paper_url
stringlengths 36
81
| paper_title
stringlengths 1
242
⌀ | paper_arxiv_id
stringlengths 9
16
⌀ | paper_url_abs
stringlengths 18
314
| paper_url_pdf
stringlengths 21
935
⌀ | repo_url
stringlengths 26
200
| is_official
bool 2
classes | mentioned_in_paper
bool 2
classes | mentioned_in_github
bool 2
classes | framework
stringclasses 9
values |
---|---|---|---|---|---|---|---|---|---|
https://paperswithcode.com/paper/semisupervised-neural-proto-language
|
Semisupervised Neural Proto-Language Reconstruction
|
2406.05930
|
https://arxiv.org/abs/2406.05930v2
|
https://arxiv.org/pdf/2406.05930v2.pdf
|
https://github.com/cmu-llab/dpd
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/band-biomedical-alert-news-dataset
|
BAND: Biomedical Alert News Dataset
|
2305.14480
|
https://arxiv.org/abs/2305.14480v2
|
https://arxiv.org/pdf/2305.14480v2.pdf
|
https://github.com/fuzihaofzh/band
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/adding-conditional-control-to-text-to-image
|
Adding Conditional Control to Text-to-Image Diffusion Models
|
2302.05543
|
https://arxiv.org/abs/2302.05543v3
|
https://arxiv.org/pdf/2302.05543v3.pdf
|
https://github.com/Francis-Rings/MotionEditor
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/high-resolution-image-synthesis-with-latent
|
High-Resolution Image Synthesis with Latent Diffusion Models
|
2112.10752
|
https://arxiv.org/abs/2112.10752v2
|
https://arxiv.org/pdf/2112.10752v2.pdf
|
https://github.com/Francis-Rings/MotionEditor
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/p-winds-an-open-source-python-code-to-model
|
p-winds: an open-source Python code to model planetary outflows and upper atmospheres
|
2111.11370
|
https://arxiv.org/abs/2111.11370v3
|
https://arxiv.org/pdf/2111.11370v3.pdf
|
https://github.com/ladsantos/p-winds
| true | true | true |
none
|
https://paperswithcode.com/paper/3d-voxel-maps-to-2d-occupancy-maps-for
|
Voxel Map to Occupancy Map Conversion Using Free Space Projection for Efficient Map Representation for Aerial and Ground Robots
|
2406.07270
|
https://arxiv.org/abs/2406.07270v2
|
https://arxiv.org/pdf/2406.07270v2.pdf
|
https://github.com/ltu-rai/map-conversion-3d-voxel-map-to-2d-occupancy-map
| true | true | true |
none
|
https://paperswithcode.com/paper/eccos-efficient-capability-and-cost
|
OmniRouter: Budget and Performance Controllable Multi-LLM Routing
|
2502.20576
|
https://arxiv.org/abs/2502.20576v5
|
https://arxiv.org/pdf/2502.20576v5.pdf
|
https://github.com/agiresearch/aios
| true | true | false |
none
|
https://paperswithcode.com/paper/approximate-nearest-neighbor-search-with
|
Approximate Nearest Neighbor Search with Window Filters
|
2402.00943
|
https://arxiv.org/abs/2402.00943v2
|
https://arxiv.org/pdf/2402.00943v2.pdf
|
https://github.com/joshengels/rangefilteredann
| true | true | true |
none
|
https://paperswithcode.com/paper/an-interventional-perspective-on
|
An Interventional Perspective on Identifiability in Gaussian LTI Systems with Independent Component Analysis
|
2311.18048
|
https://arxiv.org/abs/2311.18048v2
|
https://arxiv.org/pdf/2311.18048v2.pdf
|
https://github.com/meszarosanna/rule_extrapolation
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/machine-learning-methods-for-postprocessing
|
Machine learning methods for postprocessing ensemble forecasts of wind gusts: A systematic comparison
|
2106.09512
|
https://arxiv.org/abs/2106.09512v1
|
https://arxiv.org/pdf/2106.09512v1.pdf
|
https://github.com/benediktschulz/paper_pp_wind_gusts
| true | true | true |
none
|
https://paperswithcode.com/paper/physics-informed-distillation-for-diffusion
|
Physics Informed Distillation for Diffusion Models
|
2411.08378
|
https://arxiv.org/abs/2411.08378v1
|
https://arxiv.org/pdf/2411.08378v1.pdf
|
https://github.com/pantheon5100/pid_diffusion
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/review-of-deep-learning-models-for-crypto
|
Review of deep learning models for crypto price prediction: implementation and evaluation
|
2405.11431
|
https://arxiv.org/abs/2405.11431v2
|
https://arxiv.org/pdf/2405.11431v2.pdf
|
https://github.com/sydney-machine-learning/deeplearning-crypto
| true | true | true |
tf
|
https://paperswithcode.com/paper/fast-and-accurate-algorithms-to-calculate
|
On the accurate computation of expected modularity in probabilistic networks
|
2408.07161
|
https://arxiv.org/abs/2408.07161v3
|
https://arxiv.org/pdf/2408.07161v3.pdf
|
https://github.com/uuinfolab/Expected_Modularity_Calculation_in_ProbabilisticGraph
| true | false | false |
none
|
https://paperswithcode.com/paper/cumulative-differences-between-subpopulations-1
|
Cumulative differences between subpopulations versus body mass index in the Behavioral Risk Factor Surveillance System data
|
2411.07399
|
https://arxiv.org/abs/2411.07399v1
|
https://arxiv.org/pdf/2411.07399v1.pdf
|
https://github.com/facebookresearch/cumbiostats
| true | false | false |
none
|
https://paperswithcode.com/paper/on-the-intractability-of-chaotic-symbolic
|
On the Intractability of Chaotic Symbolic Walks: Toward a Non-Algebraic Post-Quantum Hardness Assumption
|
2505.22644
|
https://arxiv.org/abs/2505.22644v1
|
https://arxiv.org/pdf/2505.22644v1.pdf
|
https://github.com/drbouke/SPIP
| true | false | false |
none
|
https://paperswithcode.com/paper/gaming-tool-preferences-in-agentic-llms
|
Gaming Tool Preferences in Agentic LLMs
|
2505.18135
|
https://arxiv.org/abs/2505.18135v1
|
https://arxiv.org/pdf/2505.18135v1.pdf
|
https://github.com/kazemf78/Gaming-Tool-Preferences
| true | false | true |
none
|
https://paperswithcode.com/paper/spatial-temporal-cross-view-contrastive-pre
|
Spatial-Temporal Cross-View Contrastive Pre-training for Check-in Sequence Representation Learning
|
2407.15899
|
https://arxiv.org/abs/2407.15899v3
|
https://arxiv.org/pdf/2407.15899v3.pdf
|
https://github.com/letiangong/stccr
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/a-simple-randomization-technique-for-1
|
Network Randomization: A Simple Technique for Generalization in Deep Reinforcement Learning
|
1910.05396
|
https://arxiv.org/abs/1910.05396v3
|
https://arxiv.org/pdf/1910.05396v3.pdf
|
https://github.com/1hb6s7t/Rand-conv
| false | false | false |
mindspore
|
https://paperswithcode.com/paper/wider-networks-learn-better-features
|
Wider Networks Learn Better Features
|
1909.11572
|
https://arxiv.org/abs/1909.11572v1
|
https://arxiv.org/pdf/1909.11572v1.pdf
|
https://github.com/iantheconway/network_width_and_transfer_learning
| false | false | true |
tf
|
https://paperswithcode.com/paper/instruction-guided-bullet-point-summarization
|
Instruction-Guided Bullet Point Summarization of Long Financial Earnings Call Transcripts
|
2405.06669
|
https://arxiv.org/abs/2405.06669v1
|
https://arxiv.org/pdf/2405.06669v1.pdf
|
https://github.com/subhendukhatuya/FLAN-FinBPS
| true | false | false |
pytorch
|
https://paperswithcode.com/paper/on-a-new-family-of-weighted-gaussian
|
On a new family of weighted Gaussian processes: an application to bat telemetry data
|
2405.19903
|
https://arxiv.org/abs/2405.19903v1
|
https://arxiv.org/pdf/2405.19903v1.pdf
|
https://github.com/joseramirezgonzalez/f-wsfBm
| true | true | false |
none
|
https://paperswithcode.com/paper/a-structured-l-bfgs-method-with-diagonal
|
A structured L-BFGS method with diagonal scaling and its application to image registration
|
2405.19834
|
https://arxiv.org/abs/2405.19834v3
|
https://arxiv.org/pdf/2405.19834v3.pdf
|
https://github.com/hariagr/slbfgs
| true | true | false |
none
|
https://paperswithcode.com/paper/distributed-online-planning-for-min-max
|
Distributed Online Planning for Min-Max Problems in Networked Markov Games
|
2405.19570
|
https://arxiv.org/abs/2405.19570v1
|
https://arxiv.org/pdf/2405.19570v1.pdf
|
https://github.com/alextzik/distr_online_maxmin_markov_game
| true | true | false |
none
|
https://paperswithcode.com/paper/lalonde-1986-after-nearly-four-decades
|
Comparing Experimental and Nonexperimental Methods: What Lessons Have We Learned Four Decades After LaLonde (1986)?
|
2406.00827
|
https://arxiv.org/abs/2406.00827v3
|
https://arxiv.org/pdf/2406.00827v3.pdf
|
https://github.com/xuyiqing/lalonde
| true | true | true |
none
|
https://paperswithcode.com/paper/motionfollower-editing-video-motion-via
|
MotionFollower: Editing Video Motion via Lightweight Score-Guided Diffusion
|
2405.20325
|
https://arxiv.org/abs/2405.20325v1
|
https://arxiv.org/pdf/2405.20325v1.pdf
|
https://github.com/Francis-Rings/MotionFollower
| true | false | true |
pytorch
|
https://paperswithcode.com/paper/lmrpa-large-language-model-driven-efficient
|
LMRPA: Large Language Model-Driven Efficient Robotic Process Automation for OCR
|
2412.18063
|
https://arxiv.org/abs/2412.18063v2
|
https://arxiv.org/pdf/2412.18063v2.pdf
|
https://github.com/mad-sam22/erpa-ocr
| true | true | false |
none
|
https://paperswithcode.com/paper/seqmia-sequential-metric-based-membership
|
SeqMIA: Sequential-Metric Based Membership Inference Attack
|
2407.15098
|
https://arxiv.org/abs/2407.15098v1
|
https://arxiv.org/pdf/2407.15098v1.pdf
|
https://github.com/AIPAG/SeqMIA
| true | false | true |
pytorch
|
https://paperswithcode.com/paper/unigen-universal-domain-generalization-for
|
UniGen: Universal Domain Generalization for Sentiment Classification via Zero-shot Dataset Generation
|
2405.01022
|
https://arxiv.org/abs/2405.01022v3
|
https://arxiv.org/pdf/2405.01022v3.pdf
|
https://github.com/c-juhwan/unigen
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/recurrent-neural-goodness-of-fit-test-for
|
Recurrent Neural Goodness-of-Fit Test for Time Series
|
2410.13986
|
https://arxiv.org/abs/2410.13986v3
|
https://arxiv.org/pdf/2410.13986v3.pdf
|
https://github.com/aoranzhangmia/neural-gof-time
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/softmax-attention-with-constant-cost-per
|
Softmax Attention with Constant Cost per Token
|
2404.05843
|
https://arxiv.org/abs/2404.05843v2
|
https://arxiv.org/pdf/2404.05843v2.pdf
|
https://github.com/glassroom/heinsen_attention
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/slimer-it-zero-shot-ner-on-italian-language
|
SLIMER-IT: Zero-Shot NER on Italian Language
|
2409.15933
|
https://arxiv.org/abs/2409.15933v2
|
https://arxiv.org/pdf/2409.15933v2.pdf
|
https://github.com/andrewzamai/slimer_it
| true | true | true |
none
|
https://paperswithcode.com/paper/opponent-shaping-for-antibody-development
|
ADIOS: Antibody Development via Opponent Shaping
|
2409.10588
|
https://arxiv.org/abs/2409.10588v8
|
https://arxiv.org/pdf/2409.10588v8.pdf
|
https://github.com/olakalisz/antibody-shapers
| true | true | true |
jax
|
https://paperswithcode.com/paper/foundation-models-for-amodal-video-instance
|
Foundation Models for Amodal Video Instance Segmentation in Automated Driving
|
2409.14095
|
https://arxiv.org/abs/2409.14095v1
|
https://arxiv.org/pdf/2409.14095v1.pdf
|
https://github.com/ifnspaml/s-amodal
| true | true | true |
jax
|
https://paperswithcode.com/paper/fast-randomized-least-squares-solvers-can-be
|
Fast randomized least-squares solvers can be just as accurate and stable as classical direct solvers
|
2406.03468
|
https://arxiv.org/abs/2406.03468v2
|
https://arxiv.org/pdf/2406.03468v2.pdf
|
https://github.com/eepperly/Stable-Randomized-Least-Squares
| true | true | true |
none
|
https://paperswithcode.com/paper/accelerating-ill-conditioned-hankel-matrix
|
Accelerating Ill-conditioned Hankel Matrix Recovery via Structured Newton-like Descent
|
2406.07409
|
https://arxiv.org/abs/2406.07409v2
|
https://arxiv.org/pdf/2406.07409v2.pdf
|
https://github.com/caesarcai/HSNLD
| true | true | true |
none
|
https://paperswithcode.com/paper/calibrating-car-following-models-via-bayesian
|
Calibrating Car-Following Models via Bayesian Dynamic Regression
|
2307.03340
|
https://arxiv.org/abs/2307.03340v2
|
https://arxiv.org/pdf/2307.03340v2.pdf
|
https://github.com/chengyuan-zhang/idm_bayesian_calibration
| true | true | true |
none
|
https://paperswithcode.com/paper/disco-might-not-be-funky-random-intelligent
|
DISCO Might Not Be Funky: Random Intelligent Reflective Surface Configurations That Attack
|
2310.00687
|
https://arxiv.org/abs/2310.00687v2
|
https://arxiv.org/pdf/2310.00687v2.pdf
|
https://github.com/huanhuan1799/disco-intelligent-reflecting-surfaces-active-channel-aging-for-fully-passive-jamming-attacks
| true | true | false |
none
|
https://paperswithcode.com/paper/radial-velocity-and-astrometric-evidence-for
|
Radial Velocity and Astrometric Evidence for a Close Companion to Betelgeuse
|
2409.11332
|
https://arxiv.org/abs/2409.11332v2
|
https://arxiv.org/pdf/2409.11332v2.pdf
|
https://github.com/morganemacleod/BetelgeuseLittleFriend
| true | false | true |
none
|
https://paperswithcode.com/paper/diagnosing-the-pattern-effect-in-the
|
A fluctuation-dissipation theorem perspective on radiative responses to temperature perturbations
|
2408.12585
|
https://arxiv.org/abs/2408.12585v5
|
https://arxiv.org/pdf/2408.12585v5.pdf
|
https://github.com/fabrifalasca/linear-response-and-causal-inference
| true | true | true |
none
|
https://paperswithcode.com/paper/coverage-axis-efficient-inner-point-selection
|
Coverage Axis++: Efficient Inner Point Selection for 3D Shape Skeletonization
|
2401.12946
|
https://arxiv.org/abs/2401.12946v7
|
https://arxiv.org/pdf/2401.12946v7.pdf
|
https://github.com/frank-zy-dou/coverage_axis
| true | true | true |
none
|
https://paperswithcode.com/paper/near-inertial-echoes-of-ageostrophic
|
Near-inertial echoes of ageostrophic instability in submesoscale filaments
|
2407.16059
|
https://arxiv.org/abs/2407.16059v4
|
https://arxiv.org/pdf/2407.16059v4.pdf
|
https://github.com/erin-atkinson/filament-instability
| true | false | false |
none
|
https://paperswithcode.com/paper/living-in-the-moment-can-large-language
|
Living in the Moment: Can Large Language Models Grasp Co-Temporal Reasoning?
|
2406.09072
|
https://arxiv.org/abs/2406.09072v1
|
https://arxiv.org/pdf/2406.09072v1.pdf
|
https://github.com/zhaochen0110/cotempqa
| true | true | true |
none
|
https://paperswithcode.com/paper/gaussian-plane-wave-neural-operator-for
|
Gaussian Plane-Wave Neural Operator for Electron Density Estimation
|
2402.04278
|
https://arxiv.org/abs/2402.04278v2
|
https://arxiv.org/pdf/2402.04278v2.pdf
|
https://github.com/seongsukim-ml/gpwno
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/query-policy-misalignment-in-preference-based
|
Query-Policy Misalignment in Preference-Based Reinforcement Learning
|
2305.17400
|
https://arxiv.org/abs/2305.17400v3
|
https://arxiv.org/pdf/2305.17400v3.pdf
|
https://github.com/huxiao09/qpa
| true | true | false |
none
|
https://paperswithcode.com/paper/lerac-learning-rate-curriculum
|
Learning Rate Curriculum
|
2205.09180
|
https://arxiv.org/abs/2205.09180v4
|
https://arxiv.org/pdf/2205.09180v4.pdf
|
https://github.com/croitorualin/lerac
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/chartgemma-visual-instruction-tuning-for
|
ChartGemma: Visual Instruction-tuning for Chart Reasoning in the Wild
|
2407.04172
|
https://arxiv.org/abs/2407.04172v2
|
https://arxiv.org/pdf/2407.04172v2.pdf
|
https://github.com/vis-nlp/chartgemma
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/secure-aggregation-is-not-private-against
|
Secure Aggregation is Not Private Against Membership Inference Attacks
|
2403.17775
|
https://arxiv.org/abs/2403.17775v3
|
https://arxiv.org/pdf/2403.17775v3.pdf
|
https://github.com/khachoang1412/SecAgg_not_private
| true | true | true |
none
|
https://paperswithcode.com/paper/scoping-review-of-active-learning-strategies
|
Scoping Review of Active Learning Strategies and their Evaluation Environments for Entity Recognition Tasks
|
2407.03895
|
https://arxiv.org/abs/2407.03895v1
|
https://arxiv.org/pdf/2407.03895v1.pdf
|
https://github.com/philipp-kohl/scoping-review-active-learning-er
| true | false | false |
none
|
https://paperswithcode.com/paper/a-detailed-study-of-recurrent-neural-networks
|
Exploring weight initialization, diversity of solutions, and degradation in recurrent neural networks trained for temporal and decision-making tasks
|
1906.01094
|
https://arxiv.org/abs/1906.01094v6
|
https://arxiv.org/pdf/1906.01094v6.pdf
|
https://github.com/katejarne/RNN_study_with_keras
| true | true | true |
tf
|
https://paperswithcode.com/paper/affectgpt-dataset-and-framework-for
|
AffectGPT: Dataset and Framework for Explainable Multimodal Emotion Recognition
|
2407.07653
|
https://arxiv.org/abs/2407.07653v1
|
https://arxiv.org/pdf/2407.07653v1.pdf
|
https://github.com/zeroqiaoba/affectgpt
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/hstpromo-internal-proper-motion-kinematics-of
|
HSTPROMO Internal Proper Motion Kinematics of Dwarf Spheroidal Galaxies: I. Velocity Anisotropy and Dark Matter Cusp Slope of Draco
|
2407.07769
|
https://arxiv.org/abs/2407.07769v1
|
https://arxiv.org/pdf/2407.07769v1.pdf
|
https://gitlab.com/eduardo-vitral/scalefree
| true | true | false |
none
|
https://paperswithcode.com/paper/automated-medical-report-generation-for-ecg
|
Automated Medical Report Generation for ECG Data: Bridging Medical Text and Signal Processing with Deep Learning
|
2412.04067
|
https://arxiv.org/abs/2412.04067v1
|
https://arxiv.org/pdf/2412.04067v1.pdf
|
https://git.zib.de/ableich/ecg-comment-generation-public
| false | false | false |
none
|
https://paperswithcode.com/paper/deep-domain-adaptation-for-ordinal-regression
|
Deep Domain Adaptation for Ordinal Regression of Pain Intensity Estimation Using Weakly-Labelled Videos
|
2008.06392
|
https://arxiv.org/abs/2008.06392v3
|
https://arxiv.org/pdf/2008.06392v3.pdf
|
https://github.com/praveena2j/wsdaor
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/video-recap-recursive-captioning-of-hour-long
|
Video ReCap: Recursive Captioning of Hour-Long Videos
|
2402.13250
|
https://arxiv.org/abs/2402.13250v6
|
https://arxiv.org/pdf/2402.13250v6.pdf
|
https://github.com/md-mohaiminul/VideoRecap
| true | false | true |
pytorch
|
https://paperswithcode.com/paper/feature-characterization-for-profile-surface
|
Feature Characterization for Profile Surface Texture
|
2406.06381
|
https://arxiv.org/abs/2406.06381v4
|
https://arxiv.org/pdf/2406.06381v4.pdf
|
https://github.com/mts-public/feature-characterization-for-profile-surface-texture
| true | false | true |
none
|
https://paperswithcode.com/paper/on-the-robustness-of-global-feature-effect
|
On the Robustness of Global Feature Effect Explanations
|
2406.09069
|
https://arxiv.org/abs/2406.09069v1
|
https://arxiv.org/pdf/2406.09069v1.pdf
|
https://github.com/hbaniecki/robust-feature-effects
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/tofu-a-task-of-fictitious-unlearning-for-llms
|
TOFU: A Task of Fictitious Unlearning for LLMs
|
2401.06121
|
https://arxiv.org/abs/2401.06121v1
|
https://arxiv.org/pdf/2401.06121v1.pdf
|
https://github.com/ucsb-nlp-chang/uld
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/differentiable-programming-for-differential
|
Differentiable Programming for Differential Equations: A Review
|
2406.09699
|
https://arxiv.org/abs/2406.09699v1
|
https://arxiv.org/pdf/2406.09699v1.pdf
|
https://github.com/ODINN-SciML/DiffEqSensitivity-Review
| true | false | true |
jax
|
https://paperswithcode.com/paper/cryptoformaleval-integrating-llms-and-formal
|
CryptoFormalEval: Integrating LLMs and Formal Verification for Automated Cryptographic Protocol Vulnerability Detection
|
2411.13627
|
https://arxiv.org/abs/2411.13627v1
|
https://arxiv.org/pdf/2411.13627v1.pdf
|
https://github.com/cristian-curaba/cryptoformaleval
| true | true | false |
none
|
https://paperswithcode.com/paper/negative-yields-positive-unified-dual-path
|
Enhancing Vision-Language Few-Shot Adaptation with Negative Learning
|
2403.12964
|
https://arxiv.org/abs/2403.12964v2
|
https://arxiv.org/pdf/2403.12964v2.pdf
|
https://github.com/zhangce01/simnl
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/swin-smt-global-sequential-modeling-in-3d
|
Swin SMT: Global Sequential Modeling in 3D Medical Image Segmentation
|
2407.07514
|
https://arxiv.org/abs/2407.07514v1
|
https://arxiv.org/pdf/2407.07514v1.pdf
|
https://github.com/mi2datalab/swinsmt
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/compressed-multi-task-embeddings-for-data
|
Neural Embedding Compression For Efficient Multi-Task Earth Observation Modelling
|
2403.17886
|
https://arxiv.org/abs/2403.17886v5
|
https://arxiv.org/pdf/2403.17886v5.pdf
|
https://github.com/ibm/neural-embedding-compression
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/recursive-visual-programming
|
Recursive Visual Programming
|
2312.02249
|
https://arxiv.org/abs/2312.02249v2
|
https://arxiv.org/pdf/2312.02249v2.pdf
|
https://github.com/para-lost/rvp
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/mapx-an-explainable-model-agnostic-framework
|
MAPX: An explainable model-agnostic framework for the detection of false information on social media networks
|
2409.08522
|
https://arxiv.org/abs/2409.08522v1
|
https://arxiv.org/pdf/2409.08522v1.pdf
|
https://github.com/scondran/mapx_framework
| true | true | false |
none
|
https://paperswithcode.com/paper/crosspyramid-neural-ordinary-differential
|
SeqLink: A Robust Neural-ODE Architecture for Modelling Partially Observed Time Series
|
2212.03560
|
https://arxiv.org/abs/2212.03560v3
|
https://arxiv.org/pdf/2212.03560v3.pdf
|
https://github.com/ftoonabushaqra/seqlink
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/protosam-one-shot-medical-image-segmentation
|
ProtoSAM: One-Shot Medical Image Segmentation With Foundational Models
|
2407.07042
|
https://arxiv.org/abs/2407.07042v2
|
https://arxiv.org/pdf/2407.07042v2.pdf
|
https://github.com/levayz/protosam
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/attention-is-all-you-need
|
Attention Is All You Need
|
1706.03762
|
https://arxiv.org/abs/1706.03762v7
|
https://arxiv.org/pdf/1706.03762v7.pdf
|
https://github.com/pwc-1/Paper-9/tree/main/4/Translation-Invariant/model
| false | false | false |
mindspore
|
https://paperswithcode.com/paper/self-recognition-in-language-models
|
Self-Recognition in Language Models
|
2407.06946
|
https://arxiv.org/abs/2407.06946v2
|
https://arxiv.org/pdf/2407.06946v2.pdf
|
https://github.com/trdavidson/self-recognition
| true | true | true |
none
|
https://paperswithcode.com/paper/benchmarking-deep-learning-and-vision
|
Benchmarking Deep Learning and Vision Foundation Models for Atypical vs. Normal Mitosis Classification with Cross-Dataset Evaluation
|
2506.21444
|
https://arxiv.org/abs/2506.21444v1
|
https://arxiv.org/pdf/2506.21444v1.pdf
|
https://github.com/deepmicroscopy/ami-br_benchmark
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/redesigning-graph-filter-based-gnns-to-relax
|
Redesigning graph filter-based GNNs to relax the homophily assumption
|
2409.08676
|
https://arxiv.org/abs/2409.08676v1
|
https://arxiv.org/pdf/2409.08676v1.pdf
|
https://github.com/reysam93/adaptive_agg_gcn
| true | false | true |
pytorch
|
https://paperswithcode.com/paper/tiktag-breaking-arm-s-memory-tagging
|
TikTag: Breaking ARM's Memory Tagging Extension with Speculative Execution
|
2406.08719
|
https://arxiv.org/abs/2406.08719v1
|
https://arxiv.org/pdf/2406.08719v1.pdf
|
https://github.com/compsec-snu/tiktag
| true | true | true |
none
|
https://paperswithcode.com/paper/defect-spectrum-a-granular-look-of-large
|
Defect Spectrum: A Granular Look of Large-Scale Defect Datasets with Rich Semantics
|
2310.17316
|
https://arxiv.org/abs/2310.17316v5
|
https://arxiv.org/pdf/2310.17316v5.pdf
|
https://github.com/EnVision-Research/Defect_Spectrum
| true | false | true |
pytorch
|
https://paperswithcode.com/paper/mgtbench-benchmarking-machine-generated-text
|
MGTBench: Benchmarking Machine-Generated Text Detection
|
2303.14822
|
https://arxiv.org/abs/2303.14822v3
|
https://arxiv.org/pdf/2303.14822v3.pdf
|
https://github.com/kinit-sk/imgtb
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/inverse-scene-text-removal
|
Inverse Scene Text Removal
|
2506.21002
|
https://arxiv.org/abs/2506.21002v1
|
https://arxiv.org/pdf/2506.21002v1.pdf
|
https://github.com/takumi-yoshimatsu/istr
| true | true | false |
none
|
https://paperswithcode.com/paper/neural-collapse-in-multi-label-learning-with
|
Neural Collapse in Multi-label Learning with Pick-all-label Loss
|
2310.15903
|
https://arxiv.org/abs/2310.15903v4
|
https://arxiv.org/pdf/2310.15903v4.pdf
|
https://github.com/heimine/nc_mlab
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/live-video-captioning
|
Live Video Captioning
|
2406.14206
|
https://arxiv.org/abs/2406.14206v1
|
https://arxiv.org/pdf/2406.14206v1.pdf
|
https://github.com/gramuah/lvc
| true | true | true |
none
|
https://paperswithcode.com/paper/definition-generation-for-lexical-semantic
|
Definition generation for lexical semantic change detection
|
2406.14167
|
https://arxiv.org/abs/2406.14167v2
|
https://arxiv.org/pdf/2406.14167v2.pdf
|
https://github.com/ltgoslo/Definition-generation-for-LSCD
| true | true | true |
none
|
https://paperswithcode.com/paper/self-explainable-temporal-graph-networks
|
Self-Explainable Temporal Graph Networks based on Graph Information Bottleneck
|
2406.13214
|
https://arxiv.org/abs/2406.13214v1
|
https://arxiv.org/pdf/2406.13214v1.pdf
|
https://github.com/sang-woo-seo/TGIB
| true | false | false |
pytorch
|
https://paperswithcode.com/paper/ensembles-of-probabilistic-regression-trees
|
Ensembles of Probabilistic Regression Trees
|
2406.14033
|
https://arxiv.org/abs/2406.14033v1
|
https://arxiv.org/pdf/2406.14033v1.pdf
|
https://gitlab.com/sami.kh/pr-tree
| true | false | false |
none
|
https://paperswithcode.com/paper/sub2full-split-spectrum-to-boost-oct
|
Sub2Full: split spectrum to boost OCT despeckling without clean data
|
2401.10128
|
https://arxiv.org/abs/2401.10128v1
|
https://arxiv.org/pdf/2401.10128v1.pdf
|
https://github.com/MindSpore-scientific/code-2/tree/main/Sub2Full-OCT-Denoising
| false | false | false |
mindspore
|
https://paperswithcode.com/paper/real-time-single-image-and-video-super
|
Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network
|
1609.05158
|
http://arxiv.org/abs/1609.05158v2
|
http://arxiv.org/pdf/1609.05158v2.pdf
|
https://github.com/pwc-1/Paper-9/tree/main/7/pixelshuffle1d
| false | false | false |
mindspore
|
https://paperswithcode.com/paper/diffo-single-step-diffusion-for-image
|
DiffO: Single-step Diffusion for Image Compression at Ultra-Low Bitrates
|
2506.16572
|
https://arxiv.org/abs/2506.16572v1
|
https://arxiv.org/pdf/2506.16572v1.pdf
|
https://github.com/freemasti/diffo
| true | true | false |
none
|
https://paperswithcode.com/paper/incoder-a-generative-model-for-code-infilling
|
InCoder: A Generative Model for Code Infilling and Synthesis
|
2204.05999
|
https://arxiv.org/abs/2204.05999v3
|
https://arxiv.org/pdf/2204.05999v3.pdf
|
https://github.com/eth-sri/sven
| false | false | true |
none
|
https://paperswithcode.com/paper/santacoder-don-t-reach-for-the-stars
|
SantaCoder: don't reach for the stars!
|
2301.03988
|
https://arxiv.org/abs/2301.03988v2
|
https://arxiv.org/pdf/2301.03988v2.pdf
|
https://github.com/eth-sri/sven
| false | false | true |
none
|
https://paperswithcode.com/paper/tokenlearner-what-can-8-learned-tokens-do-for
|
TokenLearner: What Can 8 Learned Tokens Do for Images and Videos?
|
2106.11297
|
https://arxiv.org/abs/2106.11297v4
|
https://arxiv.org/pdf/2106.11297v4.pdf
|
https://github.com/pwc-1/Paper-9/tree/main/7/token_learner
| false | false | false |
mindspore
|
https://paperswithcode.com/paper/enhancing-split-computing-and-early-exit
|
Enhancing Split Computing and Early Exit Applications through Predefined Sparsity
|
2407.11763
|
https://arxiv.org/abs/2407.11763v1
|
https://arxiv.org/pdf/2407.11763v1.pdf
|
https://github.com/intelligolabs/sparsity_sc_ee
| true | true | true |
none
|
https://paperswithcode.com/paper/coho-context-sensitive-city-scale
|
COHO: Context-Sensitive City-Scale Hierarchical Urban Layout Generation
|
2407.11294
|
https://arxiv.org/abs/2407.11294v1
|
https://arxiv.org/pdf/2407.11294v1.pdf
|
https://github.com/arking1995/coho
| true | true | false |
none
|
https://paperswithcode.com/paper/wavecrn-an-efficient-convolutional-recurrent
|
WaveCRN: An Efficient Convolutional Recurrent Neural Network for End-to-end Speech Enhancement
|
2004.04098
|
https://arxiv.org/abs/2004.04098v3
|
https://arxiv.org/pdf/2004.04098v3.pdf
|
https://github.com/MindSpore-scientific/code-2/tree/main/WaveCRN-master
| false | false | false |
mindspore
|
https://paperswithcode.com/paper/ddfm-denoising-diffusion-model-for-multi
|
DDFM: Denoising Diffusion Model for Multi-Modality Image Fusion
|
2303.06840
|
https://arxiv.org/abs/2303.06840v2
|
https://arxiv.org/pdf/2303.06840v2.pdf
|
https://github.com/zhaozixiang1228/mmif-ddfm
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/equivariant-multi-modality-image-fusion
|
Equivariant Multi-Modality Image Fusion
|
2305.11443
|
https://arxiv.org/abs/2305.11443v2
|
https://arxiv.org/pdf/2305.11443v2.pdf
|
https://github.com/zhaozixiang1228/mmif-ddfm
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/development-and-benchmarking-of-multilingual
|
Development and Benchmarking of Multilingual Code Clone Detector
|
2409.06176
|
https://arxiv.org/abs/2409.06176v2
|
https://arxiv.org/pdf/2409.06176v2.pdf
|
https://github.com/zhuwq585/MCCD_Benckmarking
| true | false | false |
none
|
https://paperswithcode.com/paper/sample-efficiency-matters-a-benchmark-for
|
Sample Efficiency Matters: A Benchmark for Practical Molecular Optimization
|
2206.12411
|
https://arxiv.org/abs/2206.12411v2
|
https://arxiv.org/pdf/2206.12411v2.pdf
|
https://github.com/yerevann/chemlactica
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/genetic-guided-gflownets-advancing-in
|
Genetic-guided GFlowNets for Sample Efficient Molecular Optimization
|
2402.05961
|
https://arxiv.org/abs/2402.05961v4
|
https://arxiv.org/pdf/2402.05961v4.pdf
|
https://github.com/yerevann/chemlactica
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/beam-enumeration-probabilistic-explainability
|
Beam Enumeration: Probabilistic Explainability For Sample Efficient Self-conditioned Molecular Design
|
2309.13957
|
https://arxiv.org/abs/2309.13957v2
|
https://arxiv.org/pdf/2309.13957v2.pdf
|
https://github.com/yerevann/chemlactica
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/retrieval-based-controllable-molecule
|
Retrieval-based Controllable Molecule Generation
|
2208.11126
|
https://arxiv.org/abs/2208.11126v3
|
https://arxiv.org/pdf/2208.11126v3.pdf
|
https://github.com/yerevann/chemlactica
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/small-molecule-optimization-with-large
|
Small Molecule Optimization with Large Language Models
|
2407.18897
|
https://arxiv.org/abs/2407.18897v1
|
https://arxiv.org/pdf/2407.18897v1.pdf
|
https://github.com/yerevann/chemlactica
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/reshape-dimensions-network-for-speaker-1
|
Reshape Dimensions Network for Speaker Recognition
|
2407.18223
|
https://arxiv.org/abs/2407.18223v2
|
https://arxiv.org/pdf/2407.18223v2.pdf
|
https://github.com/IDRnD/ReDimNet
| true | false | true |
pytorch
|
https://paperswithcode.com/paper/bayesian-spatiotemporal-wombling
|
Bayesian Spatiotemporal Wombling
|
2407.17804
|
https://arxiv.org/abs/2407.17804v1
|
https://arxiv.org/pdf/2407.17804v1.pdf
|
https://github.com/arh926/sptwombling
| true | true | true |
none
|
https://paperswithcode.com/paper/a-preprocessing-and-evaluation-toolbox-for
|
Toward Unified Practices in Trajectory Prediction Research on Bird's-Eye-View Datasets
|
2405.00604
|
https://arxiv.org/abs/2405.00604v4
|
https://arxiv.org/pdf/2405.00604v4.pdf
|
https://github.com/westny/dronalize
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/the-ind-dataset-a-drone-dataset-of
|
The inD Dataset: A Drone Dataset of Naturalistic Road User Trajectories at German Intersections
|
1911.07602
|
https://arxiv.org/abs/1911.07602v1
|
https://arxiv.org/pdf/1911.07602v1.pdf
|
https://github.com/westny/dronalize
| false | false | true |
pytorch
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.