paper_url
stringlengths 36
81
| paper_title
stringlengths 1
242
⌀ | paper_arxiv_id
stringlengths 9
16
⌀ | paper_url_abs
stringlengths 18
314
| paper_url_pdf
stringlengths 21
935
⌀ | repo_url
stringlengths 26
200
| is_official
bool 2
classes | mentioned_in_paper
bool 2
classes | mentioned_in_github
bool 2
classes | framework
stringclasses 9
values |
---|---|---|---|---|---|---|---|---|---|
https://paperswithcode.com/paper/gamba-marry-gaussian-splatting-with-mamba-for
|
Gamba: Marry Gaussian Splatting with Mamba for single view 3D reconstruction
|
2403.18795
|
https://arxiv.org/abs/2403.18795v3
|
https://arxiv.org/pdf/2403.18795v3.pdf
|
https://github.com/skyworkai/mvgamba
| false | false | true |
jax
|
https://paperswithcode.com/paper/deep-regression-on-manifolds-a-3d-rotation
|
Deep Regression on Manifolds: A 3D Rotation Case Study
|
2103.16317
|
https://arxiv.org/abs/2103.16317v2
|
https://arxiv.org/pdf/2103.16317v2.pdf
|
https://github.com/naver/roma
| true | false | true |
pytorch
|
https://paperswithcode.com/paper/tfg-flow-training-free-guidance-in-multimodal
|
TFG-Flow: Training-free Guidance in Multimodal Generative Flow
|
2501.14216
|
https://arxiv.org/abs/2501.14216v3
|
https://arxiv.org/pdf/2501.14216v3.pdf
|
https://github.com/linhaowei1/tfg-flow
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/adacqr-enhancing-query-reformulation-for
|
AdaCQR: Enhancing Query Reformulation for Conversational Search via Sparse and Dense Retrieval Alignment
|
2407.01965
|
https://arxiv.org/abs/2407.01965v3
|
https://arxiv.org/pdf/2407.01965v3.pdf
|
https://github.com/init0xyz/AdaCQR
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/flashvtg-feature-layering-and-adaptive-score
|
FlashVTG: Feature Layering and Adaptive Score Handling Network for Video Temporal Grounding
|
2412.13441
|
https://arxiv.org/abs/2412.13441v1
|
https://arxiv.org/pdf/2412.13441v1.pdf
|
https://github.com/zhuo-cao/flashvtg
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/beyond-accuracy-on-the-effects-of-fine-tuning
|
Beyond Accuracy: On the Effects of Fine-tuning Towards Vision-Language Model's Prediction Rationality
|
2412.13333
|
https://arxiv.org/abs/2412.13333v1
|
https://arxiv.org/pdf/2412.13333v1.pdf
|
https://github.com/deep-real/vlm-pred-rationality
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/3d-registration-in-30-years-a-survey
|
3D Registration in 30 Years: A Survey
|
2412.13735
|
https://arxiv.org/abs/2412.13735v2
|
https://arxiv.org/pdf/2412.13735v2.pdf
|
https://github.com/amyyyy11/3d-registration-in-30-years-a-survey
| true | true | false |
none
|
https://paperswithcode.com/paper/multimodal-marvels-of-deep-learning-in
|
Multimodal Marvels of Deep Learning in Medical Diagnosis: A Comprehensive Review of COVID-19 Detection
|
2501.09506
|
https://arxiv.org/abs/2501.09506v2
|
https://arxiv.org/pdf/2501.09506v2.pdf
|
https://github.com/shafiq-islam-cse/multimodal-marvels-of-deep-learning-using-image-speech-and-text-review-of-covid-19-detection
| true | true | false |
tf
|
https://paperswithcode.com/paper/rwkv-reinventing-rnns-for-the-transformer-era
|
RWKV: Reinventing RNNs for the Transformer Era
|
2305.13048
|
https://arxiv.org/abs/2305.13048v2
|
https://arxiv.org/pdf/2305.13048v2.pdf
|
https://github.com/asuller/rwkv-musicgenerator
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/diffsim-taming-diffusion-models-for
|
DiffSim: Taming Diffusion Models for Evaluating Visual Similarity
|
2412.14580
|
https://arxiv.org/abs/2412.14580v1
|
https://arxiv.org/pdf/2412.14580v1.pdf
|
https://github.com/showlab/diffsim
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/magicanimate-temporally-consistent-human
|
MagicAnimate: Temporally Consistent Human Image Animation using Diffusion Model
|
2311.16498
|
https://arxiv.org/abs/2311.16498v1
|
https://arxiv.org/pdf/2311.16498v1.pdf
|
https://github.com/showlab/diffsim
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/ltlf-synthesis-under-unreliable-input
|
LTLf Synthesis Under Unreliable Input
|
2412.14728
|
https://arxiv.org/abs/2412.14728v1
|
https://arxiv.org/pdf/2412.14728v1.pdf
|
https://github.com/whitemech/ltlf-synth-unrel-input-aaai2025
| true | true | false |
none
|
https://paperswithcode.com/paper/promptable-representation-distribution
|
Promptable Representation Distribution Learning and Data Augmentation for Gigapixel Histopathology WSI Analysis
|
2412.14473
|
https://arxiv.org/abs/2412.14473v1
|
https://arxiv.org/pdf/2412.14473v1.pdf
|
https://github.com/lazytkm/prdl
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/remoe-fully-differentiable-mixture-of-experts
|
ReMoE: Fully Differentiable Mixture-of-Experts with ReLU Routing
|
2412.14711
|
https://arxiv.org/abs/2412.14711v1
|
https://arxiv.org/pdf/2412.14711v1.pdf
|
https://github.com/thu-ml/remoe
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/probing-entanglement-dynamics-and-topological
|
Probing entanglement dynamics and topological transitions on noisy intermediate-scale quantum computers
|
2406.10159
|
https://arxiv.org/abs/2406.10159v3
|
https://arxiv.org/pdf/2406.10159v3.pdf
|
https://github.com/qurrium/qurrium
| true | true | true |
none
|
https://paperswithcode.com/paper/transmit-what-you-need-task-adaptive-semantic
|
Transmit What You Need: Task-Adaptive Semantic Communications for Visual Information
|
2412.13646
|
https://arxiv.org/abs/2412.13646v1
|
https://arxiv.org/pdf/2412.13646v1.pdf
|
https://github.com/jhpark2024/jhpark.github.io
| true | true | true |
none
|
https://paperswithcode.com/paper/open-source-open-threats-investigating
|
Open Source, Open Threats? Investigating Security Challenges in Open-Source Software
|
2506.12995
|
https://arxiv.org/abs/2506.12995v1
|
https://arxiv.org/pdf/2506.12995v1.pdf
|
https://github.com/sa-akhavani/oss-security
| true | true | false |
none
|
https://paperswithcode.com/paper/sok-advances-and-open-problems-in-web
|
SoK: Advances and Open Problems in Web Tracking
|
2506.14057
|
https://arxiv.org/abs/2506.14057v1
|
https://arxiv.org/pdf/2506.14057v1.pdf
|
https://github.com/privacysandstorm/sok-advances-open-problems-web-tracking
| true | true | true |
none
|
https://paperswithcode.com/paper/tailoring-instructions-to-student-s-learning
|
Tailoring Instructions to Student's Learning Levels Boosts Knowledge Distillation
|
2305.09651
|
https://arxiv.org/abs/2305.09651v3
|
https://arxiv.org/pdf/2305.09651v3.pdf
|
https://github.com/twinkle0331/lgtm
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/a-closest-point-method-for-surface-pdes-with
|
A Closest Point Method for PDEs on Manifolds with Interior Boundary Conditions for Geometry Processing
|
2305.04711
|
https://arxiv.org/abs/2305.04711v2
|
https://arxiv.org/pdf/2305.04711v2.pdf
|
https://github.com/nathandking/cpm-ibc
| true | true | false |
none
|
https://paperswithcode.com/paper/resque-quantifying-estimator-to-task-and
|
RESQUE: Quantifying Estimator to Task and Distribution Shift for Sustainable Model Reusability
|
2412.15511
|
https://arxiv.org/abs/2412.15511v1
|
https://arxiv.org/pdf/2412.15511v1.pdf
|
https://github.com/jekimlab/aaai2025resque
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/sdxl-improving-latent-diffusion-models-for
|
SDXL: Improving Latent Diffusion Models for High-Resolution Image Synthesis
|
2307.01952
|
https://arxiv.org/abs/2307.01952v1
|
https://arxiv.org/pdf/2307.01952v1.pdf
|
https://github.com/andrew-miao/RPO
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/anid-how-far-are-we-evaluating-the
|
D-Judge: How Far Are We? Evaluating the Discrepancies Between AI-synthesized Images and Natural Images through Multimodal Guidance
|
2412.17632
|
https://arxiv.org/abs/2412.17632v2
|
https://arxiv.org/pdf/2412.17632v2.pdf
|
https://github.com/ryliu68/anid
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/line-graph-vietoris-rips-persistence-diagram
|
Line Graph Vietoris-Rips Persistence Diagram for Topological Graph Representation Learning
|
2412.17468
|
https://arxiv.org/abs/2412.17468v1
|
https://arxiv.org/pdf/2412.17468v1.pdf
|
https://github.com/samsungsds-research-papers/lgvr
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/q-lime-p-a-quantum-inspired-extension-to-lime
|
Q-LIME $π$: A Quantum-Inspired Extension to LIME
|
2412.17197
|
https://arxiv.org/abs/2412.17197v1
|
https://arxiv.org/pdf/2412.17197v1.pdf
|
https://github.com/nelabdiel/qlime
| true | true | false |
none
|
https://paperswithcode.com/paper/patchalign-fair-and-accurate-skin-disease
|
PatchAlign:Fair and Accurate Skin Disease Image Classification by Alignment with Clinical Labels
|
2409.04975
|
https://arxiv.org/abs/2409.04975v1
|
https://arxiv.org/pdf/2409.04975v1.pdf
|
https://github.com/aayushmanace/patchalign24
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/simlabel-consistency-guided-ood-detection
|
SimLabel: Consistency-Guided OOD Detection with Pretrained Vision-Language Models
|
2501.11485
|
https://arxiv.org/abs/2501.11485v1
|
https://arxiv.org/pdf/2501.11485v1.pdf
|
https://github.com/shuzou-1/simlabel
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/attention-guided-version-of-2d-unet-for
|
Attention-Guided Version of 2D UNet for Automatic Brain Tumor Segmentation
|
2004.02009
|
https://arxiv.org/abs/2004.02009v1
|
https://arxiv.org/pdf/2004.02009v1.pdf
|
https://github.com/mehrdad-noori/brain-tumor-segmentation
| false | false | false |
tf
|
https://paperswithcode.com/paper/a-demonstration-of-over-the-air-computation
|
A Demonstration of Over-the-Air Computation for Federated Edge Learning
|
2209.09954
|
https://arxiv.org/abs/2209.09954v1
|
https://arxiv.org/pdf/2209.09954v1.pdf
|
https://github.com/alphansahin/FEELwithSDRs
| true | false | true |
pytorch
|
https://paperswithcode.com/paper/self-attention-recurrent-summarization
|
Self-Attention Recurrent Summarization Network with Reinforcement Learning for Video Summarization Task
| null |
https://ieeexplore.ieee.org/abstract/document/9428142
|
https://ieeexplore.ieee.org/abstract/document/9428142
|
https://github.com/phaphuang/dsr-rl
| false | true | false |
pytorch
|
https://paperswithcode.com/paper/i-srt-aligning-large-multimodal-models-for
|
ISR-DPO: Aligning Large Multimodal Models for Videos by Iterative Self-Retrospective DPO
|
2406.11280
|
https://arxiv.org/abs/2406.11280v2
|
https://arxiv.org/pdf/2406.11280v2.pdf
|
https://github.com/snumprlab/SRT
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/radio-amplified-improved-baselines-for
|
RADIO Amplified: Improved Baselines for Agglomerative Vision Foundation Models
|
2412.07679
|
https://arxiv.org/abs/2412.07679v1
|
https://arxiv.org/pdf/2412.07679v1.pdf
|
https://github.com/nvlabs/radio
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/optimal-density-functions-for-weighted
|
Optimal Density Functions for Weighted Convolution in Learning Models
|
2505.24527
|
https://arxiv.org/abs/2505.24527v1
|
https://arxiv.org/pdf/2505.24527v1.pdf
|
https://github.com/cammarasana123/weightedconvolution2.0
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/pac-confidence-sets-for-deep-neural-networks-1
|
PAC Confidence Sets for Deep Neural Networks via Calibrated Prediction
|
2001.00106
|
https://arxiv.org/abs/2001.00106v2
|
https://arxiv.org/pdf/2001.00106v2.pdf
|
https://github.com/leoandeol/cods
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/conformal-risk-control
|
Conformal Risk Control
|
2208.02814
|
https://arxiv.org/abs/2208.02814v4
|
https://arxiv.org/pdf/2208.02814v4.pdf
|
https://github.com/leoandeol/cods
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/nuc-net-non-uniform-cylindrical-partition
|
NUC-Net: Non-uniform Cylindrical Partition Network for Efficient LiDAR Semantic Segmentation
|
2505.24634
|
https://arxiv.org/abs/2505.24634v2
|
https://arxiv.org/pdf/2505.24634v2.pdf
|
https://github.com/alanwxz/nuc-net
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/overcoming-beam-squint-in-dual-wideband
|
Overcoming Beam Squint in Dual-Wideband mmWave MIMO Channel Estimation: A Bayesian Multi-Band Sparsity Approach
|
2306.11149
|
https://arxiv.org/abs/2306.11149v1
|
https://arxiv.org/pdf/2306.11149v1.pdf
|
https://github.com/xumaomao94/BayesianDualWideband
| true | false | false |
none
|
https://paperswithcode.com/paper/cesped-a-new-benchmark-for-supervised
|
CESPED: a new benchmark for supervised particle pose estimation in Cryo-EM
|
2311.06194
|
https://arxiv.org/abs/2311.06194v5
|
https://arxiv.org/pdf/2311.06194v5.pdf
|
https://github.com/rsanchezgarc/cesped
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/anonymizing-speech-evaluating-and-designing
|
Anonymizing Speech: Evaluating and Designing Speaker Anonymization Techniques
|
2308.04455
|
https://arxiv.org/abs/2308.04455v4
|
https://arxiv.org/pdf/2308.04455v4.pdf
|
https://github.com/deep-privacy/SA-toolkit
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/from-debate-to-equilibrium-belief-driven
|
From Debate to Equilibrium: Belief-Driven Multi-Agent LLM Reasoning via Bayesian Nash Equilibrium
|
2506.08292
|
https://arxiv.org/abs/2506.08292v1
|
https://arxiv.org/pdf/2506.08292v1.pdf
|
https://github.com/tmlr-group/econ
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/2506-08249
|
RADAR: Benchmarking Language Models on Imperfect Tabular Data
|
2506.08249
|
https://arxiv.org/abs/2506.08249v1
|
https://arxiv.org/pdf/2506.08249v1.pdf
|
https://github.com/kenqgu/radar
| true | true | true |
none
|
https://paperswithcode.com/paper/rnn-transducer-based-losses-for-speech
|
RNN-Transducer-based Losses for Speech Recognition on Noisy Targets
|
2504.06963
|
https://arxiv.org/abs/2504.06963v1
|
https://arxiv.org/pdf/2504.06963v1.pdf
|
https://github.com/artbataev/uol_final
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/building-semi-supervised-decision-trees-with
|
Building semi-supervised decision trees with semi-cart algorithm
| null |
https://link.springer.com/article/10.1007/s13042-024-02161-z
|
https://link.springer.com/content/pdf/10.1007/s13042-024-02161-z.pdf
|
https://github.com/WeightedAI/semicart
| false | false | false |
none
|
https://paperswithcode.com/paper/reference-trustable-decoding-a-training-free
|
Reference Trustable Decoding: A Training-Free Augmentation Paradigm for Large Language Models
|
2409.20181
|
https://arxiv.org/abs/2409.20181v2
|
https://arxiv.org/pdf/2409.20181v2.pdf
|
https://github.com/shiluohe/referencetrustabledecoding
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/the-hashed-fractal-key-recovery-hfkr-problem
|
The Hashed Fractal Key Recovery (HFKR) Problem: From Symbolic Path Inversion to Post-Quantum Cryptographic Keys
|
2506.04383
|
https://arxiv.org/abs/2506.04383v1
|
https://arxiv.org/pdf/2506.04383v1.pdf
|
https://github.com/drbouke/SPIP
| true | true | false |
none
|
https://paperswithcode.com/paper/open-quantum-assembly-language
|
Open Quantum Assembly Language
|
1707.03429
|
http://arxiv.org/abs/1707.03429v2
|
http://arxiv.org/pdf/1707.03429v2.pdf
|
https://github.com/pnnl/qasmtrans
| false | false | true |
none
|
https://paperswithcode.com/paper/agentic-reward-modeling-integrating-human
|
Agentic Reward Modeling: Integrating Human Preferences with Verifiable Correctness Signals for Reliable Reward Systems
|
2502.19328
|
https://arxiv.org/abs/2502.19328v1
|
https://arxiv.org/pdf/2502.19328v1.pdf
|
https://github.com/thu-keg/agentic-reward-modeling
| true | true | true |
none
|
https://paperswithcode.com/paper/dynamical-streams-in-the-local-stellar-halo
|
Dynamical streams in the local stellar halo
|
2503.02926
|
https://arxiv.org/abs/2503.02926v1
|
https://arxiv.org/pdf/2503.02926v1.pdf
|
https://github.com/adllmr/resonances
| true | false | false |
none
|
https://paperswithcode.com/paper/analyzing-the-safety-of-japanese-large
|
Analyzing the Safety of Japanese Large Language Models in Stereotype-Triggering Prompts
|
2503.01947
|
https://arxiv.org/abs/2503.01947v2
|
https://arxiv.org/pdf/2503.01947v2.pdf
|
https://github.com/momijiro/stereotype_japanese_llm
| true | false | false |
none
|
https://paperswithcode.com/paper/2503-00332
|
Investigating the contribution of terrain-following coordinates and conservation schemes in AI-driven precipitation forecasts
|
2503.00332
|
https://arxiv.org/abs/2503.00332v2
|
https://arxiv.org/pdf/2503.00332v2.pdf
|
https://github.com/yingkaisha/CREDIT-sigma-run
| true | false | true |
pytorch
|
https://paperswithcode.com/paper/query-expansion-by-prompting-large-language
|
Query Expansion by Prompting Large Language Models
|
2305.03653
|
https://arxiv.org/abs/2305.03653v1
|
https://arxiv.org/pdf/2305.03653v1.pdf
|
https://github.com/aken12/LLM-based-QE-fails
| false | false | true |
none
|
https://paperswithcode.com/paper/fundamental-limitations-of-high-contrast
|
Fundamental limitations of high contrast imaging set by small sample statistics
|
1407.2247
|
https://arxiv.org/abs/1407.2247v1
|
https://arxiv.org/pdf/1407.2247v1.pdf
|
https://github.com/markusbonse/applefy
| false | false | true |
none
|
https://paperswithcode.com/paper/chexworld-exploring-image-world-modeling-for
|
CheXWorld: Exploring Image World Modeling for Radiograph Representation Learning
|
2504.13820
|
https://arxiv.org/abs/2504.13820v1
|
https://arxiv.org/pdf/2504.13820v1.pdf
|
https://github.com/LeapLabTHU/CheXWorld
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/an-overview-of-the-data-loader-landscape
|
An Overview of the Data-Loader Landscape: Comparative Performance Analysis
|
2209.13705
|
https://arxiv.org/abs/2209.13705v1
|
https://arxiv.org/pdf/2209.13705v1.pdf
|
https://github.com/smartnets/dataloader-benchmarks
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/fast-multichannel-source-separation-based-on
|
Fast Multichannel Source Separation Based on Jointly Diagonalizable Spatial Covariance Matrices
|
1903.03237
|
http://arxiv.org/abs/1903.03237v1
|
http://arxiv.org/pdf/1903.03237v1.pdf
|
https://github.com/tky823/ssspy
| false | false | true |
none
|
https://paperswithcode.com/paper/channel-attentive-graph-neural-networks
|
Channel-Attentive Graph Neural Networks
|
2503.00578
|
https://arxiv.org/abs/2503.00578v1
|
https://arxiv.org/pdf/2503.00578v1.pdf
|
https://github.com/allab-boun/chat-gnn
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/an-aspect-performance-aware-hypergraph-neural
|
An Aspect Performance-aware Hypergraph Neural Network for Review-based Recommendation
|
2501.15429
|
https://arxiv.org/abs/2501.15429v1
|
https://arxiv.org/pdf/2501.15429v1.pdf
|
https://github.com/dianziliu/aph
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/measurement-of-llm-s-philosophies-of-human
|
Measurement of LLM's Philosophies of Human Nature
|
2504.02304
|
https://arxiv.org/abs/2504.02304v1
|
https://arxiv.org/pdf/2504.02304v1.pdf
|
https://github.com/kodenii/m-phns
| true | true | true |
none
|
https://paperswithcode.com/paper/framework-to-automatically-determine-the
|
Framework to Automatically Determine the Quality of Open Data Catalogs
|
2307.15464
|
https://arxiv.org/abs/2307.15464v7
|
https://arxiv.org/pdf/2307.15464v7.pdf
|
https://github.com/jorge-martinez-gil/dataq
| true | true | true |
none
|
https://paperswithcode.com/paper/informed-greedy-algorithm-for-scalable
|
Informed Greedy Algorithm for Scalable Bayesian Network Fusion via Minimum Cut Analysis
|
2504.00467
|
https://arxiv.org/abs/2504.00467v1
|
https://arxiv.org/pdf/2504.00467v1.pdf
|
https://github.com/ptorrijos99/bayesfl
| false | false | true |
none
|
https://paperswithcode.com/paper/cross-species-data-integration-for-enhanced
|
Cross-Species Data Integration for Enhanced Layer Segmentation in Kidney Pathology
|
2408.09278
|
https://arxiv.org/abs/2408.09278v2
|
https://arxiv.org/pdf/2408.09278v2.pdf
|
https://github.com/hrlblab/layer_segmentation
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/testing-early-physics-solutions-to-the-hubble
|
A flexible parameterization to test early physics solutions to the Hubble tension with future CMB data
|
2410.16185
|
https://arxiv.org/abs/2410.16185v2
|
https://arxiv.org/pdf/2410.16185v2.pdf
|
https://github.com/raphkou/camb
| true | true | true |
none
|
https://paperswithcode.com/paper/hubble-constant-by-natural-selection
|
Hubble constant by natural selection: Evolution chips in the Hubble tension
|
2212.02203
|
https://arxiv.org/abs/2212.02203v3
|
https://arxiv.org/pdf/2212.02203v3.pdf
|
https://github.com/reggiebernardo/notebooks
| true | true | true |
none
|
https://paperswithcode.com/paper/dark-energy-by-natural-evolution-constraining
|
Dark energy by natural evolution: Constraining dark energy using Approximate Bayesian Computation
|
2211.05482
|
https://arxiv.org/abs/2211.05482v3
|
https://arxiv.org/pdf/2211.05482v3.pdf
|
https://github.com/reggiebernardo/notebooks
| true | true | true |
none
|
https://paperswithcode.com/paper/tadpole-cosmology-self-tuning-without
|
Tadpole Cosmology: Self Tuning Without Degeneracy
|
2202.08672
|
https://arxiv.org/abs/2202.08672v2
|
https://arxiv.org/pdf/2202.08672v2.pdf
|
https://github.com/reggiebernardo/notebooks
| true | true | true |
none
|
https://paperswithcode.com/paper/dressed-black-holes-in-the-new-tensor-vector
|
Dressed black holes in the new tensor-vector-scalar theory
|
2202.08460
|
https://arxiv.org/abs/2202.08460v3
|
https://arxiv.org/pdf/2202.08460v3.pdf
|
https://github.com/reggiebernardo/notebooks
| true | true | true |
none
|
https://paperswithcode.com/paper/parametric-and-nonparametric-methods-hint
|
Parametric and nonparametric methods hint dark energy evolution
|
2111.08289
|
https://arxiv.org/abs/2111.08289v3
|
https://arxiv.org/pdf/2111.08289v3.pdf
|
https://github.com/reggiebernardo/notebooks
| true | true | true |
none
|
https://paperswithcode.com/paper/inflationary-quantum-dynamics-and
|
Inflationary quantum dynamics and backreaction using a classical-quantum correspondence
|
2109.08508
|
https://arxiv.org/abs/2109.08508v2
|
https://arxiv.org/pdf/2109.08508v2.pdf
|
https://github.com/reggiebernardo/notebooks
| true | true | true |
none
|
https://paperswithcode.com/paper/gravitational-wave-signatures-from-dark
|
Gravitational wave signatures from dark sector interactions
|
2103.02311
|
https://arxiv.org/abs/2103.02311v2
|
https://arxiv.org/pdf/2103.02311v2.pdf
|
https://github.com/reggiebernardo/notebooks
| true | true | true |
none
|
https://paperswithcode.com/paper/flex-net-sim-a-lightly-manual
|
Flex Net Sim: A Lightly Manual
|
2105.02762
|
https://arxiv.org/abs/2105.02762v1
|
https://arxiv.org/pdf/2105.02762v1.pdf
|
https://gitlab.com/DaniloBorquez/flex-net-sim
| true | true | true |
none
|
https://paperswithcode.com/paper/gaussian-rank-verification
|
Gaussian Rank Verification
|
2501.14142
|
https://arxiv.org/abs/2501.14142v2
|
https://arxiv.org/pdf/2501.14142v2.pdf
|
https://github.com/jeremy-goldwasser/gaussian-rankings
| true | true | false |
none
|
https://paperswithcode.com/paper/estimating-or-propagating-gradients-through-1
|
Estimating or Propagating Gradients Through Stochastic Neurons for Conditional Computation
|
1308.3432
|
http://arxiv.org/abs/1308.3432v1
|
http://arxiv.org/pdf/1308.3432v1.pdf
|
https://github.com/mcmahon-lab/Single-Photon-Detection-Neural-Networks
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/quantum-noise-limited-optical-neural-networks
|
Quantum-limited stochastic optical neural networks operating at a few quanta per activation
|
2307.15712
|
https://arxiv.org/abs/2307.15712v2
|
https://arxiv.org/pdf/2307.15712v2.pdf
|
https://github.com/mcmahon-lab/Single-Photon-Detection-Neural-Networks
| true | false | true |
pytorch
|
https://paperswithcode.com/paper/evorl-a-gpu-accelerated-framework-for
|
EvoRL: A GPU-accelerated Framework for Evolutionary Reinforcement Learning
|
2501.15129
|
https://arxiv.org/abs/2501.15129v2
|
https://arxiv.org/pdf/2501.15129v2.pdf
|
https://github.com/emi-group/evorl
| true | true | true |
jax
|
https://paperswithcode.com/paper/learning-transferable-visual-models-from
|
Learning Transferable Visual Models From Natural Language Supervision
|
2103.00020
|
https://arxiv.org/abs/2103.00020v1
|
https://arxiv.org/pdf/2103.00020v1.pdf
|
https://github.com/taited/clip-score
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/autoagent-a-fully-automated-and-zero-code
|
AutoAgent: A Fully-Automated and Zero-Code Framework for LLM Agents
|
2502.05957
|
https://arxiv.org/abs/2502.05957v2
|
https://arxiv.org/pdf/2502.05957v2.pdf
|
https://github.com/hkuds/auto-deep-research
| false | false | true |
none
|
https://paperswithcode.com/paper/gen3c-3d-informed-world-consistent-video
|
GEN3C: 3D-Informed World-Consistent Video Generation with Precise Camera Control
|
2503.03751
|
https://arxiv.org/abs/2503.03751v1
|
https://arxiv.org/pdf/2503.03751v1.pdf
|
https://github.com/nv-tlabs/GEN3C
| true | false | true |
pytorch
|
https://paperswithcode.com/paper/the-dynamics-of-inducible-genetic-circuits
|
The Dynamics of Inducible Genetic Circuits
|
2505.07053
|
https://arxiv.org/abs/2505.07053v1
|
https://arxiv.org/pdf/2505.07053v1.pdf
|
https://github.com/RPGroup-PBoC/2025_inducers
| true | false | false |
none
|
https://paperswithcode.com/paper/slow-transition-to-low-dimensional-chaos-in
|
Slow Transition to Low-Dimensional Chaos in Heavy-Tailed Recurrent Neural Networks
|
2505.09816
|
https://arxiv.org/abs/2505.09816v1
|
https://arxiv.org/pdf/2505.09816v1.pdf
|
https://github.com/alleninstitute/heavyrnn_public
| true | true | true |
jax
|
https://paperswithcode.com/paper/simbev-a-synthetic-multi-task-multi-sensor
|
SimBEV: A Synthetic Multi-Task Multi-Sensor Driving Data Generation Tool and Dataset
|
2502.01894
|
https://arxiv.org/abs/2502.01894v2
|
https://arxiv.org/pdf/2502.01894v2.pdf
|
https://github.com/goodarzmehr/simbev
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/one-diffusion-step-to-real-world-super
|
One Diffusion Step to Real-World Super-Resolution via Flow Trajectory Distillation
|
2502.01993
|
https://arxiv.org/abs/2502.01993v1
|
https://arxiv.org/pdf/2502.01993v1.pdf
|
https://github.com/jianzeli-114/fluxsr
| true | true | true |
none
|
https://paperswithcode.com/paper/dynamic-markov-blanket-detection-for
|
Dynamic Markov Blanket Detection for Macroscopic Physics Discovery
|
2502.21217
|
https://arxiv.org/abs/2502.21217v1
|
https://arxiv.org/pdf/2502.21217v1.pdf
|
https://github.com/bayesianempirimancer/pyDMBD
| true | false | false |
pytorch
|
https://paperswithcode.com/paper/mline-vins-robust-monocular-visual-inertial
|
MLINE-VINS: Robust Monocular Visual-Inertial SLAM With Flow Manhattan and Line Features
|
2503.01571
|
https://arxiv.org/abs/2503.01571v1
|
https://arxiv.org/pdf/2503.01571v1.pdf
|
https://github.com/lihaoy-ux/mline-vins
| true | true | false |
none
|
https://paperswithcode.com/paper/don-t-shake-the-wheel-momentum-aware-planning
|
Don't Shake the Wheel: Momentum-Aware Planning in End-to-End Autonomous Driving
|
2503.03125
|
https://arxiv.org/abs/2503.03125v3
|
https://arxiv.org/pdf/2503.03125v3.pdf
|
https://github.com/adept-thu/momad
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/bottom-up-generation-of-verilog-designs-for
|
Bottom-Up Generation of Verilog Designs for Testing EDA Tools
|
2504.06295
|
https://arxiv.org/abs/2504.06295v1
|
https://arxiv.org/pdf/2504.06295v1.pdf
|
https://github.com/lac-dcc/chimera
| true | true | true |
none
|
https://paperswithcode.com/paper/when-heterophily-meets-heterogeneous-graphs
|
When Heterophily Meets Heterogeneous Graphs: Latent Graphs Guided Unsupervised Representation Learning
|
2409.00687
|
https://arxiv.org/abs/2409.00687v1
|
https://arxiv.org/pdf/2409.00687v1.pdf
|
https://github.com/zxlearningdeep/latgrl
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/automatic-database-description-generation-for
|
Automatic database description generation for Text-to-SQL
|
2502.20657
|
https://arxiv.org/abs/2502.20657v1
|
https://arxiv.org/pdf/2502.20657v1.pdf
|
https://github.com/xgenerationlab/xiyan-dbdescgen
| true | true | true |
none
|
https://paperswithcode.com/paper/union-of-experts-adapting-hierarchical
|
Union of Experts: Adapting Hierarchical Routing to Equivalently Decomposed Transformer
|
2503.02495
|
https://arxiv.org/abs/2503.02495v1
|
https://arxiv.org/pdf/2503.02495v1.pdf
|
https://github.com/yujiaoyang-work/uoe
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/masa-sr-matching-acceleration-and-spatial
|
MASA-SR: Matching Acceleration and Spatial Adaptation for Reference-Based Image Super-Resolution
|
2106.02299
|
https://arxiv.org/abs/2106.02299v1
|
https://arxiv.org/pdf/2106.02299v1.pdf
|
https://github.com/xuefusiji/badrefsr
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/learning-texture-transformer-network-for-1
|
Learning Texture Transformer Network for Image Super-Resolution
|
2006.04139
|
https://arxiv.org/abs/2006.04139v2
|
https://arxiv.org/pdf/2006.04139v2.pdf
|
https://github.com/xuefusiji/badrefsr
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/a-foundation-model-for-human-ai-collaboration
|
A foundation model for human-AI collaboration in medical literature mining
|
2501.16255
|
https://arxiv.org/abs/2501.16255v1
|
https://arxiv.org/pdf/2501.16255v1.pdf
|
https://github.com/pat-jj/deepretrieval
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/finding-good-views-of-electrocardiogram
|
Finding "Good Views" of Electrocardiogram Signals for Inferring Abnormalities in Cardiac Condition
|
2411.17702
|
https://arxiv.org/abs/2411.17702v1
|
https://arxiv.org/pdf/2411.17702v1.pdf
|
https://github.com/mandiehyewon/goodviews_ecg
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/clocs-contrastive-learning-of-cardiac-signals
|
CLOCS: Contrastive Learning of Cardiac Signals Across Space, Time, and Patients
|
2005.13249
|
https://arxiv.org/abs/2005.13249v3
|
https://arxiv.org/pdf/2005.13249v3.pdf
|
https://github.com/mandiehyewon/goodviews_ecg
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/co-evolving-llm-coder-and-unit-tester-via
|
Co-Evolving LLM Coder and Unit Tester via Reinforcement Learning
|
2506.03136
|
https://arxiv.org/abs/2506.03136v1
|
https://arxiv.org/pdf/2506.03136v1.pdf
|
https://github.com/gen-verse/cure
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/metaspatial-reinforcing-3d-spatial-reasoning
|
MetaSpatial: Reinforcing 3D Spatial Reasoning in VLMs for the Metaverse
|
2503.18470
|
https://arxiv.org/abs/2503.18470v1
|
https://arxiv.org/pdf/2503.18470v1.pdf
|
https://github.com/pzyseere/metaspatial
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/transma-an-explainable-multi-modal-deep
|
TransMA: an explainable multi-modal deep learning model for predicting properties of ionizable lipid nanoparticles in mRNA delivery
|
2407.05736
|
https://arxiv.org/abs/2407.05736v1
|
https://arxiv.org/pdf/2407.05736v1.pdf
|
https://github.com/wklix/transma
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/error-span-annotation-a-balanced-approach-for
|
Error Span Annotation: A Balanced Approach for Human Evaluation of Machine Translation
|
2406.11580
|
https://arxiv.org/abs/2406.11580v2
|
https://arxiv.org/pdf/2406.11580v2.pdf
|
https://github.com/appraisedev/appraise
| false | false | true |
none
|
https://paperswithcode.com/paper/paragraph-antibody-paratope-prediction-using
|
Paragraph—antibody paratope prediction using graph neural networks with minimal feature vectors
| null |
https://academic.oup.com/bioinformatics/article/39/1/btac732/6825310
|
https://academic.oup.com/bioinformatics/article-pdf/39/1/btac732/48448850/btac732.pdf
|
https://github.com/oxpig/Paragraph
| false | true | false |
pytorch
|
https://paperswithcode.com/paper/heterogeneity-in-sectoral-production-and-the
|
Heterogeneity in Sectoral Production and the Macro Effect of Sectoral Shocks
|
2502.07896
|
https://arxiv.org/abs/2502.07896v2
|
https://arxiv.org/pdf/2502.07896v2.pdf
|
https://github.com/jacobgosselin/HeterogeousSectoralProduction
| true | false | true |
none
|
https://paperswithcode.com/paper/symmcd-symmetry-preserving-crystal-generation
|
SymmCD: Symmetry-Preserving Crystal Generation with Diffusion Models
|
2502.03638
|
https://arxiv.org/abs/2502.03638v3
|
https://arxiv.org/pdf/2502.03638v3.pdf
|
https://github.com/sibasmarak/SymmCD
| true | false | false |
pytorch
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.