paper_url
stringlengths 36
81
| paper_title
stringlengths 1
242
⌀ | paper_arxiv_id
stringlengths 9
16
⌀ | paper_url_abs
stringlengths 18
314
| paper_url_pdf
stringlengths 21
935
⌀ | repo_url
stringlengths 26
200
| is_official
bool 2
classes | mentioned_in_paper
bool 2
classes | mentioned_in_github
bool 2
classes | framework
stringclasses 9
values |
---|---|---|---|---|---|---|---|---|---|
https://paperswithcode.com/paper/asynchronous-batch-bayesian-optimization-with
|
Asynchronous Batch Bayesian Optimization with Pipelining Evaluations for Experimental Resource$\unicode{x2013}$constrained Conditions
|
2412.04392
|
https://arxiv.org/abs/2412.04392v1
|
https://arxiv.org/pdf/2412.04392v1.pdf
|
https://github.com/funalab/pipebo
| true | true | true |
none
|
https://paperswithcode.com/paper/naraim-native-aspect-ratio-autoregressive
|
NARAIM: Native Aspect Ratio Autoregressive Image Models
|
2410.10012
|
https://arxiv.org/abs/2410.10012v2
|
https://arxiv.org/pdf/2410.10012v2.pdf
|
https://github.com/daniel-gallo/naraim
| true | true | false |
jax
|
https://paperswithcode.com/paper/fastflow-in-fpga-stacks-of-data-centers
|
FastFlow in FPGA Stacks of Data Centers
|
2409.20099
|
https://arxiv.org/abs/2409.20099v1
|
https://arxiv.org/pdf/2409.20099v1.pdf
|
https://github.com/rourabpaul1986/fastflow_fpga_stacks
| true | false | false |
none
|
https://paperswithcode.com/paper/fast-and-accurate-model-scaling
|
Fast and Accurate Model Scaling
|
2103.06877
|
https://arxiv.org/abs/2103.06877v1
|
https://arxiv.org/pdf/2103.06877v1.pdf
|
https://github.com/edificewang/imageclassification
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/designing-network-design-spaces
|
Designing Network Design Spaces
|
2003.13678
|
https://arxiv.org/abs/2003.13678v1
|
https://arxiv.org/pdf/2003.13678v1.pdf
|
https://github.com/edificewang/imageclassification
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/agnostic-federated-learning
|
Agnostic Federated Learning
|
1902.00146
|
http://arxiv.org/abs/1902.00146v1
|
http://arxiv.org/pdf/1902.00146v1.pdf
|
https://github.com/vaseline555/aaggff
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/disaggregated-multi-tower-topology-aware
|
Disaggregated Multi-Tower: Topology-aware Modeling Technique for Efficient Large-Scale Recommendation
|
2403.00877
|
https://arxiv.org/abs/2403.00877v3
|
https://arxiv.org/pdf/2403.00877v3.pdf
|
https://github.com/facebookresearch/torchrec
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/dissecting-payload-based-transaction-phishing
|
Dissecting Payload-based Transaction Phishing on Ethereum
|
2409.02386
|
https://arxiv.org/abs/2409.02386v2
|
https://arxiv.org/pdf/2409.02386v2.pdf
|
https://github.com/HypoopyH/PTXPhish
| true | false | false |
none
|
https://paperswithcode.com/paper/optimal-algorithms-for-smooth-and-strongly
|
Optimal algorithms for smooth and strongly convex distributed optimization in networks
|
1702.08704
|
http://arxiv.org/abs/1702.08704v2
|
http://arxiv.org/pdf/1702.08704v2.pdf
|
https://github.com/adelnabli/dadao
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/a-continuized-view-on-nesterov-acceleration-1
|
A Continuized View on Nesterov Acceleration for Stochastic Gradient Descent and Randomized Gossip
|
2106.07644
|
https://arxiv.org/abs/2106.07644v2
|
https://arxiv.org/pdf/2106.07644v2.pdf
|
https://github.com/adelnabli/dadao
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/xiyan-sql-a-novel-multi-generator-framework
|
XiYan-SQL: A Novel Multi-Generator Framework For Text-to-SQL
|
2507.04701
|
https://arxiv.org/abs/2507.04701v1
|
https://arxiv.org/pdf/2507.04701v1.pdf
|
https://github.com/xgenerationlab/xiyan-dbdescgen
| false | false | true |
none
|
https://paperswithcode.com/paper/xiyan-sql-a-multi-generator-ensemble
|
A Preview of XiYan-SQL: A Multi-Generator Ensemble Framework for Text-to-SQL
|
2411.08599
|
https://arxiv.org/abs/2411.08599v3
|
https://arxiv.org/pdf/2411.08599v3.pdf
|
https://github.com/xgenerationlab/xiyan-dbdescgen
| false | false | true |
none
|
https://paperswithcode.com/paper/ph-dropout-prctical-epistemic-uncertainty
|
PH-Dropout: Practical Epistemic Uncertainty Quantification for View Synthesis
|
2410.05468
|
https://arxiv.org/abs/2410.05468v2
|
https://arxiv.org/pdf/2410.05468v2.pdf
|
https://github.com/thanostriantafyllou3/ph-dropout
| true | true | true |
none
|
https://paperswithcode.com/paper/optimizing-edge-offloading-decisions-for
|
Optimizing Edge Offloading Decisions for Object Detection
|
2410.18919
|
https://arxiv.org/abs/2410.18919v1
|
https://arxiv.org/pdf/2410.18919v1.pdf
|
https://github.com/rickywrq/Progressive-Neural-Compression
| false | false | true |
tf
|
https://paperswithcode.com/paper/variational-bayesian-bow-tie-neural-networks
|
Variational Bayesian Bow tie Neural Networks with Shrinkage
|
2411.11132
|
https://arxiv.org/abs/2411.11132v3
|
https://arxiv.org/pdf/2411.11132v3.pdf
|
https://github.com/sheinkmana/V_bowtie_NN
| true | false | true |
jax
|
https://paperswithcode.com/paper/sparse-approximate-cross-validation-for-high
|
Approximate Cross-Validation in High Dimensions with Guarantees
|
1905.13657
|
https://arxiv.org/abs/1905.13657v4
|
https://arxiv.org/pdf/1905.13657v4.pdf
|
https://bitbucket.org/wtstephe/sparse_appx_cv
| true | true | false |
none
|
https://paperswithcode.com/paper/generate-novel-and-robust-samples-from-data
|
Generate synthetic samples from tabular data
|
2209.06113
|
https://arxiv.org/abs/2209.06113v2
|
https://arxiv.org/pdf/2209.06113v2.pdf
|
https://github.com/askexplain/sampling4sharing
| true | true | true |
none
|
https://paperswithcode.com/paper/an-instrumental-variables-framework-to-unite
|
An Instrumental Variables Framework to Unite Spatial Confounding Methods
|
2411.10381
|
https://arxiv.org/abs/2411.10381v2
|
https://arxiv.org/pdf/2411.10381v2.pdf
|
https://github.com/NSAPH-Projects/spatial-scale-confounding
| true | false | false |
none
|
https://paperswithcode.com/paper/learning-high-frequency-functions-made-easy
|
Learning High-Frequency Functions Made Easy with Sinusoidal Positional Encoding
|
2407.09370
|
https://arxiv.org/abs/2407.09370v2
|
https://arxiv.org/pdf/2407.09370v2.pdf
|
https://github.com/zhyuan11/SPE
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/scalable-learned-model-soup-on-a-single-gpu
|
Learning Scalable Model Soup on a Single GPU: An Efficient Subspace Training Strategy
|
2407.03641
|
https://arxiv.org/abs/2407.03641v2
|
https://arxiv.org/pdf/2407.03641v2.pdf
|
https://github.com/nblt/mehl-soup
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/crossnorm-normalization-for-off-policy-td
|
CrossQ: Batch Normalization in Deep Reinforcement Learning for Greater Sample Efficiency and Simplicity
|
1902.05605
|
https://arxiv.org/abs/1902.05605v4
|
https://arxiv.org/pdf/1902.05605v4.pdf
|
https://github.com/DLR-RM/stable-baselines3
| false | false | false |
pytorch
|
https://paperswithcode.com/paper/reconciling-kaplan-and-chinchilla-scaling
|
Reconciling Kaplan and Chinchilla Scaling Laws
|
2406.12907
|
https://arxiv.org/abs/2406.12907v3
|
https://arxiv.org/pdf/2406.12907v3.pdf
|
https://github.com/teapearce/reconciling_kaplan_chinchilla_scaling_laws
| true | true | true |
none
|
https://paperswithcode.com/paper/map-it-anywhere-mia-empowering-bird-s-eye
|
Map It Anywhere (MIA): Empowering Bird's Eye View Mapping using Large-scale Public Data
|
2407.08726
|
https://arxiv.org/abs/2407.08726v2
|
https://arxiv.org/pdf/2407.08726v2.pdf
|
https://github.com/MapItAnywhere/MapItAnywhere
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/few-shot-novel-category-discovery
|
Few-shot Novel Category Discovery
|
2505.08260
|
https://arxiv.org/abs/2505.08260v1
|
https://arxiv.org/pdf/2505.08260v1.pdf
|
https://github.com/ashengl/fsncd
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/many-objective-evolutionary-influence
|
Many-Objective Evolutionary Influence Maximization: Balancing Spread, Budget, Fairness, and Time
|
2403.18755
|
https://arxiv.org/abs/2403.18755v2
|
https://arxiv.org/pdf/2403.18755v2.pdf
|
https://github.com/eliacunegatti/moeim
| true | true | true |
none
|
https://paperswithcode.com/paper/self-supervised-learning-with-random
|
Self-supervised Learning with Random-projection Quantizer for Speech Recognition
|
2202.01855
|
https://arxiv.org/abs/2202.01855v2
|
https://arxiv.org/pdf/2202.01855v2.pdf
|
https://github.com/lucidrains/vector-quantize-pytorch
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/finite-scalar-quantization-vq-vae-made-simple
|
Finite Scalar Quantization: VQ-VAE Made Simple
|
2309.15505
|
https://arxiv.org/abs/2309.15505v2
|
https://arxiv.org/pdf/2309.15505v2.pdf
|
https://github.com/lucidrains/vector-quantize-pytorch
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/transparent-networks-for-multivariate-time
|
Transparent Networks for Multivariate Time Series
|
2410.10535
|
https://arxiv.org/abs/2410.10535v2
|
https://arxiv.org/pdf/2410.10535v2.pdf
|
https://github.com/gim4855744/gatsm
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/prompt-engineering-and-its-implications-on
|
Prompt engineering and its implications on the energy consumption of Large Language Models
|
2501.05899
|
https://arxiv.org/abs/2501.05899v1
|
https://arxiv.org/pdf/2501.05899v1.pdf
|
https://github.com/riccardoRubei/Greens-2025-Replication-Package
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/multi3hate-multimodal-multilingual-and
|
Multi3Hate: Multimodal, Multilingual, and Multicultural Hate Speech Detection with Vision-Language Models
|
2411.03888
|
https://arxiv.org/abs/2411.03888v1
|
https://arxiv.org/pdf/2411.03888v1.pdf
|
https://github.com/minhducbui/multi3hate
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/leveraging-segment-anything-model-for-source
|
Leveraging Segment Anything Model for Source-Free Domain Adaptation via Dual Feature Guided Auto-Prompting
|
2505.08527
|
https://arxiv.org/abs/2505.08527v2
|
https://arxiv.org/pdf/2505.08527v2.pdf
|
https://github.com/xmed-lab/dfg
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/context-aware-pseudo-label-refinement-for
|
Context-Aware Pseudo-Label Refinement for Source-Free Domain Adaptive Fundus Image Segmentation
|
2308.07731
|
https://arxiv.org/abs/2308.07731v1
|
https://arxiv.org/pdf/2308.07731v1.pdf
|
https://github.com/xmed-lab/dfg
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/semeval-2024-task-3-multimodal-emotion-cause
|
SemEval-2024 Task 3: Multimodal Emotion Cause Analysis in Conversations
|
2405.13049
|
https://arxiv.org/abs/2405.13049v3
|
https://arxiv.org/pdf/2405.13049v3.pdf
|
https://github.com/nustm/semeval-2024_ecac
| true | true | true |
none
|
https://paperswithcode.com/paper/multi-label-logo-recognition-and-retrieval
|
Multi-Label Logo Recognition and Retrieval based on Weighted Fusion of Neural Features
|
2205.05419
|
https://arxiv.org/abs/2205.05419v2
|
https://arxiv.org/pdf/2205.05419v2.pdf
|
https://github.com/pertusa/multilabelLogoRecognition
| false | false | false |
tf
|
https://paperswithcode.com/paper/segic-unleashing-the-emergent-correspondence
|
SEGIC: Unleashing the Emergent Correspondence for In-Context Segmentation
|
2311.14671
|
https://arxiv.org/abs/2311.14671v3
|
https://arxiv.org/pdf/2311.14671v3.pdf
|
https://github.com/menglcool/segic
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/educoder-an-open-source-annotation-system-for
|
EduCoder: An Open-Source Annotation System for Education Transcript Data
|
2507.05385
|
https://arxiv.org/abs/2507.05385v1
|
https://arxiv.org/pdf/2507.05385v1.pdf
|
https://github.com/ArthurP-351/EduCoder
| true | false | false |
none
|
https://paperswithcode.com/paper/agl-net-aerial-ground-cross-modal-global
|
AGL-NET: Aerial-Ground Cross-Modal Global Localization with Varying Scales
|
2404.03187
|
https://arxiv.org/abs/2404.03187v2
|
https://arxiv.org/pdf/2404.03187v2.pdf
|
https://github.com/rayguan97/agl-net
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/privacy-enhanced-data-sharing-systems-from
|
Privacy-Enhanced Data Sharing Systems from Hierarchical ID-Based Puncturable Functional Encryption with Inner Product Predicates
| null |
https://ietresearch.onlinelibrary.wiley.com/doi/full/10.1049/2024/5535196
|
https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/2024/5535196
|
https://github.com/chengyi-chris/HIBP-IPFE
| false | false | false |
none
|
https://paperswithcode.com/paper/unpacking-sdxl-turbo-interpreting-text-to
|
Unpacking SDXL Turbo: Interpreting Text-to-Image Models with Sparse Autoencoders
|
2410.22366
|
https://arxiv.org/abs/2410.22366v2
|
https://arxiv.org/pdf/2410.22366v2.pdf
|
https://github.com/surkovv/sdxl-unbox
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/aiscivision-a-framework-for-specializing
|
AiSciVision: A Framework for Specializing Large Multimodal Models in Scientific Image Classification
|
2410.21480
|
https://arxiv.org/abs/2410.21480v1
|
https://arxiv.org/pdf/2410.21480v1.pdf
|
https://github.com/gomes-lab/AiSciVision
| true | false | true |
pytorch
|
https://paperswithcode.com/paper/dynamic-pricing-for-the-open-online-ticket
|
Dynamic Pricing for the Open Online Ticket System: A Surrogate Modeling Approach
| null |
https://www.mdpi.com/2624-6511/6/3/63
|
https://www.mdpi.com/2624-6511/6/3/63/pdf?version=1683688086
|
https://github.com/AlgoMathITMO/DPRank
| false | true | false |
none
|
https://paperswithcode.com/paper/separation-of-periodic-orbits-in-the-delay
|
Separation of periodic orbits in the delay embedded space of chaotic attractors
|
2411.13103
|
https://arxiv.org/abs/2411.13103v1
|
https://arxiv.org/pdf/2411.13103v1.pdf
|
https://github.com/prernampatil/unstableperiodicorbits
| true | true | true |
none
|
https://paperswithcode.com/paper/metaheuristics-for-the-online-printing-shop
|
Metaheuristics for the Online Printing Shop Scheduling Problem
|
2006.12344
|
https://arxiv.org/abs/2006.12344v2
|
https://arxiv.org/pdf/2006.12344v2.pdf
|
https://github.com/willtl/online-printing-shop
| true | true | true |
none
|
https://paperswithcode.com/paper/predicting-temperatures-in-brazilian-states
|
Predicting temperatures in Brazilian states capitals via Machine Learning
|
2505.11511
|
https://arxiv.org/abs/2505.11511v1
|
https://arxiv.org/pdf/2505.11511v1.pdf
|
https://github.com/ecgabrick/braziltempforecasting
| true | true | true |
none
|
https://paperswithcode.com/paper/learning-the-trading-algorithm-in-simulated
|
Nonstationary Continuum-Armed Bandit Strategies for Automated Trading in a Simulated Financial Market
|
2208.02901
|
https://arxiv.org/abs/2208.02901v3
|
https://arxiv.org/pdf/2208.02901v3.pdf
|
https://github.com/HarmoniaLeo/PRZI-Bayesian-Optimisation
| true | true | false |
none
|
https://paperswithcode.com/paper/general-multi-label-image-classification-with
|
General Multi-label Image Classification with Transformers
|
2011.14027
|
https://arxiv.org/abs/2011.14027v1
|
https://arxiv.org/pdf/2011.14027v1.pdf
|
https://github.com/QData/C-Tran
| true | false | true |
pytorch
|
https://paperswithcode.com/paper/retinexformer-one-stage-retinex-based
|
Retinexformer: One-stage Retinex-based Transformer for Low-light Image Enhancement
|
2303.06705
|
https://arxiv.org/abs/2303.06705v3
|
https://arxiv.org/pdf/2303.06705v3.pdf
|
https://github.com/dawnlh/awesome-low-light-image-enhancement
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/learning-on-llm-output-signatures-for-gray
|
Learning on LLM Output Signatures for gray-box LLM Behavior Analysis
|
2503.14043
|
https://arxiv.org/abs/2503.14043v1
|
https://arxiv.org/pdf/2503.14043v1.pdf
|
https://github.com/barsguy/llm-output-signatures-network
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/piast-a-multimodal-piano-dataset-with-audio
|
PIAST: A Multimodal Piano Dataset with Audio, Symbolic and Text
|
2411.02551
|
https://arxiv.org/abs/2411.02551v2
|
https://arxiv.org/pdf/2411.02551v2.pdf
|
https://github.com/Hayeonbang/PIAST
| true | true | true |
none
|
https://paperswithcode.com/paper/can-language-models-learn-to-skip-steps
|
Can Language Models Learn to Skip Steps?
|
2411.01855
|
https://arxiv.org/abs/2411.01855v1
|
https://arxiv.org/pdf/2411.01855v1.pdf
|
https://github.com/tengxiaoliu/LM_skip
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/dptdr-deep-prompt-tuning-for-dense-passage
|
DPTDR: Deep Prompt Tuning for Dense Passage Retrieval
|
2208.11503
|
https://arxiv.org/abs/2208.11503v1
|
https://arxiv.org/pdf/2208.11503v1.pdf
|
https://github.com/MindSpore-scientific/code-7/tree/main/DPT
| false | false | false |
none
|
https://paperswithcode.com/paper/learning-transferable-visual-models-from
|
Learning Transferable Visual Models From Natural Language Supervision
|
2103.00020
|
https://arxiv.org/abs/2103.00020v1
|
https://arxiv.org/pdf/2103.00020v1.pdf
|
https://github.com/borisdayma/clip-jax
| false | false | true |
jax
|
https://paperswithcode.com/paper/sigmoid-loss-for-language-image-pre-training
|
Sigmoid Loss for Language Image Pre-Training
|
2303.15343
|
https://arxiv.org/abs/2303.15343v4
|
https://arxiv.org/pdf/2303.15343v4.pdf
|
https://github.com/borisdayma/clip-jax
| false | false | true |
jax
|
https://paperswithcode.com/paper/image-captioners-are-scalable-vision-learners
|
Image Captioners Are Scalable Vision Learners Too
|
2306.07915
|
https://arxiv.org/abs/2306.07915v5
|
https://arxiv.org/pdf/2306.07915v5.pdf
|
https://github.com/borisdayma/clip-jax
| false | false | true |
jax
|
https://paperswithcode.com/paper/vision-transformers-need-registers
|
Vision Transformers Need Registers
|
2309.16588
|
https://arxiv.org/abs/2309.16588v2
|
https://arxiv.org/pdf/2309.16588v2.pdf
|
https://github.com/borisdayma/clip-jax
| false | false | true |
jax
|
https://paperswithcode.com/paper/unet-a-nested-u-net-architecture-for-medical
|
UNet++: A Nested U-Net Architecture for Medical Image Segmentation
|
1807.10165
|
http://arxiv.org/abs/1807.10165v1
|
http://arxiv.org/pdf/1807.10165v1.pdf
|
https://github.com/qubvel/segmentation_models.pytorch
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/scalable-inference-with-autoregressive-neural
|
Scalable inference with Autoregressive Neural Ratio Estimation
|
2308.08597
|
https://arxiv.org/abs/2308.08597v2
|
https://arxiv.org/pdf/2308.08597v2.pdf
|
https://github.com/undark-lab/swyft
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/rest-hands-rehabilitation-with-egocentric
|
REST-HANDS: Rehabilitation with Egocentric Vision Using Smartglasses for Treatment of Hands after Surviving Stroke
|
2409.20116
|
https://arxiv.org/abs/2409.20116v1
|
https://arxiv.org/pdf/2409.20116v1.pdf
|
https://github.com/wiktormucha/rest-hands
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/reducing-inference-energy-consumption-using
|
Reducing Inference Energy Consumption Using Dual Complementary CNNs
|
2412.01039
|
https://arxiv.org/abs/2412.01039v2
|
https://arxiv.org/pdf/2412.01039v2.pdf
|
https://github.com/michaelkinnas/Reducing-Inference-Energy-Consumption-Using-Two-Complementary-CNNs
| true | false | false |
pytorch
|
https://paperswithcode.com/paper/accio-table-understanding-enhanced-via
|
ACCIO: Table Understanding Enhanced via Contrastive Learning with Aggregations
|
2411.04443
|
https://arxiv.org/abs/2411.04443v1
|
https://arxiv.org/pdf/2411.04443v1.pdf
|
https://github.com/whnhch/accio
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/robust-bayesian-graphical-regression-models
|
Robust Bayesian Graphical Regression Models for Assessing Tumor Heterogeneity in Proteomic Networks
|
2310.18474
|
https://arxiv.org/abs/2310.18474v1
|
https://arxiv.org/pdf/2310.18474v1.pdf
|
https://github.com/bayesrx/rbgr
| true | true | true |
none
|
https://paperswithcode.com/paper/a-generative-model-for-gaia-astrometric-orbit
|
A generative model for Gaia astrometric orbit catalogs: selection functions for binary stars, giant planets, and compact object companions
|
2411.00088
|
https://arxiv.org/abs/2411.00088v1
|
https://arxiv.org/pdf/2411.00088v1.pdf
|
https://github.com/kareemelbadry/gaiamock
| true | true | false |
none
|
https://paperswithcode.com/paper/videomae-masked-autoencoders-are-data-1
|
VideoMAE: Masked Autoencoders are Data-Efficient Learners for Self-Supervised Video Pre-Training
|
2203.12602
|
https://arxiv.org/abs/2203.12602v3
|
https://arxiv.org/pdf/2203.12602v3.pdf
|
https://github.com/MindSpore-scientific/code-13/tree/main/token_learner
| false | false | false |
mindspore
|
https://paperswithcode.com/paper/improving-decision-sparsity
|
Improving Decision Sparsity
|
2410.20483
|
https://arxiv.org/abs/2410.20483v2
|
https://arxiv.org/pdf/2410.20483v2.pdf
|
https://github.com/williamsyy/multiplesev
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/accuracy-of-a-vision-language-model-on
|
Multimodal Foundation Models Exploit Text to Make Medical Image Predictions
|
2311.05591
|
https://arxiv.org/abs/2311.05591v2
|
https://arxiv.org/pdf/2311.05591v2.pdf
|
https://github.com/2v/lmm-text-image
| true | true | false |
none
|
https://paperswithcode.com/paper/when-dataflow-analysis-meets-large-language
|
LLMDFA: Analyzing Dataflow in Code with Large Language Models
|
2402.10754
|
https://arxiv.org/abs/2402.10754v2
|
https://arxiv.org/pdf/2402.10754v2.pdf
|
https://github.com/chengpeng-wang/llmdfa
| true | true | false |
none
|
https://paperswithcode.com/paper/3dg-a-framework-for-using-generative-ai-for
|
3DG: A Framework for Using Generative AI for Handling Sparse Learner Performance Data From Intelligent Tutoring Systems
|
2402.01746
|
https://arxiv.org/abs/2402.01746v1
|
https://arxiv.org/pdf/2402.01746v1.pdf
|
https://github.com/liangzhang2017/3dgai
| false | false | true |
none
|
https://paperswithcode.com/paper/the-search-for-stability-learning-dynamics-of
|
The Search for Stability: Learning Dynamics of Strategic Publishers with Initial Documents
|
2305.16695
|
https://arxiv.org/abs/2305.16695v5
|
https://arxiv.org/pdf/2305.16695v5.pdf
|
https://github.com/ireinman/the-search-for-stability
| true | true | false |
none
|
https://paperswithcode.com/paper/data-augmentation-for-sparse-multidimensional
|
Data Augmentation for Sparse Multidimensional Learning Performance Data Using Generative AI
|
2409.15631
|
https://arxiv.org/abs/2409.15631v3
|
https://arxiv.org/pdf/2409.15631v3.pdf
|
https://github.com/liangzhang2017/3dgai
| true | true | true |
none
|
https://paperswithcode.com/paper/haar-laplacian-for-directed-graphs
|
Haar-Laplacian for directed graphs
|
2411.15527
|
https://arxiv.org/abs/2411.15527v1
|
https://arxiv.org/pdf/2411.15527v1.pdf
|
https://github.com/theodorbadea/Haar-Laplacian
| true | false | true |
pytorch
|
https://paperswithcode.com/paper/mambacsr-dual-interleaved-scanning-for
|
MambaCSR: Dual-Interleaved Scanning for Compressed Image Super-Resolution With SSMs
|
2408.11758
|
https://arxiv.org/abs/2408.11758v2
|
https://arxiv.org/pdf/2408.11758v2.pdf
|
https://github.com/renyulin-f/mambacsr
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/distractor-free-generalizable-3d-gaussian
|
Distractor-free Generalizable 3D Gaussian Splatting
|
2411.17605
|
https://arxiv.org/abs/2411.17605v1
|
https://arxiv.org/pdf/2411.17605v1.pdf
|
https://github.com/bbbbby-99/dggs
| true | true | false |
none
|
https://paperswithcode.com/paper/a-tool-for-generating-exceptional-behavior
|
A Tool for Generating Exceptional Behavior Tests With Large Language Models
|
2505.22818
|
https://arxiv.org/abs/2505.22818v1
|
https://arxiv.org/pdf/2505.22818v1.pdf
|
https://github.com/engineeringsoftware/exlong
| true | true | true |
none
|
https://paperswithcode.com/paper/mis-information-diffusion-and-the-financial
|
(Mis)information diffusion and the financial market
|
2412.16269
|
https://arxiv.org/abs/2412.16269v1
|
https://arxiv.org/pdf/2412.16269v1.pdf
|
https://github.com/danieltorren/misinformation_financial_markets
| true | true | false |
none
|
https://paperswithcode.com/paper/attamba-attending-to-multi-token-states
|
Attamba: Attending To Multi-Token States
|
2411.17685
|
https://arxiv.org/abs/2411.17685v1
|
https://arxiv.org/pdf/2411.17685v1.pdf
|
https://github.com/abdelfattah-lab/attamba
| true | false | true |
pytorch
|
https://paperswithcode.com/paper/droid-splat-combining-end-to-end-slam-with-3d
|
DROID-Splat: Combining end-to-end SLAM with 3D Gaussian Splatting
|
2411.17660
|
https://arxiv.org/abs/2411.17660v2
|
https://arxiv.org/pdf/2411.17660v2.pdf
|
https://github.com/chenhoy/droid-splat
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/searching-latent-program-spaces
|
Searching Latent Program Spaces
|
2411.08706
|
https://arxiv.org/abs/2411.08706v1
|
https://arxiv.org/pdf/2411.08706v1.pdf
|
https://github.com/clement-bonnet/lpn
| true | true | true |
jax
|
https://paperswithcode.com/paper/risk-aware-trading-portfolio-optimization
|
Risk-aware Trading Portfolio Optimization
|
2503.04662
|
https://arxiv.org/abs/2503.04662v1
|
https://arxiv.org/pdf/2503.04662v1.pdf
|
https://github.com/arnabdey929/Risk-Aware-Trading-Portfolio-Optimisation
| false | false | true |
none
|
https://paperswithcode.com/paper/semiparametric-counterfactual-regression
|
Semiparametric Counterfactual Regression
|
2504.02694
|
https://arxiv.org/abs/2504.02694v2
|
https://arxiv.org/pdf/2504.02694v2.pdf
|
https://github.com/kwangho-joshua-kim/counterfactual-prediction
| true | false | true |
none
|
https://paperswithcode.com/paper/un-detr-promoting-objectness-learning-via
|
UN-DETR: Promoting Objectness Learning via Joint Supervision for Unknown Object Detection
|
2412.10176
|
https://arxiv.org/abs/2412.10176v1
|
https://arxiv.org/pdf/2412.10176v1.pdf
|
https://github.com/ndwxhmzz/un-detr
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/finding-reproducible-and-prognostic-radiomic
|
Finding Reproducible and Prognostic Radiomic Features in Variable Slice Thickness Contrast Enhanced CT of Colorectal Liver Metastases
|
2501.11221
|
https://arxiv.org/abs/2501.11221v1
|
https://arxiv.org/pdf/2501.11221v1.pdf
|
https://github.com/jpeoples/melba2024
| true | true | false |
none
|
https://paperswithcode.com/paper/towards-satellite-image-road-graph-extraction
|
Towards Satellite Image Road Graph Extraction: A Global-Scale Dataset and A Novel Method
|
2411.16733
|
https://arxiv.org/abs/2411.16733v1
|
https://arxiv.org/pdf/2411.16733v1.pdf
|
https://github.com/earth-insights/samroadplus
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/a-simple-framework-for-contrastive-learning
|
A Simple Framework for Contrastive Learning of Visual Representations
|
2002.05709
|
https://arxiv.org/abs/2002.05709v3
|
https://arxiv.org/pdf/2002.05709v3.pdf
|
https://github.com/mandiehyewon/goodviews_ecg
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/segment-based-attention-masking-for-gpts
|
Segment-Based Attention Masking for GPTs
|
2412.18487
|
https://arxiv.org/abs/2412.18487v1
|
https://arxiv.org/pdf/2412.18487v1.pdf
|
https://github.com/shacharKZ/MAS-Segment-Based-Attention-Masking
| true | false | false |
pytorch
|
https://paperswithcode.com/paper/snake-inspired-mobile-robot-positioning-with
|
Snake-Inspired Mobile Robot Positioning with Hybrid Learning
|
2411.17430
|
https://arxiv.org/abs/2411.17430v2
|
https://arxiv.org/pdf/2411.17430v2.pdf
|
https://github.com/ansfl/MoRPINet
| true | false | true |
pytorch
|
https://paperswithcode.com/paper/on-turbulence-for-spacetimes-with-stable
|
On turbulence for spacetimes with stable trapping
|
2411.17445
|
https://arxiv.org/abs/2411.17445v2
|
https://arxiv.org/pdf/2411.17445v2.pdf
|
https://github.com/alejandroc137/ScalarWaveEvolution
| true | false | true |
tf
|
https://paperswithcode.com/paper/can-large-language-models-reason-about-the
|
Can Large Language Models Reason about the Region Connection Calculus?
|
2411.19589
|
https://arxiv.org/abs/2411.19589v1
|
https://arxiv.org/pdf/2411.19589v1.pdf
|
https://github.com/RobBlackwell/can-llms-reason-about-the-rcc
| true | false | true |
none
|
https://paperswithcode.com/paper/cor-gs-sparse-view-3d-gaussian-splatting-via
|
CoR-GS: Sparse-View 3D Gaussian Splatting via Co-Regularization
|
2405.12110
|
https://arxiv.org/abs/2405.12110v2
|
https://arxiv.org/pdf/2405.12110v2.pdf
|
https://github.com/jiaw-z/CoR-GS
| true | false | true |
pytorch
|
https://paperswithcode.com/paper/sadg-segment-any-dynamic-gaussian-without
|
SADG: Segment Any Dynamic Gaussian Without Object Trackers
|
2411.19290
|
https://arxiv.org/abs/2411.19290v1
|
https://arxiv.org/pdf/2411.19290v1.pdf
|
https://github.com/yunjinli/SADG-SegmentAnyDynamicGaussian
| true | false | true |
pytorch
|
https://paperswithcode.com/paper/verifastscore-speeding-up-long-form
|
VeriFastScore: Speeding up long-form factuality evaluation
|
2505.16973
|
https://arxiv.org/abs/2505.16973v1
|
https://arxiv.org/pdf/2505.16973v1.pdf
|
https://github.com/rishanthrajendhran/verifastscore
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/multi-flow-multi-view-enriched-normalizing
|
Multi-Flow: Multi-View-Enriched Normalizing Flows for Industrial Anomaly Detection
|
2504.03306
|
https://arxiv.org/abs/2504.03306v1
|
https://arxiv.org/pdf/2504.03306v1.pdf
|
https://github.com/m-kruse98/multi-flow
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/fair-generalized-linear-models-with-a-convex
|
Fair Generalized Linear Models with a Convex Penalty
|
2206.09076
|
https://arxiv.org/abs/2206.09076v1
|
https://arxiv.org/pdf/2206.09076v1.pdf
|
https://github.com/hyungrok-do/fair-glm-cvx
| true | true | true |
tf
|
https://paperswithcode.com/paper/penalizing-unfairness-in-binary
|
Penalizing Unfairness in Binary Classification
|
1707.00044
|
http://arxiv.org/abs/1707.00044v3
|
http://arxiv.org/pdf/1707.00044v3.pdf
|
https://github.com/hyungrok-do/fair-glm-cvx
| false | false | true |
tf
|
https://paperswithcode.com/paper/a-convex-framework-for-fair-regression
|
A Convex Framework for Fair Regression
|
1706.02409
|
http://arxiv.org/abs/1706.02409v1
|
http://arxiv.org/pdf/1706.02409v1.pdf
|
https://github.com/hyungrok-do/fair-glm-cvx
| false | false | true |
tf
|
https://paperswithcode.com/paper/disaggregated-multi-tower-topology-aware
|
Disaggregated Multi-Tower: Topology-aware Modeling Technique for Efficient Large-Scale Recommendation
|
2403.00877
|
https://arxiv.org/abs/2403.00877v3
|
https://arxiv.org/pdf/2403.00877v3.pdf
|
https://github.com/pytorch/torchrec
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/ifedrec-item-guided-federated-aggregation-for
|
When Federated Recommendation Meets Cold-Start Problem: Separating Item Attributes and User Interactions
|
2305.12650
|
https://arxiv.org/abs/2305.12650v2
|
https://arxiv.org/pdf/2305.12650v2.pdf
|
https://github.com/zhangcx19/ifedrec
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/future-sight-and-tough-fights-revolutionizing
|
Future Sight and Tough Fights: Revolutionizing Sequential Recommendation with FENRec
|
2412.11589
|
https://arxiv.org/abs/2412.11589v4
|
https://arxiv.org/pdf/2412.11589v4.pdf
|
https://github.com/uikdwnd/FENRec
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/online-continual-learning-a-systematic
|
Online Continual Learning: A Systematic Literature Review of Approaches, Challenges, and Benchmarks
|
2501.04897
|
https://arxiv.org/abs/2501.04897v1
|
https://arxiv.org/pdf/2501.04897v1.pdf
|
https://github.com/kiyan-rezaee/systematic-literature-review-on-online-continual-learning
| true | true | true |
none
|
https://paperswithcode.com/paper/feyngame-3-0
|
FeynGame 3.0
|
2501.04651
|
https://arxiv.org/abs/2501.04651v1
|
https://arxiv.org/pdf/2501.04651v1.pdf
|
https://gitlab.com/feyngame/FeynGame
| true | true | false |
none
|
https://paperswithcode.com/paper/footstepnet-an-efficient-actor-critic-method
|
FootstepNet: an Efficient Actor-Critic Method for Fast On-line Bipedal Footstep Planning and Forecasting
|
2403.12589
|
https://arxiv.org/abs/2403.12589v2
|
https://arxiv.org/pdf/2403.12589v2.pdf
|
https://github.com/Rhoban/footstepnet_envs
| true | false | true |
jax
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.