seed
stringlengths
25
2.89k
seed_api
stringlengths
14
102
index
int64
0
14.8k
import tensorflow as tf encoder_inputs_ = tf.nn.dropout(encoder_inputs_, keep_prob=encoder.word_keep_prob, noise_shape=noise_shape) size = tf.shape(encoder_inputs_)[2] noise_shape = [1, 1, size] if encoder.pervasive_dropout else [batch_size, time_steps, size] encoder_inputs_ = tf.nn.dropout(encoder_inputs_, keep_prob=encoder.embedding_keep_prob, noise_shape=noise_shape) if encoder.input_layers: for j, layer_size in enumerate(encoder.input_layers):
tensorflow.nn.dropout
4,300
import tensorflow as tf # Apply 1 x 1 convolution to each half separately W_half_1 = self._make_var('W_half_1', (1, 1, in_ch, out_ch >> 1)) X_half_1 = tf.nn.conv2d(half_1, W_half_1, (1, 1, 1, 1), padding='VALID') W_half_2 = self._make_var('W_half_2', (1, 1, in_ch, out_ch >> 1))
tensorflow.nn.conv2d
4,301
import tensorflow as tf tf.global_variables(), sharded=True, max_to_keep=10, keep_checkpoint_every_n_hours=2, defer_build=False, save_relative_paths=True) tf.add_to_collection(tf.GraphKeys.SAVERS, saver) saver_listener = mtf.MtfCheckpointSaverListener(lowering) saver_hook = tf.train.CheckpointSaverHook( hparams.model_dir, save_steps=1000, saver=saver, listeners=[saver_listener]) # EVAL mode if mode == tf.estimator.ModeKeys.EVAL:
tensorflow.train.CheckpointSaverHook
4,302
import tensorflow as tf loss: A tensor for triplet loss. Shape = []. summaries: A dictionary for loss and batch statistics summaries. """ def maybe_expand_sample_dim(embeddings): if len(embeddings.shape.as_list()) == 2: return tf.expand_dims(embeddings, axis=-2) return embeddings anchor_embeddings = maybe_expand_sample_dim(anchor_embeddings) positive_embeddings = maybe_expand_sample_dim(positive_embeddings) match_embeddings = maybe_expand_sample_dim(match_embeddings)
tensorflow.expand_dims
4,303
import tensorflow as tf def train(self, iterations, validation_interval=100, output_dir=None, save_interval=None, checkpoint_path=None, keep_checkpoints=1): assert 'training' in self.datasets, 'Training dataset is required.' if output_dir is not None: train_writer = tf.summary.FileWriter(output_dir) if not hasattr(self, 'saver'): with tf.device('/cpu:0'): self.saver = tf.train.Saver(save_relative_paths=True, max_to_keep=keep_checkpoints)
tensorflow.summary.FileWriter
4,304
import tensorflow as tf tf.constant(config.global_norm_lvalues, dtype=tf.int64)), 0) rnorm_table = tf.contrib.lookup.HashTable(tf.contrib.lookup.KeyValueTensorInitializer(tf.constant(config.global_norm_key, dtype=tf.int64), tf.constant(config.global_norm_rvalues, dtype=tf.int64)), 1) else:
tensorflow.constant
4,305
import tensorflow as tf if gpu_idx == 0: update = tf.assign(num_error_rate, num_error_rate + 1.) with tf.control_dependencies([update]): tc = tf.maximum(.01, 1. / num_error_rate) update = tf.assign(avg_error_rate, (1. - tc) * avg_error_rate + tc * self.error_rate) with tf.control_dependencies([update]): self.d_loss_class = tf.identity(self.d_loss_class) self.d_loss_fake = tf.nn.sigmoid_cross_entropy_with_logits( logits=self.end_points_D['D_on_G_logits'], labels=tf.zeros_like(self.end_points_D['D_on_G_logits'])) self.d_loss_class = tf.reduce_mean(self.d_loss_class) self.d_loss_real = tf.reduce_mean(self.d_loss_real) self.d_loss_fake = tf.reduce_mean(self.d_loss_fake) if is_fm_loss: global_pool_head = self.end_points_D['global_pool'] real_data_features = tf.slice(global_pool_head, [0, 0], [batch_size_train, num_classes]) fake_data_features = tf.slice(global_pool_head, [batch_size_train, 0], [batch_size_train, num_classes]) self.g_loss = self._feature_matching_loss(real_data_features, fake_data_features) else: generator_target_prob = self.cnf['generator_target_prob'] # 0.75 / 2.0 self.g_loss = self._sigmoid_kl_with_logits(self.end_points_D['D_on_G_logits'], generator_target_prob)
tensorflow.reduce_mean
4,306
import tensorflow as tf inputs=embed_inputs, dtype=tf.float32, sequence_length=self.seq_len, ) ## (batch_size, seq_len, num_hidden) # rnn_outputs = tf.transpose(rnn_outputs, perm=[1,0,2]) ## (seq_len, batch_size, num_hidden) NOT NEEDED ANY MORE last_outputs = self.last_relevant(rnn_outputs, self.seq_len) ## (batch_size, num_hidden) with tf.variable_scope('output', reuse=forward_only): with tf.variable_scope('softmax'): W = tf.get_variable('W', [self.num_hidden, self.num_classes], # initializer=tf.random_uniform_initializer(-0.003, 0.003)) initializer=tf.contrib.layers.xavier_initializer()) # initializer=tf.truncated_normal_initializer(stddev=0.1)) b = tf.get_variable('b', [self.num_classes], initializer=tf.constant_initializer(0.1)) logits = tf.matmul(last_outputs, W) + b self.embed_inputs = embed_inputs return logits def loss(self, logits, forward_only=None): cost = tf.nn.softmax_cross_entropy_with_logits(logits=logits, labels=tf.cast(self.y, tf.float32)) mean_cost = tf.reduce_mean(cost) y_pred = tf.argmax(logits, 1)
tensorflow.contrib.layers.xavier_initializer
4,307
import tensorflow as tf # Create a saver that will keep the last 2 checkpoints plus one every 0.7 # seconds. start_time = time.time() save = tf.train.Saver({"v": v}, max_to_keep=2, keep_checkpoint_every_n_hours=0.7 / 3600) self.assertEqual([], save.last_checkpoints)
tensorflow.train.Saver
4,308
import tensorflow as tf
tensorflow.variable_scope
4,309
import tensorflow as tf trans_z = linear(trans_h0, featsize, 'trans_z') self.translated_z = trans_z with tf.variable_scope("deconv") as scope: s_h, s_w = self.output_height, self.output_width s_h2, s_h4, s_h8, s_h16 = \
tensorflow.variable_scope
4,310
import tensorflow as tf target_train = [x for ix, x in enumerate(target) if ix in train_indices] target_test = [x for ix, x in enumerate(target) if ix in test_indices] # Setup Index Matrix for one-hot-encoding identity_mat = tf.diag(tf.ones(shape=[embedding_size])) # Create variables for logistic regression A = tf.Variable(tf.random_normal(shape=[embedding_size,1])) b = tf.Variable(tf.random_normal(shape=[1,1])) # Initialize placeholders x_data = tf.placeholder(shape=[sentence_size], dtype=tf.int32) y_target = tf.placeholder(shape=[1, 1], dtype=tf.float32) # Text-Vocab Embedding x_embed = tf.nn.embedding_lookup(identity_mat, x_data) x_col_sums = tf.reduce_sum(x_embed, 0) # Declare model operations x_col_sums_2D = tf.expand_dims(x_col_sums, 0) model_output = tf.add(tf.matmul(x_col_sums_2D, A), b) # Declare loss function (Cross Entropy loss) loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=model_output, labels=y_target)) # Prediction operation prediction = tf.sigmoid(model_output) # Declare optimizer my_opt = tf.train.GradientDescentOptimizer(0.001)
tensorflow.nn.embedding_lookup
4,311
import tensorflow as tf tf.tile(tf.reshape(tf.range(0, num_ratings), [num_ratings, 1]), [1, num_ratings])) repeat_op_sq = tf.square((repeat_op - tf.transpose(repeat_op))) weights = repeat_op_sq / tf.to_float((num_ratings - 1)**2) pred_ = predictions**y_pow try: pred_norm = pred_ / \ (eps + tf.reshape(tf.reduce_sum(pred_, 1), [-1, 1])) except Exception: pred_norm = pred_ / \ (eps + tf.reshape(tf.reduce_sum(pred_, 1), [batch_size, 1])) hist_rater_a = tf.reduce_sum(pred_norm, 0) hist_rater_b = tf.reduce_sum(labels, 0) conf_mat = tf.matmul(tf.transpose(pred_norm), labels) nom = tf.reduce_sum(weights * conf_mat) denom = tf.reduce_sum(weights * tf.matmul( tf.reshape(hist_rater_a, [num_ratings, 1]), tf.reshape(hist_rater_b, [1, num_ratings])) /
tensorflow.reduce_sum
4,312
import tensorflow as tf def input_fn_builder( input_files, max_seq_length, max_predictions_per_seq, is_training, num_cpu_threads=4 ): """Creates an `input_fn` closure to be passed to TPUEstimator.""" def input_fn(params): """The actual input function.""" batch_size = params["batch_size"] name_to_features = { "input_ids": tf.FixedLenFeature([max_seq_length], tf.int64), "input_mask": tf.FixedLenFeature([max_seq_length], tf.int64), "segment_ids": tf.FixedLenFeature([max_seq_length], tf.int64), "masked_lm_positions": tf.FixedLenFeature( [max_predictions_per_seq], tf.int64 ), "masked_lm_ids": tf.FixedLenFeature([max_predictions_per_seq], tf.int64), "masked_lm_weights": tf.FixedLenFeature( [max_predictions_per_seq], tf.float32 ), "next_sentence_labels": tf.FixedLenFeature([1], tf.int64), } # For training, we want a lot of parallel reading and shuffling. # For eval, we want no shuffling and parallel reading doesn't matter. if is_training: d = tf.data.Dataset.from_tensor_slices(tf.constant(input_files))
tensorflow.FixedLenFeature
4,313
import tensorflow as tf tf.scalar_summary(loss.op.name, loss)
tensorflow.scalar_summary
4,314
import tensorflow as tf def keep_prob(dropout, train): return tf.cond(train, lambda: tf.constant(dropout), lambda: tf.constant(1.))
tensorflow.constant
4,315
import tensorflow as tf log_probs = tf.reduce_sum(log_probs, 3) + \
tensorflow.reduce_sum
4,316
import tensorflow as tf dtype=tf.float32, initializer=tf.constant_initializer( self.vocab.char_embeddings[:2], dtype=tf.float32), trainable=True) self.char_mat = tf.concat([self.char_pad_unk_mat, self.pretrained_char_mat], axis=0) else: self.word_mat = tf.get_variable( 'word_embeddings', shape=[self.vocab.word_size(), self.vocab.word_embed_dim],
tensorflow.concat
4,317
import tensorflow as tf with tf.name_scope("softmax_linear"): weights = tf.Variable( tf.truncated_normal([32, 10], stddev=1.0 / math.sqrt(float(32))), name="weights") biases = tf.Variable(tf.zeros([10]), name="biases") logits = tf.matmul(hidden2, weights) + biases tf.add_to_collection("logits", logits) # Runs to logit. tf.initialize_all_variables().run() sess.run(logits) # Creates a saver. saver0 = tf.train.Saver() saver0.save(sess, saver0_ckpt) # Generates MetaGraphDef. saver0.export_meta_graph(filename) def _testGraphExtensionRestore(self): test_dir = os.path.join(self.get_temp_dir(), "graph_extension") filename = os.path.join(test_dir, "metafile")
tensorflow.initialize_all_variables
4,318
import tensorflow as tf class TransposedConv2d(object): def __init__(self,name,input_dim,out_dim, k_h=4,k_w=4,d_h=2,d_w=2,stddev=0.02,data_format='NCHW') : with tf.variable_scope(name) : self.w = tf.get_variable('w', [k_h, k_w, out_dim, input_dim], initializer=tf.random_normal_initializer(stddev=stddev)) self.b = tf.get_variable('b',[out_dim], initializer=tf.constant_initializer(0.0)) self.data_format = data_format if( data_format =='NCHW' ): self.strides = [1, 1, d_h, d_w] else:
tensorflow.constant_initializer
4,319
import tensorflow as tf for use_tensor in [True, False]: with self.test_session() as sess: var = tf.Variable(1.0, name="var0") save = tf.train.Saver({var.op.name: var}) var.initializer.run() if use_tensor: global_step = tf.constant(global_step_int) val = save.save(sess, save_path, global_step=global_step) else: val = save.save(sess, save_path, global_step=global_step_int) expected_save_path = "%s-%d" % (save_path, global_step_int) self.assertEqual(expected_save_path, val)
tensorflow.constant
4,320
import tensorflow as tf self.mixed_label = tf.gather(self.mixed_label, mixed_idx) self.mixed_pred, mixed_end_points = self.get_pred(self.mixed_pc) self.mixed_loss = self.get_loss(self.mixed_pred, self.mixed_label, mixed_end_points) with tf.variable_scope('discriminator') as scope: self.real_prob, self.real_logit = self.discriminator(self.real_pc_rotated, scope=scope, **disc_kwargs) self.synthetic_prob, self.synthetic_logit = self.discriminator(self.gen_out_rotated, reuse=True, scope=scope, **disc_kwargs) # Compute WGAN losses self.loss_d = tf.reduce_mean(self.synthetic_logit) - tf.reduce_mean(self.real_logit) # comparing rotated fake and real images self.loss_g = -tf.reduce_mean(self.synthetic_logit) # Add rotation loss if self.ms_task: self.g_ms_loss = tf.abs(self.gen_out_rot_loss - self.real_pc_rot_loss, name = 'abs') self.d_ms_loss = self.mixed_loss self.loss_d_rot = self.loss_d + self.weight_rotation_loss_d * self.d_ms_loss self.loss_g_rot = self.loss_g + self.weight_rotation_loss_g * self.g_ms_loss else: self.loss_d_rot = self.loss_d + self.weight_rotation_loss_d * self.real_pc_rot_loss self.loss_g_rot = self.loss_g + self.weight_rotation_loss_g * self.gen_out_rot_loss # Compute gradient penalty at interpolated points ndims = self.real_pc.get_shape().ndims #(1024, 3) alpha = tf.random_uniform(shape=[self.batch_size] + [1] * (ndims - 1), minval=0., maxval=1.) differences = self.generator_out - self.real_pc interpolates = self.real_pc + (alpha * differences) with tf.variable_scope('discriminator') as scope:
tensorflow.abs
4,321
from tensorflow.python.framework import ops @ops.RegisterShape("SegmentMean") @ops.RegisterShape("SegmentMin") @ops.RegisterShape("SegmentProd") @ops.RegisterShape("SegmentSum") def _SegmentReductionShape(op): """Common shape function for segment reduction ops.""" data_shape = op.inputs[0].get_shape() segment_ids_shape = op.inputs[1].get_shape() segment_ids_shape.assert_has_rank(1) return [tensor_shape.TensorShape([None]).concatenate(data_shape[1:])] @ops.RegisterShape("SparseSegmentMean") @ops.RegisterShape("SparseSegmentSum") def _SparseSegmentReductionShape(op): """Common shape function for sparse segment reduction ops.""" data_shape = op.inputs[0].get_shape() indices_shape = op.inputs[1].get_shape() indices_shape.assert_has_rank(1) segment_ids_shape = op.inputs[2].get_shape() segment_ids_shape.assert_has_rank(1) indices_shape.assert_is_compatible_with(segment_ids_shape) return [tensor_shape.TensorShape([None]).concatenate(data_shape[1:])]
tensorflow.python.framework.ops.RegisterShape
4,322
from tensorflow.python.ops import init_ops return self._num_units def __call__(self, inputs, state, att_score): return self.call(inputs, state, att_score) def call(self, inputs, state, att_score=None): """Gated recurrent unit (GRU) with nunits cells.""" if self._gate_linear is None: bias_ones = self._bias_initializer if self._bias_initializer is None: bias_ones = init_ops.constant_initializer(1.0, dtype=inputs.dtype) with vs.variable_scope("gates"): # Reset gate and update gate. self._gate_linear = _Linear( [inputs, state], 2 * self._num_units, True, bias_initializer=bias_ones, kernel_initializer=self._kernel_initializer)
tensorflow.python.ops.init_ops.constant_initializer
4,323
import tensorflow as tf @staticmethod def last_relevant(outputs, length): # Borrowed from: https://gist.github.com/rockt/f4f9df5674f3da6a32786bcf9fbb6a88 batch_size, max_length, hidden_size = tf.unstack(tf.shape(outputs)) index = tf.range(0, batch_size) * max_length + (tf.cast(length, tf.int32) - 1) flat = tf.reshape(outputs, [-1, hidden_size]) relevant = tf.gather(flat, index) return relevant
tensorflow.gather
4,324
import tensorflow as tf self.Y = tf.placeholder(tf.float32, (None, None, n_mels * resampled)) self.decoder_inputs = tf.concat((tf.zeros_like(self.Y[:, :1, :]), self.Y[:, :-1, :]), 1) self.decoder_inputs = self.decoder_inputs[:, :, -n_mels:] self.Z = tf.placeholder(tf.float32, (None, None, fourier_window_size // 2 + 1)) batch_size = tf.shape(self.X)[0] seq_lens = tf.count_nonzero(tf.reduce_sum(self.decoder_inputs, -1), 1, dtype=tf.int32) + 1 def cells(reuse=False): return tf.contrib.rnn.DropoutWrapper( tf.nn.rnn_cell.LSTMCell( size_layers, initializer=tf.orthogonal_initializer(), reuse=reuse
tensorflow.reduce_sum
4,325
import tensorflow as tf file_based_convert_examples_to_features( train_examples, label_list, FLAGS.max_seq_length, tokenizer, train_file) tf.logging.info("***** Running training *****") tf.logging.info(" Num examples = %d", len(train_examples)) tf.logging.info(" Batch size = %d", FLAGS.train_batch_size) tf.logging.info(" Num steps = %d", num_train_steps) train_input_fn = file_based_input_fn_builder( input_file=train_file, seq_length=FLAGS.max_seq_length, is_training=True,
tensorflow.logging.info
4,326
import tensorflow as tf output_data = tf.nn.bias_add(tf.matmul(output_data, expand_W), expand_b) output_data = tf.nn.elu(output_data) current_size = output_sizes[i] #expand_W = tf.get_variable("final_W", [current_size, 1]) #expand_b = tf.get_variable("final_b" , [1]) #output_data = tf.nn.bias_add(tf.matmul(output_data, expand_W), expand_b) return output_data output_propensity_list = [] for i in range(list_size): # Add position information (one-hot vector) click_feature = [tf.expand_dims(tf.zeros_like(self.labels[i]) , -1) for _ in range(4*list_size)] click_feature[i] = tf.expand_dims(tf.ones_like(self.labels[i]) , -1) # click_feature[list_size:]=[tf.expand_dims(tf.zeros_like(self.labels[i]) , -1) for _ in range(3*list_size)] click_feature[list_size:list_size+i] =[tf.expand_dims(self.labels[k] , -1) for k in range(i-1,-1,-1)] click_feature[2*list_size:2*list_size+i+1]=[tf.expand_dims(self.types[k] , -1) for k in range(i,-1,-1)] click_feature[3*list_size:3*list_size+list_size-i-1]=[tf.expand_dims(self.types[k] , -1) for k in range(i+1,list_size)] # Predict propensity with a simple network output_propensity_list.append(propensity_network(tf.concat(click_feature, 1), i)) self.click_show=[click_feature[h][0] for h in range(4*list_size)] return tf.concat(output_propensity_list,1) def step(self, session, input_feed, forward_only): """Run a step of the model feeding the given inputs.
tensorflow.ones_like
4,327
import tensorflow as tf # of examples must be a multiple of the batch size, or else examples # will get dropped. So we pad with fake examples which are ignored # later on. while len(predict_examples) % FLAGS.predict_batch_size != 0: predict_examples.append(PaddingInputExample()) predict_file = os.path.join(FLAGS.output_dir, "predict.tf_record") file_based_convert_examples_to_features(predict_examples, label_list, FLAGS.max_seq_length, tokenizer, predict_file) tf.logging.info("***** Running prediction*****") tf.logging.info(" Num examples = %d (%d actual, %d padding)", len(predict_examples), num_actual_predict_examples, len(predict_examples) - num_actual_predict_examples) tf.logging.info(" Batch size = %d", FLAGS.predict_batch_size) predict_drop_remainder = True if FLAGS.use_tpu else False predict_input_fn = file_based_input_fn_builder( input_file=predict_file, seq_length=FLAGS.max_seq_length, is_training=False, drop_remainder=predict_drop_remainder) result = estimator.predict(input_fn=predict_input_fn) output_predict_file = os.path.join(FLAGS.output_dir, "test_results.tsv") with tf.gfile.GFile(output_predict_file, "w") as writer: num_written_lines = 0 tf.logging.info("***** Predict results *****")
tensorflow.logging.info
4,328
import tensorflow as tf # compute the error (potentially clipped) td_error = q_t_selected - tf.stop_gradient(q_t_selected_target) errors = tf_util.huber_loss(td_error) weighted_error = tf.reduce_mean(importance_weights_ph * errors) tf.summary.scalar("td_error", tf.reduce_mean(td_error)) tf.summary.scalar("loss", weighted_error)
tensorflow.reduce_mean
4,329
from tensorflow.contrib.learn.python.learn import ops from tensorflow.python.platform import test class OpsTest(test.TestCase): """Ops tests.""" def test_softmax_classifier(self): with self.cached_session() as session: features = array_ops.placeholder(dtypes.float32, [None, 3]) labels = array_ops.placeholder(dtypes.float32, [None, 2]) weights = constant_op.constant([[0.1, 0.1], [0.1, 0.1], [0.1, 0.1]]) biases = constant_op.constant([0.2, 0.3]) class_weight = constant_op.constant([0.1, 0.9]) prediction, loss = ops.softmax_classifier(features, labels, weights, biases, class_weight) self.assertEqual(prediction.get_shape()[1], 2) self.assertEqual(loss.get_shape(), []) value = session.run(loss, {features: [[0.2, 0.3, 0.2]], labels: [[0, 1]]}) self.assertAllClose(value, 0.55180627) def test_embedding_lookup(self): d_embed = 5 n_embed = 10 ids_shape = (2, 3, 4) embeds = np.random.randn(n_embed, d_embed) ids = np.random.randint(0, n_embed, ids_shape)
tensorflow.contrib.learn.python.learn.ops.softmax_classifier
4,330
import tensorflow as tf flags.DEFINE_string("optimizer", "adamw", "Optimizer to use") tf.flags.DEFINE_string( "tpu_name", None, "The Cloud TPU to use for training. This should be either the name "
tensorflow.flags.DEFINE_string
4,331
import tensorflow as tf pi_dropout_mask_phs = pi_dropout_mask_generator.generate_dropout_mask_placeholders() pi, pi_reg = mlp_variational(x, pi_dropout_mask_phs, list(hidden_sizes) + [act_dim], activation, output_activation, dropout_rate) pi = act_limit * pi with tf.variable_scope('q1'): q1_in_ph = tf.concat([x, a], axis=-1) q1_in_dim = q1_in_ph.shape.as_list()[1] q1_dropout_mask_generator = DropoutMaskGenerator(q1_in_dim, hidden_sizes, model_prob=1.0 - dropout_rate) q1_dropout_mask_phs = q1_dropout_mask_generator.generate_dropout_mask_placeholders()
tensorflow.concat
4,332
import tensorflow as tf with self.assertRaisesWithPredicateMatch( IOError, lambda e: "does not exist"): tf.train.import_meta_graph(filename) def testSliceVariable(self): test_dir = self._TestDir("slice_saver") filename = os.path.join(test_dir, "metafile") with self.test_session(): v1 = tf.Variable([20.0], name="v1") v2 = tf.Variable([20.0], name="v2") v2._set_save_slice_info(tf.Variable.SaveSliceInfo("v1", [1], [0], [1])) # The names are different and will work. slice_saver = tf.train.Saver({"first": v1, "second": v2}) tf.initialize_all_variables().run() # Exports to meta_graph meta_graph_def = slice_saver.export_meta_graph(filename) with tf.Graph().as_default(): # Restores from MetaGraphDef.
tensorflow.Variable.SaveSliceInfo
4,333
import tensorflow as tf lambda: tf.no_op()) with tf.control_dependencies([p]): return tf.reduce_mean(loss) loss = tf.map_fn(fn=lambda inp: sample_compute(inp), elems=tf.range(resample), dtype=tf.float32, parallel_iterations=32) final_loss = tf.reduce_mean(loss) return final_loss def contra_traj_lossV1(pred, tgt, temp=10.0): # Trajectory-wise contrastive loss traj_pred = tf.reduce_mean(pred, axis=1) traj_tgt = tf.reduce_mean(tgt, axis=1) p1, p2 = tf.split(traj_pred, 2, axis=0) t1, t2 = tf.split(traj_tgt, 2, axis=0) soft_sign = tf.tanh((t1 - t2) * temp) loss = tf.maximum(0.0, soft_sign * ((t1 - t2) - (p1 - p2))) loss = tf.reduce_mean(loss) return loss def horizon_sumV1(input, horizon=12): bs, epi_len = input.shape[:2] new_w = epi_len - horizon + 1
tensorflow.reduce_mean
4,334
from tensorflow.contrib.eager.python.examples.linear_regression import linear_regression it.next() def testLinearRegression(self): true_w = [[1.0], [-0.5], [2.0]] true_b = [1.0] model = linear_regression.LinearModel() dataset = linear_regression.synthetic_dataset( true_w, true_b, noise_level=0., batch_size=64, num_batches=40) with tf.device(device()): optimizer = tf.train.GradientDescentOptimizer(learning_rate=0.1) linear_regression.fit(model, dataset, optimizer, logdir=self._tmp_logdir) self.assertAllClose(true_w, model.variables[0].numpy(), rtol=1e-2) self.assertAllClose(true_b, model.variables[1].numpy(), rtol=1e-2) self.assertTrue(glob.glob(os.path.join(self._tmp_logdir, "events.out.*"))) class EagerLinearRegressionBenchmark(tf.test.Benchmark): def benchmarkEagerLinearRegression(self): num_epochs = 10 num_batches = 200
tensorflow.contrib.eager.python.examples.linear_regression.linear_regression.fit
4,335
import tensorflow as tf net = InputLayer(inputs, name='observation') net = DenseLayer(net, n_units=4, act=tf.identity, W_init=tf.random_uniform_initializer(0, 0.01), b_init=None, name='q_a_s') y = net.outputs # action-value / rewards of 4 actions predict = tf.argmax(y, 1) # chose action greedily with reward. in Q-Learning, policy is greedy, so we use "max" to select the next action. ## Below we obtain the loss by taking the sum of squares difference between the target and prediction Q values. nextQ = tf.placeholder(shape=[1, 4], dtype=tf.float32) loss = tl.cost.mean_squared_error(nextQ, y, is_mean=False) # tf.reduce_sum(tf.square(nextQ - y)) train_op = tf.train.GradientDescentOptimizer(learning_rate=0.1).minimize(loss) ## Set learning parameters lambd = .99 # decay factor e = 0.1 # e-Greedy Exploration, the larger the more random num_episodes = 10000 with tf.Session() as sess: tl.layers.initialize_global_variables(sess) for i in range(num_episodes):
tensorflow.train.GradientDescentOptimizer
4,336
import tensorflow as tf wrong = tf.to_float(tf.logical_not(tf.nn.in_top_k(logits, label, 1)), name='incorrect_vector') summary.add_moving_summary(tf.reduce_mean(wrong, name='train_error')) wd_cost = tf.multiply(1e-5, regularize_cost('fc.*/W', tf.nn.l2_loss), name='regularize_loss') summary.add_moving_summary(cost, wd_cost) self.cost = tf.add_n([wd_cost, cost], name='cost') def _get_optimizer(self): lr = tf.get_variable('learning_rate', initializer=5e-4, trainable=False) opt = tf.train.AdamOptimizer(lr, epsilon=1e-3) return optimizer.apply_grad_processors( opt, [ gradproc.ScaleGradient(('STN.*', 0.1)), gradproc.SummaryGradient()]) def get_data(isTrain):
tensorflow.get_variable
4,337
import tensorflow as tf start_string = request.data.decode().lower() n_words = 5 hidden = [tf.zeros((1, units))] for i in range(n_words): start_words = start_string.split() input_eval = [word2idx[i] for i in start_words] input_eval = tf.expand_dims(input_eval, 0) predictions, hidden = model(input_eval, hidden) predicted_id = tf.argmax(predictions[-1]).numpy() start_string += " " + idx2word[predicted_id]
tensorflow.expand_dims
4,338
import tensorflow as tf for i in range(len(propensity_list)): pw_i = propensity_list[0] / propensity_list[i] pw_list.append(pw_i) propensity_weights = tf.stack(pw_list, axis=1) if self.hparams.max_propensity_weight > 0: propensity_weights = tf.clip_by_value(propensity_weights, clip_value_min=0, clip_value_max=self.hparams.max_propensity_weight)
tensorflow.stack
4,339
import tensorflow as tf # Final (unnormalized) layer with tf.name_scope("output"): W = tf.get_variable("W", shape=[total_filters, nb_classes], initializer=tf.contrib.layers.xavier_initializer()) # add final layer bias b = tf.Variable(tf.constant(0.1, shape=[nb_classes]), name="b") # calc l2 losses l2_loss += tf.nn.l2_loss(W) l2_loss += tf.nn.l2_loss(b) # do logit = W*X+b logit = tf.nn.xw_plus_b(H_drop, W, b, name="scores") predictions = tf.nn.softmax(logit, name="predictions") #claulate loss and optimizer with tf.variable_scope("FCoptimize", reuse=None): loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits= logit, labels=Y) + l2_reg_lambda * l2_loss) optimizer = tf.train.AdamOptimizer(learning_rate).minimize(loss) # calculate accuracy correct_predictions = tf.equal(tf.argmax(predictions, 1), tf.argmax(Y, 1)) accuracy = tf.reduce_mean(tf.cast(correct_predictions, "float"), name="accuracy") print ("done...")
tensorflow.nn.softmax
4,340
import tensorflow as tf moving_mean = self._make_var('moving_mean', (in_ch,), trainable=False, init_constant=0) moving_variance = self._make_var('moving_variance', (in_ch,), trainable=False, init_constant=1) if is_train: # For training, do batch norm with batch mean & variance # Update moving averages if training (X, mean, variance) = tf.nn.fused_batch_norm(X, scale, offset, epsilon=epsilon, is_training=True) update_mean = moving_averages.assign_moving_average(moving_mean, mean, decay) update_variance = moving_averages.assign_moving_average(moving_variance, variance, decay) with tf.control_dependencies([update_mean, update_variance]): X = tf.identity(X) else: # For prediction, do batch norm with computed moving mean & variance from training # Don't update moving averages if predicting (X, _, _) = tf.nn.fused_batch_norm(X, scale, offset, mean=moving_mean, variance=moving_variance, epsilon=epsilon, is_training=False) else: (X, _, _) = tf.nn.fused_batch_norm(X, scale, offset, epsilon=epsilon, is_training=True)
tensorflow.control_dependencies
4,341
import tensorflow as tf self.build_placeholders() self.build_perception() self.build_manager() self.build_worker() self.build_loss() self.var_list = tf.get_collection( tf.GraphKeys.TRAINABLE_VARIABLES, tf.get_variable_scope().name) # for v in self.var_list: # print v.name self.state_in = [self.worker_lstm.state_in[0], self.worker_lstm.state_in[1],
tensorflow.get_variable_scope
4,342
import tensorflow as tf dtype=_x.dtype, initializer=tf.constant_initializer(0.1)) return tf.maximum(0.0, _x) + _alpha * tf.minimum(0.0, _x)
tensorflow.minimum
4,343
import tensorflow as tf returns the variable list after applying the filter rule. Returns: tpu_spec: the TPUEstimatorSpec to run training, evaluation, or prediction. """ if params['transpose_input'] and mode == tf.estimator.ModeKeys.TRAIN: features['images'] = tf.transpose(features['images'], [3, 0, 1, 2]) image_size = (params['image_size'], params['image_size']) all_anchors = anchors.Anchors(params['min_level'], params['max_level'], params['num_scales'], params['aspect_ratios'], params['anchor_scale'], image_size)
tensorflow.transpose
4,344
import tensorflow as tf tgt2 = tf.slice(batch2, [0, 1], [num_sam, 1]) return pred1, pred2, tgt1, tgt2 return uniform def contra_traj_lossV5(pred, tgt, horizon=12, resample=1, hard_ratio=1.0): horizon_pred = horizon_sumV1(pred, horizon) horizon_tgt = horizon_sumV1(tgt, horizon) pred_flat = tf.reshape(horizon_pred, [-1]) tgt_flat = tf.reshape(horizon_tgt, [-1]) batch = tf.stack([pred_flat, tgt_flat], 1) sample_func = sample_pair(batch) def sample_compute(_): pairs = sample_func() loss = compute_contra_loss(*pairs, hard_ratio=hard_ratio) pct = tf.math.count_nonzero(loss, dtype=tf.float32) / tf.size(loss, out_type=tf.float32)
tensorflow.reshape
4,345
import tensorflow as tf embedding = config.embeddings.add() # Specifiy the embedding variable and the metadata embedding.tensor_name = embedding_name embedding.metadata_path = path_to_meta # Project the embeddings to space dimensions for visualization tf.contrib.tensorboard.plugins.projector.visualize_embeddings(summary_writer, config) def add_train_stats(model, hparams): with tf.variable_scope("stats") as scope: for i in range(hparams.tacotron_num_gpus): tf.summary.histogram("mel_outputs %d" % i, model.tower_mel_outputs[i]) tf.summary.histogram("mel_targets %d" % i, model.tower_mel_targets[i]) tf.summary.scalar("before_loss", model.before_loss) tf.summary.scalar("after_loss", model.after_loss) if hparams.predict_linear: tf.summary.scalar("linear_loss", model.linear_loss) for i in range(hparams.tacotron_num_gpus): tf.summary.histogram("mel_outputs %d" % i, model.tower_linear_outputs[i]) tf.summary.histogram("mel_targets %d" % i, model.tower_linear_targets[i]) tf.summary.scalar("regularization_loss", model.regularization_loss)
tensorflow.summary.histogram
4,346
import tensorflow as tf def main(_): tf.logging.set_verbosity(tf.logging.INFO) if not FLAGS.do_train and not FLAGS.do_eval: raise ValueError("At least one of `do_train` or `do_eval` must be True.") bert_config = modeling.BertConfig.from_json_file(FLAGS.bert_config_file) tf.gfile.MakeDirs(FLAGS.output_dir) input_files = [] for input_pattern in FLAGS.input_file.split(","): input_files.extend(tf.gfile.Glob(input_pattern)) tf.logging.info("*** Input Files ***") for input_file in input_files:
tensorflow.gfile.MakeDirs
4,347
import tensorflow as tf tf.contrib.tensorboard.plugins.projector.visualize_embeddings(summary_writer, config) def add_train_stats(model, hparams): with tf.variable_scope("stats") as scope: for i in range(hparams.tacotron_num_gpus): tf.summary.histogram("mel_outputs %d" % i, model.tower_mel_outputs[i]) tf.summary.histogram("mel_targets %d" % i, model.tower_mel_targets[i]) tf.summary.scalar("before_loss", model.before_loss) tf.summary.scalar("after_loss", model.after_loss) if hparams.predict_linear: tf.summary.scalar("linear_loss", model.linear_loss) for i in range(hparams.tacotron_num_gpus):
tensorflow.summary.histogram
4,348
import tensorflow as tf def _input_fn(): # Provide the ability to decode a CSV def decode_csv(line): # all_data is a list of scalar tensors all_data = tf.decode_csv(line, record_defaults = DEFAULTS) inputs = all_data[:len(all_data) - N_OUTPUTS] # first N_INPUTS values labels = all_data[len(all_data) - N_OUTPUTS:] # last N_OUTPUTS values # Convert each list of rank R tensors to one rank R+1 tensor inputs = tf.stack(inputs, axis = 0) labels = tf.stack(labels, axis = 0) # Convert input R+1 tensor into a feature dictionary of one R+1 tensor features = {TIMESERIES_COL: inputs} return features, labels # Create list of files that match pattern file_list = tf.gfile.Glob(filename)
tensorflow.stack
4,349
import tensorflow as tf "output_bias", shape=[2], initializer=tf.zeros_initializer() ) logits = tf.matmul(input_tensor, output_weights, transpose_b=True) logits = tf.nn.bias_add(logits, output_bias) log_probs = tf.nn.log_softmax(logits, axis=-1) labels = tf.reshape(labels, [-1]) one_hot_labels = tf.one_hot(labels, depth=2, dtype=tf.float32)
tensorflow.nn.bias_add
4,350
from tensorflow.python.ops import math_ops Returns: A [D1, ... DN] `Tensor` of false negative counts. """ with ops.name_scope(None, 'false_negatives', (predictions_idx, labels)): labels, predictions_idx = _maybe_select_class_id(labels, predictions_idx, class_id) fn = set_ops.set_size(set_ops.set_difference(predictions_idx, labels, aminusb=False)) fn = math_ops.to_double(fn) if weights is not None: weights = math_ops.to_double(weights) fn = math_ops.mul(fn, weights) return fn def _streaming_sparse_false_negative_at_k(predictions_idx, labels, k, class_id=None, weights=None, name=None): """Calculates weighted per step false negatives for recall@k.
tensorflow.python.ops.math_ops.to_double
4,351
import tensorflow as tf pass ''' def create_custom_regularizers(self): # should not be an empty list return [0.] ''' # save in self.regularizers the regularizers of the model def create_regularizers_and_updates(self): wb_regularizers = tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES) # see keras_utils.py: activity_and_contractive_regularizers ac_regularizers = tf.get_collection(AC_REGULARIZATION) # if (not wb_regularizers) and (not ac_regularizers): # wb_regularizers = [tf.constant(0.)] #import pdb;pdb.set_trace() if len(wb_regularizers)>0: self.regularizers += wb_regularizers if len(ac_regularizers)>0: self.regularizers += ac_regularizers # self.regularizers += ([self.custom_regularizers[r] for r in self._opts["regularizers"].keys() if len(self.custom_regularizers[r])>0]) # we need to flatten the list if we have both custom regularizers and another type of regularizers # (weight/bias or contractive)
tensorflow.get_collection
4,352
import tensorflow as tf import random import tensorflow as tf FLAGS = flags.FLAGS # augmentation functions # augment def random_crop_and_resize(images, ratio=0.8): b, h, w, c = images.get_shape().as_list() ch, cw = map(lambda x: int(x * ratio), (h, w)) crop = tf.random_crop(images, size=[b, ch, cw, 3]) crop = tf.image.resize(crop, [h, w]) return crop def random_apply(fn, image, prob=1.): b, *_ = image.get_shape().as_list() chance = tf.less(tf.random_uniform([b], 0, 1.0), prob) return tf.where(chance, fn(image), tf.identity(image)) def color_distortion(image, s=1.0): lower, upper, x = (1 - 0.8 * s), (1 + 0.8 * s), image x = tf.image.random_brightness(x, max_delta=0.8*s)
tensorflow.random_crop
4,353
from tensorflow.python.platform import gfile train_path = os.path.join(data_dir, 'dbpedia_csv/train.csv') test_path = os.path.join(data_dir, 'dbpedia_csv/test.csv') if not (gfile.Exists(train_path) and gfile.Exists(test_path)): archive_path = base.maybe_download(
tensorflow.python.platform.gfile.Exists
4,354
import tensorflow as tf for w, filter_size in enumerate(encoder.convolutions, 1): filter_ = get_variable('filter_{}'.format(w), [w, encoder.embedding_size, filter_size]) if w > 1: right = (w - 1) // 2 left = (w - 1) - right pad_right = tf.tile(pad, [1, right, 1]) pad_left = tf.tile(pad, [1, left, 1]) inputs_ = tf.concat([pad_left, encoder_inputs_, pad_right], axis=1) else: inputs_ = encoder_inputs_ inputs_ = tf.nn.convolution(inputs_, filter=filter_, padding='VALID') inputs.append(inputs_)
tensorflow.tile
4,355
import tensorflow as tf # Use indices to lookup pixels in the flat image and restore # channels dim im_flat = tf.reshape(im, tf.stack([-1, channels])) im_flat = tf.to_float(im_flat) i_z0_y0_x0 = tf.gather(im_flat, idx_z0_y0_x0) i_z0_y0_x1 = tf.gather(im_flat, idx_z0_y0_x1) i_z0_y1_x0 = tf.gather(im_flat, idx_z0_y1_x0) i_z0_y1_x1 = tf.gather(im_flat, idx_z0_y1_x1) i_z1_y0_x0 = tf.gather(im_flat, idx_z1_y0_x0) i_z1_y0_x1 = tf.gather(im_flat, idx_z1_y0_x1) i_z1_y1_x0 = tf.gather(im_flat, idx_z1_y1_x0) i_z1_y1_x1 = tf.gather(im_flat, idx_z1_y1_x1) # Finally calculate interpolated values. x0_f = tf.to_float(x0) x1_f = tf.to_float(x1) y0_f = tf.to_float(y0)
tensorflow.gather
4,356
import tensorflow as tf prediction_dict: a dictionary holding prediction tensors to be passed to the Loss or Postprocess functions. """ flattened_inputs = tf.contrib.layers.flatten(preprocessed_inputs) class_prediction = tf.contrib.layers.fully_connected( flattened_inputs, self._num_classes)
tensorflow.contrib.layers.flatten
4,357
import tensorflow as tf "Cannot use sequence length %d because the model " "was only trained up to sequence length %d" % (FLAGS.max_seq_length, config.max_position_embeddings)) else: config = None # Get the config from TF-Hub. tf.gfile.MakeDirs(FLAGS.output_dir) task_name = FLAGS.task_name.lower() if task_name not in processors: raise ValueError("Task not found: %s" % (task_name))
tensorflow.gfile.MakeDirs
4,358
import tensorflow as tf def test_two(self): with self.test_session() as session: @dynamic_batching.batch_fn def f(a, b): batch_size = tf.shape(a)[0] return a + b, tf.tile([batch_size], [batch_size]) output0 = f(tf.constant([1]), tf.constant([2])) output1 = f(tf.constant([2]), tf.constant([3])) tp = pool.ThreadPool(2) f0 = tp.apply_async(session.run, [output0]) f1 = tp.apply_async(session.run, [output1]) # Make sure both inputs are in the batcher before starting it.
tensorflow.constant
4,359
import tensorflow as tf "root", initializer=tf.constant_initializer(0.5)): cell = tf.nn.rnn_cell.BasicLSTMCell(2, state_is_tuple=True) cell = tf.nn.rnn_cell.MultiRNNCell(cells=[cell] * 2, state_is_tuple=True) inp = tf.constant(0.5, shape=[2, 2, 2]) enc_outputs, enc_state = tf.nn.rnn(cell, inp, dtype=tf.float32) attn_states = tf.concat(1, [tf.reshape(e, [-1, 1, cell.output_size]) for e in enc_outputs]) dec_inp = [tf.constant(0.4, shape=[2, 2])] * 3 dec, mem = tf.nn.seq2seq.attention_decoder( dec_inp, enc_state, attn_states, cell, output_size=4) sess.run([tf.global_variables_initializer()]) res = sess.run(dec) self.assertEqual(3, len(res)) self.assertEqual((2, 4), res[0].shape)
tensorflow.constant
4,360
import tensorflow as tf if FLAGS.contrast_norm == 'areafactor': image = tf.decode_raw(features['image_raw'], tf.float32) else:
tensorflow.decode_raw
4,361
import tensorflow as tf assert tf.get_variable_scope().reuse is False epsilon = 1e-5 mean, var = tf.nn.moments(x, [1, 2], keep_dims=True) scale = tf.get_variable('scale',[x.get_shape()[-1]], initializer=tf.truncated_normal_initializer(mean=1.0, stddev=0.02)) offset = tf.get_variable('offset',[x.get_shape()[-1]],initializer=tf.constant_initializer(0.0)) out = scale*tf.div(x-mean, tf.sqrt(var+epsilon)) + offset return out def common_conv2d(layer_input,filters,f_size=4,stride=2,padding='SAME',norm=True,name='common_conv2d'): """Layers used during downsampling""" with tf.variable_scope(name): if reuse: tf.get_variable_scope().reuse_variables() else: assert tf.get_variable_scope().reuse is False d = tf.contrib.layers.conv2d(layer_input,filters,kernel_size=f_size,stride=stride,padding=padding) if norm: d = tf.contrib.layers.batch_norm(d) d = lrelu(d,alpha=0.2) return d #def common_deconv2d(layer_input,skip_input, filters,f_size=4,stride=2,dropout_rate=0,name='common_deconv2d'):
tensorflow.variable_scope
4,362
import tensorflow as tf blk_shape[0], q_shape[1] * strides[1], q_shape[2] * strides[2], 3 ], strides) blk_indices_crop = blk_indices_crop // tf.stack([1, strides[1], strides[2]]) return blk_indices_crop def _strides_one(): # Calculate otuput indices when strides = 1. return blk_indices[:, :q_shape[1], :q_shape[2], :] strides_gt_one = tf.logical_or(tf.greater(strides[1], 1), tf.greater(strides[2], 1)) blk_indices_crop = tf.cond(strides_gt_one, _strides_gt_one, _strides_one) y = tf.scatter_nd(blk_indices_crop, q, out_shape) return y return tf.cond( tf.equal(tf.size(blk_indices_), 0), lambda: tf.zeros(out_shape, dtype=x.dtype), _conv_nonzero)
tensorflow.greater
4,363
import tensorflow as tf encoder_inputs_ = tf.concat(inputs, axis=2) # if encoder.convolution_activation.lower() == 'relu': encoder_inputs_ = tf.nn.relu(encoder_inputs_) if encoder.maxout_stride:
tensorflow.nn.relu
4,364
import tensorflow as tf 'input_node': input_node, 'hidden_layers_node': hidden_layers_node, 'output_node': output_node, 'learning_rate': learning_rate, 'learning_rate_decay': learning_rate_decay, 'activation': activation, 'L1_reg': L1_reg, 'L2_reg': L2_reg, 'optimizer': optimizer, 'dropout': dropout_keep_prob } # Set random state tf.set_random_seed(seed) # create new Session for the DeepSurv Class self.sess = tf.Session(graph=G) # Initialize all global variables self.sess.run(init_op) def train(self, num_epoch=5000, iteration=-1, plot_train_loss=False, plot_train_CI=False): """ Training DeepSurv network. Parameters:
tensorflow.set_random_seed
4,365
import tensorflow as tf def metric_fn(per_example_loss, label_ids, logits): predictions = tf.argmax(logits, axis=-1, output_type=tf.int32) precision = tf_metrics.precision(label_ids,predictions,11,[1,2,4,5,6,7,8,9],average="macro")
tensorflow.argmax
4,366
import tensorflow as tf b = tf.get_variable("b", [nh*4], initializer=tf.constant_initializer(0.0)) gc = tf.get_variable("gc", [nh], initializer=tf.constant_initializer(1.0)) bc = tf.get_variable("bc", [nh], initializer=tf.constant_initializer(0.0)) c, h = tf.split(axis=1, num_or_size_splits=2, value=s) for idx, (x, m) in enumerate(zip(xs, ms)): c = c*(1-m) h = h*(1-m) z = _ln(tf.matmul(x, wx), gx, bx) + _ln(tf.matmul(h, wh), gh, bh) + b i, f, o, u = tf.split(axis=1, num_or_size_splits=4, value=z) i = tf.nn.sigmoid(i) f = tf.nn.sigmoid(f) o = tf.nn.sigmoid(o) u = tf.tanh(u) c = f*c + i*u h = o*tf.tanh(_ln(c, gc, bc)) xs[idx] = h s = tf.concat(axis=1, values=[c, h])
tensorflow.matmul
4,367
import tensorflow as tf initializer=initialization.xavier_initializer( shape=ff_dhw + [lower_feats, higher_feats], dtype=self.dtype, uniform=self.normal_initializer), trainable=True)) setattr( self, 'ff_bias_%s' % idx, tf.get_variable( name='%s_ff_bias_%s' % (self.layer_name, idx), dtype=self.dtype, initializer=tf.ones([higher_feats], dtype=self.dtype), trainable=True)) lower_feats = higher_feats # HGRU KERNELS for idx, layer in enumerate(self.hgru_ids): with tf.variable_scope( '%s_hgru_weights_%s' % (self.layer_name, layer)): setattr( self, 'horizontal_kernels_%s' % layer,
tensorflow.ones
4,368
import tensorflow as tf return x def lnlstm(xs, ms, s, scope, nh, init_scale=1.0): nbatch, nin = [v.value for v in xs[0].get_shape()] with tf.variable_scope(scope): wx = tf.get_variable("wx", [nin, nh*4], initializer=ortho_init(init_scale)) gx = tf.get_variable("gx", [nh*4], initializer=tf.constant_initializer(1.0)) bx = tf.get_variable("bx", [nh*4], initializer=tf.constant_initializer(0.0))
tensorflow.variable_scope
4,369
import tensorflow.contrib as contrib if cross_stitch_enabled: with tf.variable_scope("cross_stitch_3"): stitch3_1, stitch3_2 = apply_cross_stitch(fc3_1, fc3_2) else: stitch3_1, stitch3_2 = fc3_1, fc3_2 dropout3_1 = contrib.layers.dropout(stitch3_1, keep_prob=keep_prob, is_training=is_training, scope="dropout3_1") dropout3_2 = contrib.layers.dropout(stitch3_2, keep_prob=keep_prob, is_training=is_training, scope="dropout3_2") output_1 = contrib.layers.fully_connected(dropout3_1, n_output_1, activation_fn=None, scope="output_1") output_2 = contrib.layers.fully_connected(dropout3_2, n_output_2, activation_fn=None, scope="output_2") with tf.variable_scope("loss"): loss_base_1 = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y_1, logits=output_1)) loss_base_2 = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y_2, logits=output_2)) reg_losses = tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES) loss_total = loss_base_1 + loss_base_2 + tf.reduce_sum(reg_losses) with tf.variable_scope("evaluation"): accuracy_1 = tf.reduce_mean(tf.cast(tf.equal(
tensorflow.contrib.layers.fully_connected
4,370
import tensorflow as tf argus_t_ge_1 = m * tf.pow(u, p) * tf.exp(c * u) return tf.maximum(tf.zeros_like(m), argus_t_ge_1, name="argus_pdf") # // --- Construct signal+background PDF --- # RooRealVar nsig("nsig","#signal events",200,0.,10000) ; # RooRealVar nbkg("nbkg","#background events",800,0.,10000) ; nsig = tf.Variable(200, name="nsig", dtype=tf.float64) nbkg = tf.Variable(800, name="nbkg", dtype=tf.float64) vdict['nsig'] = nsig vdict['nbkg'] = nbkg # RooAddPdf sum("sum","g+a",RooArgList(gauss,argus),RooArgList(nsig,nbkg)) ; # // --- Generate a toyMC sample from composite PDF ---
tensorflow.Variable
4,371
import tensorflow as tf expected_shape) def testOutputStride8BuildAndCheckAllEndPointsUptoConv2d_13(self): batch_size = 5 height, width = 224, 224 output_stride = 8 inputs = tf.random_uniform((batch_size, height, width, 3)) with slim.arg_scope([slim.conv2d, slim.separable_conv2d], normalizer_fn=slim.batch_norm): _, end_points = mobilenet_v1.mobilenet_v1_base( inputs, output_stride=output_stride, final_endpoint='Conv2d_13_pointwise') _, explicit_padding_end_points = mobilenet_v1.mobilenet_v1_base(
tensorflow.random_uniform
4,372
import tensorflow as tf # DropNeuro # P_o = cost.lo_regularizer(0.03)( # self.train_params[0]) # + cost.lo_regularizer(0.5)(self.train_params[2]) # <haodong>: if add lo on decoder, no neuron will be broken # P_i = cost.li_regularizer(0.03)(self.train_params[0]) # + cost.li_regularizer(0.001)(self.train_params[2]) # L1 of activation outputs activation_out = self.all_layers[-2] L1_a = 0.001 * tf.reduce_mean(activation_out) # <haodong>: theano: T.mean( self.a[i] ) # some neuron are broken, white and black # L1_a = 0.001 * tf.reduce_mean( tf.reduce_sum(activation_out, 0) ) # <haodong>: some neuron are broken, white and black # L1_a = 0.001 * 100 * tf.reduce_mean( tf.reduce_sum(activation_out, 1) ) # <haodong>: some neuron are broken, white and black # KL Divergence beta = 4 rho = 0.15 p_hat = tf.reduce_mean(activation_out, 0) # theano: p_hat = T.mean( self.a[i], axis=0 )
tensorflow.reduce_mean
4,373
from tensorflow.python.ops import math_ops grad = ops.IndexedSlices(grad_values, grad.indices, grad.dense_shape) else: grad *= math_ops.cast(multiplier, grad.dtype) multiplied_grads_and_vars.append((grad, var))
tensorflow.python.ops.math_ops.cast
4,374
import tensorflow as tf def call(self, embeddings, nwords): raise NotImplementedError def __call__(self): with tf.variable_scope("task_independent"): indices, num_tags, word_ids, nwords = self.input_layer() embeddings = self.embedding_layer(word_ids)
tensorflow.variable_scope
4,375
import tensorflow as tf if self.dale_ratio: new_output = tf.matmul( tf.nn.relu(new_state), tf.matmul( tf.abs(self.W_out) * self.output_Connectivity, self.Dale_out, name="in_2"), transpose_b=True, name="3")\ + self.b_out
tensorflow.abs
4,376
import tensorflow as tf tf.gfile.DeleteRecursively(FLAGS.train_dir) tf.gfile.MakeDirs(FLAGS.train_dir)
tensorflow.gfile.MakeDirs
4,377
import tensorflow as tf def variable(self, name, shape, initializer,regularizer=None): with tf.device('/cpu:0'): return tf.get_variable(name, shape, initializer=initializer, regularizer=regularizer, trainable=True) def fc_layer(self, bottom, in_size, out_size, name): with tf.variable_scope(name): weights, biases = self.get_fc_var(in_size, out_size, name) x = tf.reshape(bottom, [-1, in_size]) fc = tf.nn.bias_add(tf.matmul(x, weights), biases) tf.summary.histogram('weight', weights) tf.summary.histogram('bias', biases) return fc def get_conv_var(self, filter_size, in_channels, out_channels, name): initial_value = tf.truncated_normal([filter_size, filter_size, in_channels, out_channels], 0.0, stddev = 1 / math.sqrt(float(filter_size * filter_size)))
tensorflow.reshape
4,378
from tensorflow.python.framework import ops # Ensures each output is a Tensor. outputs = [ops.convert_to_tensor(_) for _ in outputs]
tensorflow.python.framework.ops.convert_to_tensor
4,379
import tensorflow as tf decoder=decoders[1], training=training, encoders=decoders[:1] ) target_weights = get_weights(targets[1][:, 1:], utils.EOS_ID, include_first_eos=True) xent_loss += reconstruction_weight * sequence_loss(logits=reconstructed_outputs, targets=targets[1][:, 1:], weights=target_weights) max_src_len = tf.shape(reconstructed_weights)[1] batch_size = tf.shape(reconstructed_weights)[0] attn_loss = tf.matmul(reconstructed_weights, attention_weights) - tf.eye(max_src_len) src_mask = tf.sequence_mask(encoder_input_length[0], maxlen=max_src_len, dtype=tf.float32) src_mask = tf.einsum('ij,ik->ijk', src_mask, src_mask) attn_loss *= tf.to_float(src_mask) # don't take padding words into account
tensorflow.shape
4,380
from tensorflow.python.ops import math_ops def compute_mean_iou(name): """Compute the mean intersection-over-union via the confusion matrix.""" sum_over_row = math_ops.to_float(math_ops.reduce_sum(total_cm, 0)) sum_over_col = math_ops.to_float(math_ops.reduce_sum(total_cm, 1)) cm_diag = math_ops.to_float(array_ops.diag_part(total_cm)) denominator = sum_over_row + sum_over_col - cm_diag # If the value of the denominator is 0, set it to 1 to avoid # zero division. denominator = math_ops.select( math_ops.greater(denominator, 0), denominator, array_ops.ones_like(denominator)) iou = math_ops.div(cm_diag, denominator) return math_ops.reduce_mean(iou, name=name) mean_iou = compute_mean_iou('mean_iou') if metrics_collections: ops.add_to_collections(metrics_collections, mean_iou) if updates_collections: ops.add_to_collections(updates_collections, update_op) return mean_iou, update_op
tensorflow.python.ops.math_ops.div
4,381
import tensorflow as tf 'mesh_name': _bytes_feature(d['mesh_name']), 'near_surface_samples': _float_feature(d['near_surface_samples']), 'grid': _float_feature(d['grid']), 'world2grid': _float_feature(d['world2grid']), 'surface_point_samples': _float_feature(d['surface_point_samples']) } example_proto = tf.train.Example(features=tf.train.Features(feature=feature)) return example_proto.SerializeToString() def full_featurespec(): return {
tensorflow.train.Features
4,382
import tensorflow as tf img_name_batch, img_batch, gtboxes_and_label_batch, num_objects_batch, img_h_batch, img_w_batch = \ self.reader.next_batch(dataset_name=cfgs.DATASET_NAME, batch_size=cfgs.BATCH_SIZE * num_gpu, shortside_len=shortside_len, is_training=True) # data processing inputs_list = [] for i in range(num_gpu): img = tf.expand_dims(img_batch[i], axis=0) pretrain_zoo = PretrainModelZoo() if self.cfgs.NET_NAME in pretrain_zoo.pth_zoo or self.cfgs.NET_NAME in pretrain_zoo.mxnet_zoo: img = img / tf.constant([cfgs.PIXEL_STD]) gtboxes_and_label_r = tf.py_func(backward_convert, inp=[gtboxes_and_label_batch[i]], Tout=tf.float32) gtboxes_and_label_r = tf.reshape(gtboxes_and_label_r, [-1, 6])
tensorflow.expand_dims
4,383
import tensorflow as tf loss = mse_loss + params['weight_decay'] * tf.add_n([tf.nn.l2_loss(v) for v in tf.trainable_variables() if 'batch_normalization' not in v.name]) total_loss = tf.identity(loss, name='total_loss') tf.summary.scalar('loss', total_loss) if mode == tf.estimator.ModeKeys.EVAL: return tf.estimator.EstimatorSpec(mode=mode, loss=loss, predictions=predictions, eval_metric_ops=metrics) if mode == tf.estimator.ModeKeys.TRAIN: global_step = tf.train.get_or_create_global_step() lr_values = [params['warmup_learning_rate']] + [base_learning_rate * decay for decay in params['lr_decay_factors']] learning_rate = tf.train.piecewise_constant(tf.cast(global_step, tf.int32), [params['warmup_steps']] + [int(float(ep)*params['steps_per_epoch']) for ep in params['decay_boundaries']], lr_values) truncated_learning_rate = tf.maximum(learning_rate, tf.constant(params['end_learning_rate'], dtype=learning_rate.dtype), name='learning_rate') tf.summary.scalar('lr', truncated_learning_rate) optimizer = tf.train.MomentumOptimizer(learning_rate=truncated_learning_rate, momentum=params['momentum']) # Batch norm requires update_ops to be added as a train_op dependency. update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS) with tf.control_dependencies(update_ops): train_op = optimizer.minimize(loss, global_step) else: train_op = None return tf.estimator.EstimatorSpec(
tensorflow.constant
4,384
import tensorflow as tf ops.reset_default_graph() sess = tf.Session() my_var = tf.Variable(tf.zeros([1,20])) merged = tf.summary.merge_all() writer = tf.summary.FileWriter("./logs", graph=sess.graph) initialize_op = tf.global_variables_initializer() sess.run(initialize_op)
tensorflow.global_variables_initializer
4,385
import tensorflow as tf mask_loss = losses.mask_rcnn_loss( model_outputs['mask_outputs'], model_outputs['mask_targets'], model_outputs['select_class_targets'], params) else: mask_loss = 0. if variable_filter_fn: var_list = variable_filter_fn(tf.trainable_variables(), params['resnet_depth']) else: var_list = None l2_regularization_loss = _WEIGHT_DECAY * tf.add_n( [tf.nn.l2_loss(v) for v in var_list if 'batch_normalization' not in v.name and 'bias' not in v.name]) total_loss = (total_rpn_loss + total_fast_rcnn_loss + mask_loss + l2_regularization_loss) host_call = None if mode == tf.estimator.ModeKeys.TRAIN: optimizer = create_optimizer(learning_rate, params) optimizer = tf.contrib.tpu.CrossShardOptimizer(optimizer) if not params['resnet_checkpoint']:
tensorflow.nn.l2_loss
4,386
import tensorflow as tf feature_dict = { k: tf.train.Feature(bytes_list=tf.train.BytesList( value=[memoryview(v).tobytes()])) for k, v in data.items()} return tf.train.Example( features=tf.train.Features(feature=feature_dict)).SerializeToString() def _deserialize(self, serialized_data, batch_size): """Convert serialized TFRecords into tensors. Args:
tensorflow.train.Features
4,387
import tensorflow as tf # make some fake noise data_size = 100 noise_tensor = tf.random_normal((data_size, INPUT_DIM)) real_data_tensor = tf.random_uniform((data_size, OUTPUT_DIM)) dataset = tf.data.Dataset.from_tensor_slices((noise_tensor, real_data_tensor)) dataset = dataset.repeat().shuffle(10) # TPUEstimator passes params when calling input_fn batch_size = params.get('train_batch_size', 16)
tensorflow.data.Dataset.from_tensor_slices
4,388
import tensorflow as tf weights_initializer=contrib.layers.variance_scaling_initializer(), # l2 regularization weights_regularizer=contrib.layers.l2_regularizer(reg_lambda), # BN normalizer_fn=contrib.layers.batch_norm, normalizer_params={ "is_training": is_training, "scale": True, "updates_collections": None } ): fc1_1 = contrib.layers.fully_connected(X, 32, scope="fc1_1") fc1_2 = contrib.layers.fully_connected(X, 32, scope="fc1_2") if cross_stitch_enabled: with tf.variable_scope("cross_stitch_1"): stitch1_1, stitch1_2 = apply_cross_stitch(fc1_1, fc1_2) else: stitch1_1, stitch1_2 = fc1_1, fc1_2 fc2_1 = contrib.layers.fully_connected(stitch1_1, 32, scope="fc2_1") fc2_2 = contrib.layers.fully_connected(stitch1_2, 32, scope="fc2_2") if cross_stitch_enabled: with tf.variable_scope("cross_stitch_2"): stitch2_1, stitch2_2 = apply_cross_stitch(fc2_1, fc2_2) else: stitch2_1, stitch2_2 = fc2_1, fc2_2 dropout2_1 = contrib.layers.dropout(stitch2_1, keep_prob=keep_prob, is_training=is_training,
tensorflow.variable_scope
4,389
import tensorflow as tf -------- >>> batch_size = 8 >>> x = tf.placeholder(tf.int32, shape=(batch_size, )) >>> net = tl.layers.EmbeddingInputlayer(inputs=x, vocabulary_size=1000, embedding_size=50, name='embed') ... (8, 50) """ def __init__( self, inputs=None, vocabulary_size=80000, embedding_size=200, E_init=tf.random_uniform_initializer(-0.1, 0.1), E_init_args=None, name='embedding', ): if E_init_args is None: E_init_args = {} super(EmbeddingInputlayer, self).__init__(prev_layer=None, name=name) logging.info("EmbeddingInputlayer %s: (%d, %d)" % (self.name, vocabulary_size, embedding_size)) self.inputs = inputs with tf.variable_scope(name):
tensorflow.random_uniform_initializer
4,390
import tensorflow as tf x0 = tf.to_int32(tf.floor(x)) x1 = x0 + 1 y0 = tf.to_int32(tf.floor(y)) y1 = y0 + 1 z0 = tf.to_int32(tf.floor(z))
tensorflow.floor
4,391
import tensorflow as tf def _split_string(string): """Splits a byte string into an array of character bytes.""" text = tf.compat.as_text(string) ret = np.empty(len(text), dtype=np.object) for i, char in enumerate(text): ret[i] = tf.compat.as_bytes(char) return ret def vocabulary(filename, max_size=None, num_oov_buckets=1): """Builds vocabulary and ID lookup tables from the given file.""" def _unique_chars(filename): """Returns the used alphabet as an array of strings.""" counts = collections.Counter() with tf.gfile.Open(filename) as file_: for line in file_: counts.update(_split_string(line)) alphabet = [k for (k, _) in counts.most_common(max_size)] alphabet.sort() return np.asarray(alphabet, dtype=np.object) chars, = tf.py_func(_unique_chars, [filename], [tf.string]) char_to_id = tf.contrib.lookup.index_table_from_tensor( chars, num_oov_buckets=num_oov_buckets) id_to_char = tf.contrib.lookup.index_to_string_table_from_tensor(chars, " ") return char_to_id, id_to_char def characters(filename, batch_size, sequence_size):
tensorflow.gfile.Open
4,392
import tensorflow as tf phrase_starts: [batch_size, phrase_length] vocab_dist: [batch_size, vsize] attn_dist: [batch_size, phrase_length] return: [batch_size, phrase_length] ''' def singel_instance(x): cur_passage_words = x[0] # [passage_length] cur_phrase_starts = x[1] # [phrase_length] cur_vocab_dist = x[2] # [vsize] cur_attn_dist = x[3] # [passage_length] # first: get the first word for each phrase first_words = tf.gather(cur_passage_words, cur_phrase_starts) # [phrase_length] # second: get the probs for each word first_word_probs = tf.gather(cur_vocab_dist, first_words) # [phrase_length] return cur_attn_dist + first_word_probs elems = (in_passage_words, phrase_starts, vocab_dist, attn_dist) return tf.map_fn(singel_instance, elems, dtype=tf.float32) # [batch_size, phrase_length] class CovCopyAttenGen: def __init__(self, placeholders, options, vocab): self.options = options self.vocab = vocab self.cell = tf.contrib.rnn.LSTMCell( options.gen_hidden_size, initializer=tf.random_uniform_initializer(-0.1, 0.1, seed=113),
tensorflow.gather
4,393
import tensorflow as tf mean = tools.StreamingMean((), tf.float32, key) means.append(mean) updates.append(mean.submit(value)) with tf.control_dependencies(updates): # message = 'step/' + '/'.join(metrics.keys()) + ' = ' message = '{}: step/{} ='.format(name, '/'.join(metrics.keys())) gs = tf.train.get_or_create_global_step() print_metrics = tf.cond( tf.equal(step % every, 0), lambda: tf.print(message, [gs] + [mean.clear() for mean in means]), tf.no_op) return print_metrics def collect_initial_episodes(config): items = config.random_collects.items()
tensorflow.equal
4,394
import tensorflow as tf with tf.variable_scope("evaluation"): accuracy_1 = tf.reduce_mean(tf.cast(tf.equal( tf.argmax(output_1, axis=-1), tf.argmax(y_1, axis=-1)), tf.float32), name="accuracy_1") accuracy_2 = tf.reduce_mean(tf.cast(tf.equal( tf.argmax(output_2, axis=-1), tf.argmax(y_2, axis=-1)), tf.float32), name="accuracy_2") accuracy = tf.divide(accuracy_1 + accuracy_2, 2.0, name="accuracy") with tf.variable_scope("train"): global_step = tf.get_variable("global_step", shape=(), dtype=tf.int32, trainable=False) train_op = tf.train.AdamOptimizer(learning_rate=lr).minimize(loss_total, global_step=global_step) with tf.variable_scope("summary"): summary_loss_total = tf.summary.scalar("loss_total", loss_total) summary_accuracy_test = tf.summary.scalar("accuracy_test", accuracy) summary_accuracy_train = tf.summary.scalar("accuracy_train", accuracy)
tensorflow.variable_scope
4,395
import tensorflow as tf ratio = action_op.prob(self.tfa) / \ (old_action_op.prob(self.tfa) + 1e-5) # 替代損失 surr = ratio * self.tfadv # 減少代理損失 self.aloss = -tf.reduce_mean(tf.minimum( surr, tf.clip_by_value(ratio, 1. - EPSILON, 1. + EPSILON) * self.tfadv)) self.atrain_op = tf.train.AdamOptimizer(A_LR).minimize(self.aloss) # log self.train_writer = tf.summary.FileWriter("logs/", self.sess.graph) self.sess.run(tf.global_variables_initializer()) self.tableAction = self.createActionTable()
tensorflow.clip_by_value
4,396
import tensorflow as tf return loss def crf_decode_layer(self, logits, crf_params, nwords): with tf.name_scope("CRF_decode"): pred_ids, _ = tf.contrib.crf.crf_decode(logits, crf_params, nwords) return pred_ids
tensorflow.name_scope
4,397
import tensorflow as tf eval_file = os.path.join(FLAGS.output_dir, "eval.tf_record") if not tf.gfile.Exists(eval_file) or not FLAGS.data_converted: file_based_convert_examples_to_features(
tensorflow.gfile.Exists
4,398
from tensorflow.python.estimator.canned import head as head_lib regressor.export(self._export_dir_base) def testRankingDontThrowExceptionForForEstimator(self): learner_config = learner_pb2.LearnerConfig() learner_config.num_classes = 2 learner_config.constraints.max_tree_depth = 1 model_dir = tempfile.mkdtemp() config = run_config.RunConfig() head_fn = head_lib._binary_logistic_head_with_sigmoid_cross_entropy_loss( loss_reduction=losses.Reduction.SUM_OVER_NONZERO_WEIGHTS) model = estimator.GradientBoostedDecisionTreeRanker( head=head_fn, learner_config=learner_config, num_trees=1, examples_per_layer=3, model_dir=model_dir,
tensorflow.python.estimator.canned.head._binary_logistic_head_with_sigmoid_cross_entropy_loss
4,399