.tensorflow.org/api_docs/python/tf/pad """ reg_l2 = tf.keras.regularizers.l2(5e-7) if padding == 'SYMMETRIC' or padding == 'REFLECT': p = (kernel_size - 1) // 2 x = tf.pad(x, [[0,0],[p,p],[p,p], [p,p],[0,0]], padding) x = tf.keras.layers.Conv3D(filters, kernel_size, activation=activation, kernel_initializer=initialization, use_bias=use_bias, kernel_regularizer=reg_l2)(x) else: assert padding in ['SAME', 'VALID'] x = tf.keras.layers.Conv3D(filters, kernel_size, activation=activation, kernel_initializer=initialization, use_bias=use_bias, kernel_regularizer=reg_l2)(x) return x
tensorflow.pad
4,050
import tensorflow as tf param_noise_threshold = tf.get_variable("param_noise_threshold", (), initializer=tf.constant_initializer(0.05), trainable=False) # Unmodified Q. policy = q_func(sess, ob_space, ac_space, 1, 1, None) obs_phs = (policy.obs_ph, policy.processed_obs) # Perturbable Q used for the actual rollout. with tf.variable_scope("perturbed_model", reuse=False): perturbable_policy = q_func(sess, ob_space, ac_space, 1, 1, None, obs_phs=obs_phs) def perturb_vars(original_scope, perturbed_scope): """ We have to wrap this code into a function due to the way tf.cond() works. See https://stackoverflow.com/questions/37063952/confused-by-the-behavior-of-tf-cond for a more detailed
tensorflow.variable_scope
4,051
import tensorflow as tf Input: vecs: A Tensor of shape (batch_size, vec_dim) segment_inds: A Tensor containing the segment index of each vec row, should agree with vecs in shape[0] Output: A tensor of shape (vec_dim) """ if reduction_mode == 'max': print('USING MAX POOLING FOR REDUCTION!') vecs_reduced = tf.segment_max(vecs, segment_inds) elif reduction_mode == 'mean': print('USING AVG POOLING FOR REDUCTION!') vecs_reduced = tf.segment_mean(vecs, segment_inds) vecs_reduced.set_shape([num_segments, vecs.get_shape()[1]]) return vecs_reduced
tensorflow.segment_max
4,052
import tensorflow as tf return n - two, result, two def _double_factorial_loop_condition(n, result, two): return tf.cast(tf.math.count_nonzero(tf.greater_equal(n, two)), tf.bool) def double_factorial(n: TensorLike) -> TensorLike: n = tf.convert_to_tensor(value=n) two = tf.ones_like(n) * 2 result = tf.ones_like(n) _, result, _ = tf.while_loop( cond=_double_factorial_loop_condition, body=_double_factorial_loop_body, loop_vars=[n, result, two])
tensorflow.convert_to_tensor
4,053
import tensorflow as tf if int((tf.__version__).split('.')[1]) < 12 and int((tf.__version__).split('.')[0]) < 1: init = tf.initialize_all_variables()
tensorflow.initialize_all_variables
4,054
from tensorflow.contrib.layers.python.ops import sparse_feature_cross_op """Tests the new version of the fingerprint concatenation has no collisions. """ # Although the last 10 bits of 359 and 1024+359 are identical. # As a result, all the crosses shouldn't collide. t1 = constant_op.constant([[359], [359 + 1024]]) t2 = constant_op.constant([list(range(10)), list(range(10))]) cross = sparse_feature_cross_op.sparse_feature_cross( [t2, t1], hashed_output=True, num_buckets=1024, hash_key=layers.SPARSE_FEATURE_CROSS_DEFAULT_HASH_KEY) cross_dense = sparse_ops.sparse_tensor_to_dense(cross)
tensorflow.contrib.layers.python.ops.sparse_feature_cross_op.sparse_feature_cross
4,055
import tensorflow as tf i, f, o, u = tf.split(axis=1, num_or_size_splits=4, value=z) i = tf.nn.sigmoid(i) f = tf.nn.sigmoid(f) o = tf.nn.sigmoid(o) u = tf.tanh(u) c = f*c + i*u h = o*tf.tanh(_ln(c, gc, bc)) xs[idx] = h
tensorflow.tanh
4,056
import tensorflow as tf next_sentence_labels = tf.reshape(next_sentence_labels, [-1]) next_sentence_accuracy = tf.metrics.accuracy(
tensorflow.metrics.accuracy
4,057
from tensorflow.python.framework import ops if set_shape: ret.set_shape(shape) return ret # NOTE(mrry): Shapes are conditionally set in the Python wrapper. ops.RegisterShape("Variable")(common_shapes.unknown_shape) @ops.RegisterShape("TemporaryVariable") def _TemporaryVariableShape(op): """Shape function for the TemporaryVariable op.""" shape = tensor_util.TensorShapeProtoToList(op.get_attr("shape")) return [tensor_shape.TensorShape(shape)] @ops.RegisterShape("DestroyTemporaryVariable") def _DestroyTemporaryVariableShape(op):
tensorflow.python.framework.ops.RegisterShape
4,058
import tensorflow as tf mask2 = tf.constant([[1, 0], [1, 1]], dtype=tf.float32) mask3 = tf.constant([[1, 1], [1, 1]], dtype=tf.float32)
tensorflow.constant
4,059
from tensorflow.python.framework import ops biases: a 1D tensor. Dimensions: out_units name: A name for the operation (optional). If not specified "xw_plus_b_v1" is used. Returns: A 2-D Tensor computing matmul(x, weights) + biases. Dimensions typically: batch, out_units. """ with ops.op_scope([x, weights, biases], name, "xw_plus_b_v1") as name: x = ops.convert_to_tensor(x, name="x") weights = ops.convert_to_tensor(weights, name="weights") biases = ops.convert_to_tensor(biases, name="biases") mm = math_ops.matmul(x, weights) return bias_add_v1(mm, biases, name=name)
tensorflow.python.framework.ops.op_scope
4,060
from tensorflow.python.framework import ops ops.RegisterShape("Neg")(common_shapes.unchanged_shape) ops.RegisterShape("Real")(common_shapes.unchanged_shape) ops.RegisterShape("Rsqrt")(common_shapes.unchanged_shape) ops.RegisterShape("Sign")(common_shapes.unchanged_shape) ops.RegisterShape("Sin")(common_shapes.unchanged_shape) ops.RegisterShape("Sqrt")(common_shapes.unchanged_shape) ops.RegisterShape("Square")(common_shapes.unchanged_shape) ops.RegisterShape("Sigmoid")(common_shapes.unchanged_shape) ops.RegisterShape("Tanh")(common_shapes.unchanged_shape) ops.RegisterShape("Cast")(common_shapes.unchanged_shape) ops.RegisterShape("ComplexAbs")(common_shapes.unchanged_shape) @ops.RegisterShape("Add") @ops.RegisterShape("Complex") @ops.RegisterShape("Div") @ops.RegisterShape("Equal") @ops.RegisterShape("Greater")
tensorflow.python.framework.ops.RegisterShape
4,061
import tensorflow as tf pair_emb = tf.concat([target_emb, top_antecedent_emb, similarity_emb, feature_emb], 2) # [k, c, emb] with tf.variable_scope("slow_antecedent_scores"): slow_antecedent_scores = util.ffnn(pair_emb, self.config["ffnn_depth"], self.config["ffnn_size"], 1, self.dropout) # [k, c, 1] slow_antecedent_scores = tf.squeeze(slow_antecedent_scores, 2) # [k, c] return slow_antecedent_scores # [k, c] def get_fast_antecedent_scores(self, top_span_emb): with tf.variable_scope("src_projection"): source_top_span_emb = tf.nn.dropout(util.projection(top_span_emb, util.shape(top_span_emb, -1)), self.dropout) # [k, emb] target_top_span_emb = tf.nn.dropout(top_span_emb, self.dropout) # [k, emb] return tf.matmul(source_top_span_emb, target_top_span_emb, transpose_b=True) # [k, k] def flatten_emb_by_sentence(self, emb, text_len_mask): num_sentences = tf.shape(emb)[0] max_sentence_length = tf.shape(emb)[1] emb_rank = len(emb.get_shape()) if emb_rank == 2: flattened_emb = tf.reshape(emb, [num_sentences * max_sentence_length]) elif emb_rank == 3: flattened_emb = tf.reshape(emb, [num_sentences * max_sentence_length, util.shape(emb, 2)]) else: raise ValueError("Unsupported rank: {}".format(emb_rank)) return tf.boolean_mask(flattened_emb, tf.reshape(text_len_mask, [num_sentences * max_sentence_length])) def lstm_contextualize(self, text_emb, text_len, text_len_mask): num_sentences = tf.shape(text_emb)[0] current_inputs = text_emb # [num_sentences, max_sentence_length, emb]
tensorflow.shape
4,062
import tensorflow as tf output_t = linear([cell_output] + [context_t], options.gen_hidden_size, True) with tf.variable_scope('output_projection'): w = tf.get_variable('w', [options.gen_hidden_size, vocab.vocab_size+1], dtype=tf.float32) b = tf.get_variable('b', [vocab.vocab_size +1], dtype=tf.float32) # vocab_scores is the vocabulary distribution before applying softmax.
tensorflow.get_variable
4,063
import tensorflow as tf from six.moves import urllib import tensorflow as tf # from tensorflow.models.image.cifar10 import cifar10_input import convert_to_records as records import numpy as np FLAGS = tf.app.flags.FLAGS # Basic model parameters. tf.app.flags.DEFINE_float('learning_rate', 0.1, 'Initial learning rate.') tf.app.flags.DEFINE_string('pm', '66661', 'pooling scheme across scales. Each number specifies the number of scales remaining at each layer. The first number has to be the same as used in --num_scales.') tf.app.flags.DEFINE_integer('conv_kernel', 5, 'Size of convolutional kernel') tf.app.flags.DEFINE_integer('pool_kernel', 3, 'Size of spatial pooling kernel') tf.app.flags.DEFINE_integer('feats_per_layer', 32, 'Number of feature channels at each layer') tf.app.flags.DEFINE_boolean('total_pool', True, 'If true, pool all feature maps to 1x1 size in final layer') tf.app.flags.DEFINE_integer('pool_stride', '1', 'If 2, we get progressive pooling - with overlap pooling, AlexNet style') TRAIN_FILE = 'train_{}.tfrecords'.format(records.tfrecord_name()) VALIDATION_FILE = 'validation_{}.tfrecords'.format(records.tfrecord_name()) TEST_FILE = 'test_{}.tfrecords'.format(records.tfrecord_name())
tensorflow.app.flags.DEFINE_integer
4,064
import tensorflow as tf return h def embed(X, we): #X [-1,,2] we = convert_gradient_to_tensor(we) e = tf.gather(we, X) h = tf.reduce_sum(e, 2) return h def clf(x, ny, w_init=tf.random_normal_initializer(stddev=0.02), b_init=tf.constant_initializer(0), train=False): with tf.variable_scope('clf'): nx = shape_list(x)[-1] w = tf.get_variable("w", [nx, ny], initializer=w_init) b = tf.get_variable("b", [ny], initializer=b_init) return tf.matmul(x, w)+b def model(X, M, Y, train=False, reuse=False): with tf.variable_scope('model', reuse=reuse): we = tf.get_variable("we", [n_vocab+n_special+n_ctx, n_embd], initializer=tf.random_normal_initializer(stddev=0.02)) we = dropout(we, embd_pdrop, train) #X:[n_batch_train, 2, n_ctx, 2] -> [n_batch_train*2,n_ctx,2] X = tf.reshape(X, [-1, n_ctx, 2]) M = tf.reshape(M, [-1, n_ctx])
tensorflow.get_variable
4,065
from tensorflow.python.platform import test if __name__ == "__main__": test.main()
tensorflow.python.platform.test.main
4,066
import tensorflow as tf run_time = time.time() - start_time print('Run time: ', run_time) print('Time per video: ',run_time/nrof_batches) def load_and_align_data(image_paths, image_size, margin, gpu_memory_fraction): print('Creating networks and loading parameters') with tf.Graph().as_default(): gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=gpu_memory_fraction) sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options, log_device_placement=False)) with sess.as_default(): pnet, rnet, onet = align.detect_face.create_mtcnn(sess, None) nrof_samples = len(image_paths) img_list = [None] * nrof_samples for i in xrange(nrof_samples): print(image_paths[i]) img = misc.imread(os.path.expanduser(image_paths[i])) aligned = misc.imresize(img, (image_size, image_size), interp='bilinear') prewhitened = facenet.prewhiten(aligned) img_list[i] = prewhitened
tensorflow.ConfigProto
4,067
import tensorflow as tf # by the softmax layer's out_weight of shape [num_units,n_classes] # plus out_bias prediction = tf.matmul(outputs[-1], out_weights) + out_bias output_class = tf.nn.softmax(prediction, name="OUTPUT_CLASS")
tensorflow.matmul
4,068
import tensorflow as tf return_dict["end_top_log_probs"] = end_top_log_probs return_dict["end_top_index"] = end_top_index # an additional layer to predict answerability with tf.variable_scope("answer_class"): # get the representation of CLS cls_index = tf.one_hot(cls_index, seq_len, axis=-1, dtype=tf.float32) cls_feature = tf.einsum("lbh,bl->bh", output, cls_index) # get the representation of START start_p = tf.nn.softmax(start_logits_masked, axis=-1, name="softmax_start")
tensorflow.one_hot
4,069
import tensorflow as tf 'Batch size for training and evaluation.') tf.app.flags.DEFINE_boolean( 'use_ohkm', True, 'Wether we will use the ohkm for hard keypoints.') tf.app.flags.DEFINE_string( 'data_format', 'channels_first', # 'channels_first' or 'channels_last' 'A flag to override the data format used in the model. channels_first ' 'provides a performance boost on GPU but is not always compatible '
tensorflow.app.flags.DEFINE_string
4,070
import tensorflow as tf eval_metrics=eval_metrics, scaffold_fn=scaffold_fn, ) else: output_spec = tf.estimator.EstimatorSpec(mode=mode, loss=total_loss) else: raise ValueError("Only TRAIN and EVAL modes are supported: %s" % (mode))
tensorflow.estimator.EstimatorSpec
4,071
import tensorflow as tf dec = tf.layers.max_pooling1d(dec, pool_size=2, strides=1, padding="same") dec = tf.layers.conv1d(dec, embed_size // 2, 3, name="decoder-conv1-1", padding="SAME") dec = tf.nn.relu(tf.layers.batch_normalization(dec, training=self.training)) dec = tf.layers.conv1d(dec, embed_size // 2, 3, name="decoder-conv1-2", padding="SAME") dec = tf.layers.batch_normalization(dec, training=self.training) dec = tf.layers.dense(dec, embed_size // 2) for i in range(4): dec = highwaynet( dec, num_units=embed_size // 2, scope="decoder-highwaynet-{}".format(i) )
tensorflow.layers.dense
4,072
import tensorflow as tf tgt_flat = tf.reshape(horizon_tgt, [-1]) batch = tf.stack([pred_flat, tgt_flat], 1)
tensorflow.stack
4,073
import tensorflow as tf render = False # display the game environment running_reward = None tf.reset_default_graph() ## Define Q-network q(a,s) that ouput the rewards of 4 actions by given state, i.e. Action-Value Function. # 4x4 grid can be represented by one-hot vector with 16 integers. inputs = tf.placeholder(shape=[1, 16], dtype=tf.float32) net = InputLayer(inputs, name='observation') net = DenseLayer(net, n_units=4, act=tf.identity, W_init=tf.random_uniform_initializer(0, 0.01), b_init=None, name='q_a_s') y = net.outputs # action-value / rewards of 4 actions predict = tf.argmax(y, 1) # chose action greedily with reward. in Q-Learning, policy is greedy, so we use "max" to select the next action. ## Below we obtain the loss by taking the sum of squares difference between the target and prediction Q values. nextQ = tf.placeholder(shape=[1, 4], dtype=tf.float32) loss = tl.cost.mean_squared_error(nextQ, y, is_mean=False) # tf.reduce_sum(tf.square(nextQ - y)) train_op = tf.train.GradientDescentOptimizer(learning_rate=0.1).minimize(loss) ## Set learning parameters lambd = .99 # decay factor e = 0.1 # e-Greedy Exploration, the larger the more random num_episodes = 10000 with tf.Session() as sess: tl.layers.initialize_global_variables(sess) for i in range(num_episodes): ## Reset environment and get first new observation episode_time = time.time() s = env.reset() # observation is state, integer 0 ~ 15
tensorflow.placeholder
4,074
import tensorflow as tf # add l2 regularization with tf.name_scope('weight_decay'): add_weight_decay(params['weight_decay']) regularization_loss = tf.losses.get_regularization_loss() # create localization and classification losses losses = ssd.loss(labels, params) tf.losses.add_loss(params['localization_loss_weight'] * losses['localization_loss']) tf.losses.add_loss(params['classification_loss_weight'] * losses['classification_loss']) tf.summary.scalar('regularization_loss', regularization_loss) tf.summary.scalar('localization_loss', losses['localization_loss']) tf.summary.scalar('classification_loss', losses['classification_loss']) total_loss = tf.losses.get_total_loss(add_regularization_losses=True) if mode == tf.estimator.ModeKeys.EVAL:
tensorflow.losses.add_loss
4,075
import tensorflow as tf if use_bias: b = tf.get_variable('b', [out_channel], initializer=b_init) if split == 1: conv = tf.nn.conv2d(inputdata, w, strides, padding, data_format=data_format) else: inputs = tf.split(inputdata, split, channel_axis) kernels = tf.split(w, split, 3) outputs = [tf.nn.conv2d(i, k, strides, padding, data_format=data_format) for i, k in zip(inputs, kernels)] conv = tf.concat(outputs, channel_axis) ret = tf.identity(tf.nn.bias_add(conv, b, data_format=data_format) if use_bias else conv, name=name) return ret
tensorflow.nn.conv2d
4,076
import tensorflow as tf An example with the same label and an augmented version of the image. """ image, label = example['image'], example['label'] image = tf.image.random_flip_left_right(image) image_shape = tf.shape(image) image = tf.pad( image, [[random_crop_pad, random_crop_pad], [random_crop_pad, random_crop_pad], [0, 0]], mode='REFLECT') image = tf.image.random_crop(image, image_shape) return {'image': image, 'label': label} def auto_augmentation(example, dataset_name): """Applies the AutoAugment policy found for the dataset. AutoAugment: Learning Augmentation Policies from Data
tensorflow.image.random_crop
4,077
import tensorflow as tf import tensorflow as tf from scipy.io.wavfile import write from tqdm import tqdm from utils import * # In[2]: def prenet(inputs, num_units=None, is_training=True, scope="prenet"): if num_units is None: num_units = [embed_size, embed_size // 2] with tf.variable_scope(scope): outputs = tf.layers.dense(inputs, units=num_units[0], activation=tf.nn.relu, name="dense1") outputs = tf.layers.dropout( outputs, rate=dropout_rate, training=is_training, name="dropout1" ) outputs = tf.layers.dense(outputs, units=num_units[1], activation=tf.nn.relu, name="dense2") outputs = tf.layers.dropout( outputs, rate=dropout_rate, training=is_training, name="dropout2" ) return outputs def highwaynet(inputs, num_units=None, scope="highwaynet"): if not num_units: num_units = inputs.get_shape()[-1]
tensorflow.layers.dense
4,078
import tensorflow as tf def build_manager(self): with tf.variable_scope('manager'): # Calculate manager internal state
tensorflow.variable_scope
4,079
import tensorflow as tf return final_loss, cstr_pct def contra_traj_lossV4(pred, tgt, horizon=12, resample=1, hard_ratio=1.0): horizon_pred = horizon_sumV1(pred, horizon) horizon_tgt = horizon_sumV1(tgt, horizon) pred_flat = tf.reshape(horizon_pred, [-1]) tgt_flat = tf.reshape(horizon_tgt, [-1]) batch = tf.stack([pred_flat, tgt_flat], 1) sample_func = sample_pair(batch) def sample_compute(_): pairs = sample_func() loss = compute_contra_loss(*pairs, hard_ratio=hard_ratio) pct = tf.math.count_nonzero(loss, dtype=tf.float32) / tf.size(loss, out_type=tf.float32) p = tf.cond(tf.random_uniform((), dtype=tf.float32) < 1e-4, lambda: tf.print('csrt acc ', [pct]), lambda: tf.no_op()) with tf.control_dependencies([p]): return tf.reduce_mean(loss) loss = tf.map_fn(fn=lambda inp: sample_compute(inp), elems=tf.range(resample), dtype=tf.float32, parallel_iterations=32) final_loss = tf.reduce_mean(loss) return final_loss def contra_traj_lossV1(pred, tgt, temp=10.0):
tensorflow.size
4,080
import tensorflow as tf self.hparams.block_dim ], initializer=tf.initializers.variance_scaling(distribution="uniform")) # Create the shadow variables if we are using EMA if self.hparams.ema: self.ema_count = tf.get_variable( "ema_count", [self.hparams.num_blocks, self.hparams.block_v_size], initializer=tf.constant_initializer(0), trainable=False) with tf.colocate_with(self.means): self.ema_means = tf.get_variable( "ema_means", initializer=self.means.initialized_value(), trainable=False)
tensorflow.constant_initializer
4,081
import tensorflow as tf H1 = tf.add(tf.matmul(H, W1), b) H2 = tf.matmul(H, W2) H = tf.tanh(tf.add(H1 * H2, H1)) W1, W2 = weights[-1] b = biases[-1] H1 = tf.add(tf.matmul(H, W1), b) H2 = tf.matmul(H, W2) Y = tf.add(H1 * H2, H1) return Y def fwd_gradients_0(self, U, x): g = tf.gradients(U, x, grad_ys=self.dummy_x0_tf)[0] return tf.gradients(g, self.dummy_x0_tf)[0] def fwd_gradients_1(self, U, x): g = tf.gradients(U, x, grad_ys=self.dummy_x1_tf)[0] return tf.gradients(g, self.dummy_x1_tf)[0] def net_U0(self, x): lambda_1 = self.lambda_1 lambda_2 = tf.exp(self.lambda_2) U = self.neural_net(x, self.weights, self.biases) U_x = self.fwd_gradients_0(U, x) U_xx = self.fwd_gradients_0(U_x, x) U_xxx = self.fwd_gradients_0(U_xx, x) F = -lambda_1*U*U_x - lambda_2*U_xxx U0 = U - self.dt*tf.matmul(F, self.IRK_alpha.T) return U0 def net_U1(self, x):
tensorflow.gradients
4,082
import tensorflow as tf maybe_log2 = tf.cast(maybe_log2, logits.dtype.base_dtype) if logits.get_shape().ndims == 3 and labels.get_shape().ndims < 3: labels = tf.expand_dims(labels, 2) loss_on_positives = losses_utils.weighted_surrogate_loss( labels, logits, surrogate_type, negative_weights=0.0) / maybe_log2 return tf.reduce_sum(weights * (labels - loss_on_positives), 0) def false_positives_upper_bound(labels, logits, weights, surrogate_type): """Calculate an upper bound on the number of false positives.
tensorflow.reduce_sum
4,083
import tensorflow as tf use_hvd=FLAGS.use_hvd) tf.logging.info("***** Running evaluation *****") tf.logging.info(" Batch size = %d", FLAGS.eval_batch_size) eval_input_fn = input_fn_builder( input_files=validation_input_files, max_seq_length=FLAGS.max_seq_length, max_predictions_per_seq=FLAGS.max_predictions_per_seq, is_training=False, batch_size=FLAGS.eval_batch_size, use_hvd=FLAGS.use_hvd) if FLAGS.auto_recover: hooks.append(tf.data.experimental.CheckpointInputPipelineHook(estimator)) train_spec = tf.estimator.TrainSpec(input_fn=train_input_fn, max_steps=FLAGS.num_train_steps, hooks=hooks) eval_spec = tf.estimator.EvalSpec(input_fn=eval_input_fn, steps=FLAGS.max_eval_steps) tf.estimator.train_and_evaluate(estimator, train_spec, eval_spec) if __name__ == "__main__": # flags.mark_flag_as_required("input_file") flags.mark_flag_as_required("bert_config_file") flags.mark_flag_as_required("output_dir") tf.app.run()
tensorflow.estimator.TrainSpec
4,084
import tensorflow as tf self.train_step = None self.post_step = None self.graph = tf.Graph() with self.graph.as_default(): self.head_input = tf.placeholder(tf.int32, shape=[None]) self.rel_input = tf.placeholder(tf.int32, shape=[None]) self.tail_input = tf.placeholder(tf.int32, shape=[None]) self.target = tf.placeholder(tf.float32, shape=[None]) def _create_model(self, train_triples): ''' Subclasses must build Graph and set self.train_step ''' raise Exception('subclass must implement')
tensorflow.placeholder
4,085
import tensorflow as tf # generates random numbers at graph definition time. max_offset_height = control_flow_ops.with_dependencies( asserts, tf.reshape(image_height - crop_height + 1, [])) max_offset_width = control_flow_ops.with_dependencies( asserts, tf.reshape(image_width - crop_width + 1, [])) offset_height = tf.random_uniform( [], maxval=max_offset_height, dtype=tf.int32) offset_width = tf.random_uniform( [], maxval=max_offset_width, dtype=tf.int32)
tensorflow.random_uniform
4,086
import tensorflow as tf inputs=inputs, filters=filters, kernel_size=1, strides=1, data_format=data_format) inputs = batch_norm(inputs, training, data_format) inputs = tf.nn.relu(inputs) inputs = conv2d_fixed_padding( inputs=inputs, filters=filters, kernel_size=3, strides=strides, data_format=data_format)
tensorflow.nn.relu
4,087
import tensorflow as tf if other_inputs is not None: encoder_inputs_ = tf.concat([encoder_inputs_, other_inputs], axis=2) if encoder.use_dropout: noise_shape = [1, time_steps, 1] if encoder.pervasive_dropout else [batch_size, time_steps, 1] encoder_inputs_ = tf.nn.dropout(encoder_inputs_, keep_prob=encoder.word_keep_prob, noise_shape=noise_shape) size = tf.shape(encoder_inputs_)[2] noise_shape = [1, 1, size] if encoder.pervasive_dropout else [batch_size, time_steps, size]
tensorflow.nn.dropout
4,088
import tensorflow as tf z_dim = 10 batch_size = 100 n_epochs = 1000 learning_rate = 0.001 beta1 = 0.9 results_path = './Results/Semi_Supervised' n_labels = 10 n_labeled = 1000 # Placeholders for input data and the targets x_input = tf.placeholder(dtype=tf.float32, shape=[batch_size, input_dim], name='Input') x_input_l = tf.placeholder(dtype=tf.float32, shape=[batch_size, input_dim], name='Labeled_Input') y_input = tf.placeholder(dtype=tf.float32, shape=[batch_size, n_labels], name='Labels') x_target = tf.placeholder(dtype=tf.float32, shape=[batch_size, input_dim], name='Target') real_distribution = tf.placeholder(dtype=tf.float32, shape=[batch_size, z_dim], name='Real_distribution') categorial_distribution = tf.placeholder(dtype=tf.float32, shape=[batch_size, n_labels], name='Categorical_distribution') manual_decoder_input = tf.placeholder(dtype=tf.float32, shape=[1, z_dim + n_labels], name='Decoder_input')
tensorflow.placeholder
4,089
import tensorflow as tf with tf.compat.v1.name_scope(name, 'count_per_key'):
tensorflow.compat.v1.name_scope
4,090
import tensorflow.contrib.eager as tfe class EagerSpinnSNLIClassifierBenchmark(test.Benchmark): def benchmarkEagerSpinnSNLIClassifier(self): test_device = "gpu:0" if tfe.num_gpus() else "cpu:0" with tf.device(test_device): burn_in_iterations = 2 benchmark_iterations = 10
tensorflow.contrib.eager.num_gpus
4,091
import tensorflow as tf # but that is the same as doing a reduce_mean. We do a reduce_mean # here because it performs better than AveragePooling2D. axes = [2, 3] if self.data_format == 'channels_first' else [1, 2] inputs = tf.reduce_mean(inputs, axes, keepdims=True) inputs = tf.identity(inputs, 'final_reduce_mean') inputs = tf.reshape(inputs, [-1, self.final_size])
tensorflow.identity
4,092
import tensorflow as tf encoder_input_length_ = (encoder_input_length_ + stride - 1) // stride # rounding up last_backward = encoder_outputs_[:, 0, cell_output_size:] indices = tf.stack([tf.range(batch_size), encoder_input_length_ - 1], axis=1) last_forward = tf.gather_nd(encoder_outputs_[:, :, :cell_output_size], indices) last_forward.set_shape([None, cell_output_size]) if encoder.final_state == 'concat_last': # concats last states of all backward layers (full LSTM states)
tensorflow.gather_nd
4,093
import tensorflow as tf tf.app.flags.DEFINE_integer('batch_size', 32, "the number of examples in a batch") tf.app.flags.DEFINE_integer('ul_batch_size', 128, "the number of unlabeled examples in a batch") tf.app.flags.DEFINE_integer('eval_batch_size', 100, "the number of eval examples in a batch") tf.app.flags.DEFINE_integer('eval_freq', 5, "") tf.app.flags.DEFINE_integer('num_epochs', 120, "the number of epochs for training") tf.app.flags.DEFINE_integer('epoch_decay_start', 80, "epoch of starting learning rate decay") tf.app.flags.DEFINE_integer('num_iter_per_epoch', 400, "the number of updates per epoch") tf.app.flags.DEFINE_float('learning_rate', 0.001, "initial leanring rate") tf.app.flags.DEFINE_float('mom1', 0.9, "initial momentum rate") tf.app.flags.DEFINE_float('mom2', 0.5, "momentum rate after epoch_decay_start") tf.app.flags.DEFINE_string('method', 'vat', "{vat, vatent, baseline}")
tensorflow.app.flags.DEFINE_integer
4,094
import tensorflow as tf # Update variables grads_and_vars = list(zip(gradients, variables)) with tf.control_dependencies([collect_op]): train_op = opt.apply_gradients(grads_and_vars, global_step)
tensorflow.control_dependencies
4,095
import tensorflow as tf int(s_w/ns0), int(s_w/ns0/ns1), int(s_w/ns0/ns1/ns2), int(s_w/ns0/ns1/ns2/ns3) def decode(z, skip_h3, skip_h2, skip_h1, skip_h0): z_ = lrelu(linear(tf.nn.dropout(z, keep_prob), nf3*s_h3*s_w3, 'd_h0_lin')) h0 = tf.nn.dropout(tf.reshape(z_, [-1, s_h3, s_w3, nf3]), keep_prob) h1 = lrelu(deconv2d(tf.concat([h0, skip_h3], 3), [self.batch_size, s_h2, s_w2, nf2], name='d_h1', d_h=ns3, d_w=ns3)) h2 = lrelu(deconv2d(tf.concat([h1, skip_h2], 3), [self.batch_size, s_h1, s_w1, nf1], name='d_h2', d_h=ns2, d_w=ns2)) h3 = lrelu(deconv2d(tf.concat([h2, skip_h1], 3), [self.batch_size, s_h0, s_w0, nf0], name='d_h3', d_h=ns1, d_w=ns1)) print(h3.get_shape()) h4 = deconv2d(tf.concat([h3, skip_h0], 3), [self.batch_size, s_h, s_w, self.c_dim], name='d_h4', d_h=ns0, d_w=ns0)
tensorflow.concat
4,096
import tensorflow as tf tf.summary.scalar(name='Generator Loss', tensor=generator_loss) tf.summary.scalar(name='Supervised Encoder Loss', tensor=supervised_encoder_loss) tf.summary.histogram(name='Encoder Gauss Distribution', values=encoder_output_latent) tf.summary.histogram(name='Real Gauss Distribution', values=real_distribution) tf.summary.histogram(name='Encoder Categorical Distribution', values=encoder_output_label) tf.summary.histogram(name='Real Categorical Distribution', values=categorial_distribution) tf.summary.image(name='Input Images', tensor=input_images, max_outputs=10) tf.summary.image(name='Generated Images', tensor=generated_images, max_outputs=10) summary_op = tf.summary.merge_all() # Saving the model saver = tf.train.Saver() step = 0 with tf.Session() as sess:
tensorflow.summary.image
4,097
import tensorflow as tf tf.cond(reset_ph, lambda: perturb_vars(original_scope="q_func", perturbed_scope="perturbed_q_func"), lambda: tf.group(*[])), tf.cond(update_param_noise_scale_ph, lambda: update_scale(), lambda: tf.Variable(0., trainable=False)),
tensorflow.Variable
4,098
from tensorflow.python.framework import ops @ops.RegisterShape("All") @ops.RegisterShape("Any")
tensorflow.python.framework.ops.RegisterShape
4,099