paper_url
stringlengths 36
81
| paper_title
stringlengths 1
242
⌀ | paper_arxiv_id
stringlengths 9
16
⌀ | paper_url_abs
stringlengths 18
314
| paper_url_pdf
stringlengths 21
935
⌀ | repo_url
stringlengths 26
200
| is_official
bool 2
classes | mentioned_in_paper
bool 2
classes | mentioned_in_github
bool 2
classes | framework
stringclasses 9
values |
---|---|---|---|---|---|---|---|---|---|
https://paperswithcode.com/paper/iterative-phase-retrieval-algorithm-for-space
|
Iterative phase retrieval algorithm for space-variant PSF in optical systems with aberrations
|
2502.04897
|
https://arxiv.org/abs/2502.04897v1
|
https://arxiv.org/pdf/2502.04897v1.pdf
|
https://github.com/braultd/Iterative-phase-retrieval-algorithm-for-shift-variant-PSF-in-optical-system-with-aberrations
| true | false | false |
none
|
https://paperswithcode.com/paper/typographic-attacks-in-a-multi-image-setting
|
Typographic Attacks in a Multi-Image Setting
|
2502.08193
|
https://arxiv.org/abs/2502.08193v1
|
https://arxiv.org/pdf/2502.08193v1.pdf
|
https://github.com/xiaomengwang-ai/typographic-attacks-in-a-multi-image-setting
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/deg-efficient-hybrid-vector-search-using-the
|
DEG: Efficient Hybrid Vector Search Using the Dynamic Edge Navigation Graph
|
2502.07343
|
https://arxiv.org/abs/2502.07343v1
|
https://arxiv.org/pdf/2502.07343v1.pdf
|
https://github.com/Heisenberg-Yin/DEG
| true | false | false |
none
|
https://paperswithcode.com/paper/quantumdna-a-python-package-for-analyzing
|
QuantumDNA: A Python Package for Analyzing Quantum Charge Dynamics in DNA and Exploring Its Biological Relevance
|
2502.06883
|
https://arxiv.org/abs/2502.06883v1
|
https://arxiv.org/pdf/2502.06883v1.pdf
|
https://github.com/dehe1011/QuantumDNA
| true | false | false |
none
|
https://paperswithcode.com/paper/forget-what-you-know-about-llms-evaluations
|
Forget What You Know about LLMs Evaluations - LLMs are Like a Chameleon
|
2502.07445
|
https://arxiv.org/abs/2502.07445v1
|
https://arxiv.org/pdf/2502.07445v1.pdf
|
https://github.com/SeffiCohen/CBOD
| true | false | false |
pytorch
|
https://paperswithcode.com/paper/a-non-unitary-conformal-field-theory-approach
|
A Non-Unitary Conformal Field Theory Approach to Two-Dimensional Turbulence
|
2210.06762
|
https://arxiv.org/abs/2210.06762v1
|
https://arxiv.org/pdf/2210.06762v1.pdf
|
https://github.com/Xiaoquanyu/resaerch-group-on-quantum-liquid
| false | false | true |
none
|
https://paperswithcode.com/paper/onsager-vortex-clusters-on-a-sphere
|
Onsager vortex clusters on a sphere
|
2403.09314
|
https://arxiv.org/abs/2403.09314v1
|
https://arxiv.org/pdf/2403.09314v1.pdf
|
https://github.com/Xiaoquanyu/resaerch-group-on-quantum-liquid
| false | false | true |
none
|
https://paperswithcode.com/paper/weakly-supervised-deep-anomaly-detection-with
|
Deep Weakly-supervised Anomaly Detection
|
1910.13601
|
https://arxiv.org/abs/1910.13601v4
|
https://arxiv.org/pdf/1910.13601v4.pdf
|
https://github.com/mindspore-ai/contrib/tree/master/application/pro
| false | false | false |
mindspore
|
https://paperswithcode.com/paper/distillm-2-a-contrastive-approach-boosts-the
|
DistiLLM-2: A Contrastive Approach Boosts the Distillation of LLMs
|
2503.07067
|
https://arxiv.org/abs/2503.07067v1
|
https://arxiv.org/pdf/2503.07067v1.pdf
|
https://github.com/jongwooko/distillm-2
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/target-semantics-clustering-via-text-1
|
Target Semantics Clustering via Text Representations for Robust Universal Domain Adaptation
|
2506.03521
|
https://arxiv.org/abs/2506.03521v1
|
https://arxiv.org/pdf/2506.03521v1.pdf
|
https://github.com/Sapphire-356/TASC
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/the-mirage-of-performance-gains-why
|
The Mirage of Performance Gains: Why Contrastive Decoding Fails to Address Multimodal Hallucination
|
2504.10020
|
https://arxiv.org/abs/2504.10020v2
|
https://arxiv.org/pdf/2504.10020v2.pdf
|
https://github.com/Sapphire-356/TASC
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/point-source-localisation-with-unbalanced
|
Point source localisation with unbalanced optimal transport
|
2502.12417
|
https://arxiv.org/abs/2502.12417v1
|
https://arxiv.org/pdf/2502.12417v1.pdf
|
https://zenodo.org/record/14884773
| true | false | false |
none
|
https://paperswithcode.com/paper/smplest-x-ultimate-scaling-for-expressive
|
SMPLest-X: Ultimate Scaling for Expressive Human Pose and Shape Estimation
|
2501.09782
|
https://arxiv.org/abs/2501.09782v1
|
https://arxiv.org/pdf/2501.09782v1.pdf
|
https://github.com/caizhongang/SMPLer-X
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/ltl-verification-of-memoryful-neural-agents
|
LTL Verification of Memoryful Neural Agents
|
2503.02512
|
https://arxiv.org/abs/2503.02512v1
|
https://arxiv.org/pdf/2503.02512v1.pdf
|
https://github.com/mehini/Vern
| true | false | false |
none
|
https://paperswithcode.com/paper/robust-optimization-of-rank-dependent-models
|
Robust Optimization of Rank-Dependent Models with Uncertain Probabilities
|
2502.11780
|
https://arxiv.org/abs/2502.11780v3
|
https://arxiv.org/pdf/2502.11780v3.pdf
|
https://github.com/GuanJinNL/ROptRDU.github.io
| true | false | false |
none
|
https://paperswithcode.com/paper/blank-space-adaptive-causal-coding-for
|
Blank Space: Adaptive Causal Coding for Streaming Communications Over Multi-Hop Networks
|
2502.11984
|
https://arxiv.org/abs/2502.11984v3
|
https://arxiv.org/pdf/2502.11984v3.pdf
|
https://github.com/Adinawx/MH_NC
| true | false | true |
none
|
https://paperswithcode.com/paper/mantis-detection-of-zero-day-malicious
|
MANTIS: Detection of Zero-Day Malicious Domains Leveraging Low Reputed Hosting Infrastructure
|
2502.09788
|
https://arxiv.org/abs/2502.09788v1
|
https://arxiv.org/pdf/2502.09788v1.pdf
|
https://github.com/fatihdeniz/mantis
| true | false | true |
pytorch
|
https://paperswithcode.com/paper/jl1-cd-a-new-benchmark-for-remote-sensing
|
JL1-CD: A New Benchmark for Remote Sensing Change Detection and a Robust Multi-Teacher Knowledge Distillation Framework
|
2502.13407
|
https://arxiv.org/abs/2502.13407v3
|
https://arxiv.org/pdf/2502.13407v3.pdf
|
https://github.com/circlelzy/mtkd-cd
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/universal-energy-accuracy-tradeoffs-in
|
Universal energy-accuracy tradeoffs in nonequilibrium cellular sensing
|
2002.10567
|
https://arxiv.org/abs/2002.10567v3
|
https://arxiv.org/pdf/2002.10567v3.pdf
|
https://github.com/ganguli-lab/Energy_Accuracy_Tradeoff_Cellular_Sensing
| true | true | true |
none
|
https://paperswithcode.com/paper/a-robust-estimation-and-variable-selection
|
A robust estimation and variable selection approach for sparse partially linear additive models
|
2502.13126
|
https://arxiv.org/abs/2502.13126v1
|
https://arxiv.org/pdf/2502.13126v1.pdf
|
https://github.com/alemermartinez/rplam-vs
| true | true | false |
none
|
https://paperswithcode.com/paper/decentralized-unlabeled-multi-agent
|
Decentralized Unlabeled Multi-agent Pathfinding Via Target And Priority Swapping (With Supplementary)
|
2408.14948
|
https://arxiv.org/abs/2408.14948v1
|
https://arxiv.org/pdf/2408.14948v1.pdf
|
https://github.com/pathplanning/manipulationplanning-si-rrt
| false | false | true |
none
|
https://paperswithcode.com/paper/emergence-of-the-primacy-effect-in-structured
|
Emergence of the Primacy Effect in Structured State-Space Models
|
2502.13729
|
https://arxiv.org/abs/2502.13729v4
|
https://arxiv.org/pdf/2502.13729v4.pdf
|
https://github.com/An0nym0usAuth0r/NeuralPrimacyEffect
| true | false | false |
pytorch
|
https://paperswithcode.com/paper/structural-determinants-of-soft-memory-in
|
Structural determinants of soft memory in recurrent biological networks
|
2502.13872
|
https://arxiv.org/abs/2502.13872v1
|
https://arxiv.org/pdf/2502.13872v1.pdf
|
https://github.com/dsb-lab/memory-encoding-GRN
| true | false | false |
none
|
https://paperswithcode.com/paper/robust-bi-tempered-logistic-loss-based-on
|
Robust Bi-Tempered Logistic Loss Based on Bregman Divergences
|
1906.03361
|
https://arxiv.org/abs/1906.03361v3
|
https://arxiv.org/pdf/1906.03361v3.pdf
|
https://github.com/MindSpore-scientific/code-4/tree/main/bi-tempered-loss-pytorch
| false | false | false |
mindspore
|
https://paperswithcode.com/paper/learning-symbolic-task-decompositions-for
|
Learning Symbolic Task Decompositions for Multi-Agent Teams
|
2502.13376
|
https://arxiv.org/abs/2502.13376v1
|
https://arxiv.org/pdf/2502.13376v1.pdf
|
https://github.com/thomasychen/LOTaD
| true | false | false |
none
|
https://paperswithcode.com/paper/edge-colored-clustering-in-hypergraphs-beyond
|
Edge-Colored Clustering in Hypergraphs: Beyond Minimizing Unsatisfied Edges
|
2502.13000
|
https://arxiv.org/abs/2502.13000v1
|
https://arxiv.org/pdf/2502.13000v1.pdf
|
https://github.com/tommy1019/AltECC
| true | false | false |
none
|
https://paperswithcode.com/paper/mito-enabling-non-line-of-sight-perception
|
MITO: Enabling Non-Line-of-Sight Perception using Millimeter-waves through Real-World Datasets and Simulation Tools
|
2502.10259
|
https://arxiv.org/abs/2502.10259v1
|
https://arxiv.org/pdf/2502.10259v1.pdf
|
https://github.com/signalkinetics/MITO_Codebase
| true | false | true |
pytorch
|
https://paperswithcode.com/paper/recurrent-highway-networks-with-grouped
|
Recurrent Highway Networks with Grouped Auxiliary Memory
| null |
https://ieeexplore.ieee.org/document/8932404
|
https://ieeexplore.ieee.org/document/8932404
|
https://github.com/MindSpore-scientific/code-5/tree/main/recurrent-highway-network
| false | false | false |
mindspore
|
https://paperswithcode.com/paper/reliable-numerical-key-rates-for-quantum-key
|
Reliable numerical key rates for quantum key distribution
|
1710.05511
|
https://arxiv.org/abs/1710.05511v2
|
https://arxiv.org/pdf/1710.05511v2.pdf
|
https://github.com/optical-quantum-communication-theory/openqkdsecurity
| false | false | true |
none
|
https://paperswithcode.com/paper/robust-interior-point-method-for-quantum-key
|
Robust Interior Point Method for Quantum Key Distribution Rate Computation
|
2104.03847
|
https://arxiv.org/abs/2104.03847v2
|
https://arxiv.org/pdf/2104.03847v2.pdf
|
https://github.com/optical-quantum-communication-theory/openqkdsecurity
| false | false | true |
none
|
https://paperswithcode.com/paper/mts-lof-medical-time-series-representation
|
MTS-LOF: Medical Time-Series Representation Learning via Occlusion-Invariant Features
|
2310.12451
|
https://arxiv.org/abs/2310.12451v1
|
https://arxiv.org/pdf/2310.12451v1.pdf
|
https://github.com/huayuliarizona/mst-lof
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/enhancing-efficiency-of-safe-reinforcement
|
Enhancing Efficiency of Safe Reinforcement Learning via Sample Manipulation
|
2405.20860
|
https://arxiv.org/abs/2405.20860v1
|
https://arxiv.org/pdf/2405.20860v1.pdf
|
https://github.com/pku-alignment/omnisafe
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/step-video-ti2v-technical-report-a-state-of
|
Step-Video-TI2V Technical Report: A State-of-the-Art Text-Driven Image-to-Video Generation Model
|
2503.11251
|
https://arxiv.org/abs/2503.11251v1
|
https://arxiv.org/pdf/2503.11251v1.pdf
|
https://github.com/stepfun-ai/step-video-ti2v
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/relext-a-new-dark-matter-tool-for-the
|
RelExt: A New Dark Matter Tool for the Exploration of Dark Matter Models
|
2503.13087
|
https://arxiv.org/abs/2503.13087v1
|
https://arxiv.org/pdf/2503.13087v1.pdf
|
https://github.com/jplotnikov99/RelExt
| true | false | true |
none
|
https://paperswithcode.com/paper/demo-generative-open-xg-network-simulation
|
GenOnet: Generative Open xG Network Simulation with Multi-Agent LLM and ns-3
|
2408.13781
|
https://arxiv.org/abs/2408.13781v2
|
https://arxiv.org/pdf/2408.13781v2.pdf
|
https://github.com/frezazadeh/LangChain-RAG-Technology
| false | false | true |
none
|
https://paperswithcode.com/paper/crossmodalitydiffusion-multi-modal-novel-view
|
CrossModalityDiffusion: Multi-Modal Novel View Synthesis with Unified Intermediate Representation
|
2501.09838
|
https://arxiv.org/abs/2501.09838v1
|
https://arxiv.org/pdf/2501.09838v1.pdf
|
https://github.com/JhihYangWu/UnofficialGeNVS
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/tempura-temporal-event-masked-prediction-and
|
TEMPURA: Temporal Event Masked Prediction and Understanding for Reasoning in Action
|
2505.01583
|
https://arxiv.org/abs/2505.01583v1
|
https://arxiv.org/pdf/2505.01583v1.pdf
|
https://github.com/andy-cheng/tempura
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/an-adaptive-framework-for-autoregressive
|
An Adaptive Framework for Autoregressive Forecasting in CFD Using Hybrid Modal Decomposition and Deep Learning
|
2505.01531
|
https://arxiv.org/abs/2505.01531v1
|
https://arxiv.org/pdf/2505.01531v1.pdf
|
https://github.com/rabadiah/adaptive-cfd-forecasting-hybrid-modal-decomposition-deep-learning
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/tutorgym-a-testbed-for-evaluating-ai-agents
|
TutorGym: A Testbed for Evaluating AI Agents as Tutors and Students
|
2505.01563
|
https://arxiv.org/abs/2505.01563v1
|
https://arxiv.org/pdf/2505.01563v1.pdf
|
https://github.com/teachable-ai-lab/tutor_gym
| true | true | false |
none
|
https://paperswithcode.com/paper/realm-real-time-estimates-of-assistance-for
|
REALM: Real-Time Estimates of Assistance for Learned Models in Human-Robot Interaction
|
2504.09243
|
https://arxiv.org/abs/2504.09243v1
|
https://arxiv.org/pdf/2504.09243v1.pdf
|
https://github.com/mhagenow01/REALM_algorithm
| true | false | false |
none
|
https://paperswithcode.com/paper/robust-steganography-from-large-language
|
Robust Steganography from Large Language Models
|
2504.08977
|
https://arxiv.org/abs/2504.08977v1
|
https://arxiv.org/pdf/2504.08977v1.pdf
|
https://github.com/NeilAPerry/robust_steganography
| true | false | false |
none
|
https://paperswithcode.com/paper/disgem-distractor-generation-for-multiple
|
DisGeM: Distractor Generation for Multiple Choice Questions with Span Masking
|
2409.18263
|
https://arxiv.org/abs/2409.18263v1
|
https://arxiv.org/pdf/2409.18263v1.pdf
|
https://github.com/obss/disgem
| false | false | true |
none
|
https://paperswithcode.com/paper/hypercontroller-a-hyperparameter-controller
|
HyperController: A Hyperparameter Controller for Fast and Stable Training of Reinforcement Learning Neural Networks
|
2504.19382
|
https://arxiv.org/abs/2504.19382v1
|
https://arxiv.org/pdf/2504.19382v1.pdf
|
https://github.com/jongornet14/HyperController
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/a-practical-guide-to-tuning-spiking-neuronal
|
A Practical Guide to Tuning Spiking Neuronal Dynamics
|
2506.08138
|
https://arxiv.org/abs/2506.08138v1
|
https://arxiv.org/pdf/2506.08138v1.pdf
|
https://github.com/naclab/snndynamicspracticalguide
| true | true | false |
jax
|
https://paperswithcode.com/paper/real-time-and-continuous-turn-taking
|
Real-time and Continuous Turn-taking Prediction Using Voice Activity Projection
|
2401.04868
|
https://arxiv.org/abs/2401.04868v1
|
https://arxiv.org/pdf/2401.04868v1.pdf
|
https://github.com/inokoj/VAP-Realtime
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/a-noise-robust-turn-taking-system-for-real
|
A Noise-Robust Turn-Taking System for Real-World Dialogue Robots: A Field Experiment
|
2503.06241
|
https://arxiv.org/abs/2503.06241v1
|
https://arxiv.org/pdf/2503.06241v1.pdf
|
https://github.com/inokoj/VAP-Realtime
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/abrank-a-benchmark-dataset-and-metric
|
AbRank: A Benchmark Dataset and Metric-Learning Framework for Antibody-Antigen Affinity Ranking
|
2506.17857
|
https://arxiv.org/abs/2506.17857v1
|
https://arxiv.org/pdf/2506.17857v1.pdf
|
https://github.com/biochunan/abrank-walle-affinity
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/cyclic-2-5d-perceptual-loss-for-cross-modal
|
Cyclic 2.5D Perceptual Loss for Cross-Modal 3D Medical Image Synthesis: T1w MRI to Tau PET
|
2406.12632
|
https://arxiv.org/abs/2406.12632v2
|
https://arxiv.org/pdf/2406.12632v2.pdf
|
https://github.com/labhai-dev/Cyclic-2.5D-Perceptual-Loss
| true | false | true |
pytorch
|
https://paperswithcode.com/paper/dpm-solver-v3-improved-diffusion-ode-solver-1
|
DPM-Solver-v3: Improved Diffusion ODE Solver with Empirical Model Statistics
|
2310.13268
|
https://arxiv.org/abs/2310.13268v3
|
https://arxiv.org/pdf/2310.13268v3.pdf
|
https://github.com/nvlabs/ddo
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/gain-missing-data-imputation-using-generative
|
GAIN: Missing Data Imputation using Generative Adversarial Nets
|
1806.02920
|
http://arxiv.org/abs/1806.02920v1
|
http://arxiv.org/pdf/1806.02920v1.pdf
|
https://github.com/vanderschaarlab/autoprognosis
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/flair-vlm-with-fine-grained-language-informed
|
FLAIR: VLM with Fine-grained Language-informed Image Representations
|
2412.03561
|
https://arxiv.org/abs/2412.03561v1
|
https://arxiv.org/pdf/2412.03561v1.pdf
|
https://github.com/ExplainableML/cosmos
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/simulating-cosmologies-beyond-cdm-with
|
Simulating cosmologies beyond $Λ$CDM with PINOCCHIO
|
1610.07624
|
https://arxiv.org/abs/1610.07624v1
|
https://arxiv.org/pdf/1610.07624v1.pdf
|
https://github.com/yanling-song455/pinocchio
| false | false | true |
none
|
https://paperswithcode.com/paper/improving-fast-generation-of-halo-catalogs
|
Improving fast generation of halo catalogs with higher-order Lagrangian perturbation theory
|
1605.04788
|
https://arxiv.org/abs/1605.04788v1
|
https://arxiv.org/pdf/1605.04788v1.pdf
|
https://github.com/yanling-song455/pinocchio
| false | false | true |
none
|
https://paperswithcode.com/paper/long-form-factuality-in-large-language-models
|
Long-form factuality in large language models
|
2403.18802
|
https://arxiv.org/abs/2403.18802v4
|
https://arxiv.org/pdf/2403.18802v4.pdf
|
https://github.com/chandralegend/saf-eval
| false | false | true |
none
|
https://paperswithcode.com/paper/a-note-on-the-inception-score
|
A Note on the Inception Score
|
1801.01973
|
http://arxiv.org/abs/1801.01973v2
|
http://arxiv.org/pdf/1801.01973v2.pdf
|
https://github.com/MindSpore-scientific-2/code-9/tree/main/A-Note-on-the-Inception-Score
| false | false | false |
mindspore
|
https://paperswithcode.com/paper/autofis-automatic-feature-interaction
|
AutoFIS: Automatic Feature Interaction Selection in Factorization Models for Click-Through Rate Prediction
|
2003.11235
|
https://arxiv.org/abs/2003.11235v3
|
https://arxiv.org/pdf/2003.11235v3.pdf
|
https://github.com/MindSpore-scientific-2/code-9/tree/main/Automatic-Feature-Interaction
| false | false | false |
mindspore
|
https://paperswithcode.com/paper/are-you-still-on-track-catching-llm-task
|
Get my drift? Catching LLM Task Drift with Activation Deltas
|
2406.00799
|
https://arxiv.org/abs/2406.00799v6
|
https://arxiv.org/pdf/2406.00799v6.pdf
|
https://github.com/microsoft/llmail-inject-challenge
| false | false | true |
none
|
https://paperswithcode.com/paper/defending-against-indirect-prompt-injection
|
Defending Against Indirect Prompt Injection Attacks With Spotlighting
|
2403.14720
|
https://arxiv.org/abs/2403.14720v1
|
https://arxiv.org/pdf/2403.14720v1.pdf
|
https://github.com/microsoft/llmail-inject-challenge
| false | false | true |
none
|
https://paperswithcode.com/paper/cuvler-enhanced-unsupervised-object
|
CuVLER: Enhanced Unsupervised Object Discoveries through Exhaustive Self-Supervised Transformers
|
2403.07700
|
https://arxiv.org/abs/2403.07700v1
|
https://arxiv.org/pdf/2403.07700v1.pdf
|
https://github.com/vlar-group/unmore
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/the-instruction-hierarchy-training-llms-to
|
The Instruction Hierarchy: Training LLMs to Prioritize Privileged Instructions
|
2404.13208
|
https://arxiv.org/abs/2404.13208v1
|
https://arxiv.org/pdf/2404.13208v1.pdf
|
https://github.com/microsoft/llmail-inject-challenge
| false | false | true |
none
|
https://paperswithcode.com/paper/unmore-unsupervised-multi-object-segmentation
|
unMORE: Unsupervised Multi-Object Segmentation via Center-Boundary Reasoning
|
2506.01778
|
https://arxiv.org/abs/2506.01778v1
|
https://arxiv.org/pdf/2506.01778v1.pdf
|
https://github.com/vlar-group/unmore
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/csst-cosmological-emulator-iii-hybrid
|
CSST Cosmological Emulator III: Hybrid Lagrangian Bias Expansion Emulation of Galaxy Clustering
|
2506.04671
|
https://arxiv.org/abs/2506.04671v1
|
https://arxiv.org/pdf/2506.04671v1.pdf
|
https://github.com/shurenzhou1999/csstlab
| true | true | true |
jax
|
https://paperswithcode.com/paper/receler-reliable-concept-erasing-of-text-to
|
Receler: Reliable Concept Erasing of Text-to-Image Diffusion Models via Lightweight Erasers
|
2311.17717
|
https://arxiv.org/abs/2311.17717v3
|
https://arxiv.org/pdf/2311.17717v3.pdf
|
https://github.com/jasper0314-huang/Receler
| true | false | true |
pytorch
|
https://paperswithcode.com/paper/smooth-bilevel-programming-for-sparse
|
Smooth Bilevel Programming for Sparse Regularization
|
2106.01429
|
https://arxiv.org/abs/2106.01429v2
|
https://arxiv.org/pdf/2106.01429v2.pdf
|
https://github.com/miclegr/sbp-sr
| false | false | true |
none
|
https://paperswithcode.com/paper/perla-perceptive-3d-language-assistant
|
PerLA: Perceptive 3D Language Assistant
|
2411.19774
|
https://arxiv.org/abs/2411.19774v1
|
https://arxiv.org/pdf/2411.19774v1.pdf
|
https://github.com/tyroneli/cua_o3d
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/editclip-representation-learning-for-image
|
EditCLIP: Representation Learning for Image Editing
|
2503.20318
|
https://arxiv.org/abs/2503.20318v1
|
https://arxiv.org/pdf/2503.20318v1.pdf
|
https://github.com/qianwangx/editclip
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/learning-to-adapt-frozen-clip-for-few-shot
|
Learning to Adapt Frozen CLIP for Few-Shot Test-Time Domain Adaptation
| null |
https://openreview.net/forum?id=TD3SGJfBC7
|
https://openreview.net/pdf?id=TD3SGJfBC7
|
https://github.com/chi-chi-zx/L2C
| false | true | false |
pytorch
|
https://paperswithcode.com/paper/redteamcua-realistic-adversarial-testing-of
|
RedTeamCUA: Realistic Adversarial Testing of Computer-Use Agents in Hybrid Web-OS Environments
|
2505.21936
|
https://arxiv.org/abs/2505.21936v1
|
https://arxiv.org/pdf/2505.21936v1.pdf
|
https://github.com/osu-nlp-group/redteamcua
| true | true | true |
none
|
https://paperswithcode.com/paper/roboos-a-hierarchical-embodied-framework-for
|
RoboOS: A Hierarchical Embodied Framework for Cross-Embodiment and Multi-Agent Collaboration
|
2505.03673
|
https://arxiv.org/abs/2505.03673v2
|
https://arxiv.org/pdf/2505.03673v2.pdf
|
https://github.com/flagopen/roboos
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/planet-as-a-brain-towards-internet-of
|
Planet as a Brain: Towards Internet of AgentSites based on AIOS Server
|
2504.14411
|
https://arxiv.org/abs/2504.14411v3
|
https://arxiv.org/pdf/2504.14411v3.pdf
|
https://github.com/agiresearch/aios
| true | true | false |
none
|
https://paperswithcode.com/paper/manvr3d-a-platform-for-human-in-the-loop-cell
|
manvr3d: A Platform for Human-in-the-loop Cell Tracking in Virtual Reality
|
2505.03440
|
https://arxiv.org/abs/2505.03440v2
|
https://arxiv.org/pdf/2505.03440v2.pdf
|
https://github.com/scenerygraphics/manvr3d
| true | true | false |
none
|
https://paperswithcode.com/paper/llm-powered-gui-agents-in-phone-automation
|
LLM-Powered GUI Agents in Phone Automation: Surveying Progress and Prospects
|
2504.19838
|
https://arxiv.org/abs/2504.19838v2
|
https://arxiv.org/pdf/2504.19838v2.pdf
|
https://github.com/phonellm/awesome-llm-powered-phone-gui-agents
| true | true | true |
none
|
https://paperswithcode.com/paper/advancing-calibration-for-stochastic-agent
|
Advancing calibration for stochastic agent-based models in epidemiology with Stein variational inference and Gaussian process surrogates
|
2502.19550
|
https://arxiv.org/abs/2502.19550v1
|
https://arxiv.org/pdf/2502.19550v1.pdf
|
https://github.com/sandialabs/Bayesian-calibration-of-stochastic-agent-based-model-via-random-forest
| false | false | true |
none
|
https://paperswithcode.com/paper/a-spring-block-theory-of-feature-learning-in
|
A spring-block theory of feature learning in deep neural networks
|
2407.19353
|
https://arxiv.org/abs/2407.19353v3
|
https://arxiv.org/pdf/2407.19353v3.pdf
|
https://github.com/DaDaCheng/DNN_Spring
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/gradient-based-automatic-per-weight-mixed
|
Gradient-based Automatic Mixed Precision Quantization for Neural Networks On-Chip
|
2405.00645
|
https://arxiv.org/abs/2405.00645v2
|
https://arxiv.org/pdf/2405.00645v2.pdf
|
https://github.com/calad0i/HGQ
| true | true | true |
tf
|
https://paperswithcode.com/paper/flowr-flow-matching-for-structure-aware-de
|
FLOWR: Flow Matching for Structure-Aware De Novo, Interaction- and Fragment-Based Ligand Generation
|
2504.10564
|
https://arxiv.org/abs/2504.10564v2
|
https://arxiv.org/pdf/2504.10564v2.pdf
|
https://github.com/jule-c/flowr
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/generalization-through-variance-how-noise
|
Generalization through variance: how noise shapes inductive biases in diffusion models
|
2504.12532
|
https://arxiv.org/abs/2504.12532v1
|
https://arxiv.org/pdf/2504.12532v1.pdf
|
https://github.com/john-vastola/gtv-iclr25
| true | false | true |
none
|
https://paperswithcode.com/paper/advancing-fact-attribution-for-query
|
Advancing Fact Attribution for Query Answering: Aggregate Queries and Novel Algorithms
|
2506.16923
|
https://arxiv.org/abs/2506.16923v1
|
https://arxiv.org/pdf/2506.16923v1.pdf
|
https://github.com/omer-abramovich/lexaban-lexashap
| true | true | false |
none
|
https://paperswithcode.com/paper/semantic-aware-parsing-for-security-logs
|
Semantic-Aware Parsing for Security Logs
|
2506.17512
|
https://arxiv.org/abs/2506.17512v1
|
https://arxiv.org/pdf/2506.17512v1.pdf
|
https://github.com/julien-piet/matryoshka
| true | true | false |
none
|
https://paperswithcode.com/paper/think-can-large-language-models-think-aloud
|
THiNK: Can Large Language Models Think-aloud?
|
2505.20184
|
https://arxiv.org/abs/2505.20184v1
|
https://arxiv.org/pdf/2505.20184v1.pdf
|
https://github.com/michaelyya/think
| true | true | true |
none
|
https://paperswithcode.com/paper/reward-design-for-reinforcement-learning
|
Reward Design for Reinforcement Learning Agents
|
2503.21949
|
https://arxiv.org/abs/2503.21949v1
|
https://arxiv.org/pdf/2503.21949v1.pdf
|
https://github.com/adishs/neurips2021_explicable-reward-design_code
| true | true | false |
none
|
https://paperswithcode.com/paper/does-low-rank-adaptation-lead-to-lower
|
Does Low Rank Adaptation Lead to Lower Robustness against Training-Time Attacks?
|
2505.12871
|
https://arxiv.org/abs/2505.12871v1
|
https://arxiv.org/pdf/2505.12871v1.pdf
|
https://github.com/liangzid/lora-ssecurity
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/masking-in-multi-hop-qa-an-analysis-of-how
|
Masking in Multi-hop QA: An Analysis of How Language Models Perform with Context Permutation
|
2505.11754
|
https://arxiv.org/abs/2505.11754v1
|
https://arxiv.org/pdf/2505.11754v1.pdf
|
https://github.com/hwy9855/multihopqa-reasoning
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/duetgen-music-driven-two-person-dance
|
DuetGen: Music Driven Two-Person Dance Generation via Hierarchical Masked Modeling
|
2506.18680
|
https://arxiv.org/abs/2506.18680v1
|
https://arxiv.org/pdf/2506.18680v1.pdf
|
https://github.com/anindita127/duetgen
| true | true | true |
none
|
https://paperswithcode.com/paper/sp2rint-spatially-decoupled-physics-inspired
|
SP2RINT: Spatially-Decoupled Physics-Inspired Progressive Inverse Optimization for Scalable, PDE-Constrained Meta-Optical Neural Network Training
|
2505.18377
|
https://arxiv.org/abs/2505.18377v2
|
https://arxiv.org/pdf/2505.18377v2.pdf
|
https://github.com/scopex-asu/sp2rint
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/reducing-bert-pre-training-time-from-3-days
|
Large Batch Optimization for Deep Learning: Training BERT in 76 minutes
|
1904.00962
|
https://arxiv.org/abs/1904.00962v5
|
https://arxiv.org/pdf/1904.00962v5.pdf
|
https://github.com/bojone/tiger
| false | false | true |
tf
|
https://paperswithcode.com/paper/packing3d-an-open-source-analytical-framework
|
Packing3D: An Open-Source Analytical Framework for Computing Packing Density and Mixing Indices Using Partial Spherical Volumes
|
2506.08852
|
https://arxiv.org/abs/2506.08852v2
|
https://arxiv.org/pdf/2506.08852v2.pdf
|
https://github.com/fjbarter/packing3d.jl
| true | true | false |
none
|
https://paperswithcode.com/paper/msvit-improving-spiking-vision-transformer
|
MSVIT: Improving Spiking Vision Transformer Using Multi-scale Attention Fusion
|
2505.14719
|
https://arxiv.org/abs/2505.14719v1
|
https://arxiv.org/pdf/2505.14719v1.pdf
|
https://github.com/nanhu-ai-lab/msvit
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/audio-jailbreak-an-open-comprehensive
|
Audio Jailbreak: An Open Comprehensive Benchmark for Jailbreaking Large Audio-Language Models
|
2505.15406
|
https://arxiv.org/abs/2505.15406v1
|
https://arxiv.org/pdf/2505.15406v1.pdf
|
https://github.com/mbzuai-nlp/audiojailbreak
| true | true | false |
none
|
https://paperswithcode.com/paper/emerging-properties-in-unified-multimodal
|
Emerging Properties in Unified Multimodal Pretraining
|
2505.14683
|
https://arxiv.org/abs/2505.14683v1
|
https://arxiv.org/pdf/2505.14683v1.pdf
|
https://github.com/ByteDance-Seed/Bagel
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/inspire-vision-language-action-models-with
|
InSpire: Vision-Language-Action Models with Intrinsic Spatial Reasoning
|
2505.13888
|
https://arxiv.org/abs/2505.13888v2
|
https://arxiv.org/pdf/2505.13888v2.pdf
|
https://github.com/Koorye/Inspire
| true | false | true |
pytorch
|
https://paperswithcode.com/paper/treeffuser-probabilistic-predictions-via
|
Treeffuser: Probabilistic Predictions via Conditional Diffusions with Gradient-Boosted Trees
|
2406.07658
|
https://arxiv.org/abs/2406.07658v2
|
https://arxiv.org/pdf/2406.07658v2.pdf
|
https://github.com/blei-lab/treeffuser
| true | true | true |
jax
|
https://paperswithcode.com/paper/lifelong-knowledge-editing-requires-better
|
Lifelong Knowledge Editing requires Better Regularization
|
2502.01636
|
https://arxiv.org/abs/2502.01636v2
|
https://arxiv.org/pdf/2502.01636v2.pdf
|
https://github.com/scalable-model-editing/knowledge-editing-regularization
| true | false | true |
pytorch
|
https://paperswithcode.com/paper/total-variation-based-image-decomposition-and
|
Total Variation-Based Image Decomposition and Denoising for Microscopy Images
|
2505.08843
|
https://arxiv.org/abs/2505.08843v1
|
https://arxiv.org/pdf/2505.08843v1.pdf
|
https://github.com/QuantumMaterialsModelling/AiSurf-Automated-Identification-of-Surface-images
| true | true | true |
none
|
https://paperswithcode.com/paper/online-dense-point-tracking-with-streaming
|
Online Dense Point Tracking with Streaming Memory
|
2503.06471
|
https://arxiv.org/abs/2503.06471v1
|
https://arxiv.org/pdf/2503.06471v1.pdf
|
https://github.com/dqiaole/spot
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/modelingagent-bridging-llms-and-mathematical
|
ModelingAgent: Bridging LLMs and Mathematical Modeling for Real-World Challenges
|
2505.15068
|
https://arxiv.org/abs/2505.15068v1
|
https://arxiv.org/pdf/2505.15068v1.pdf
|
https://github.com/qiancheng0/ModelingAgent
| true | false | true |
none
|
https://paperswithcode.com/paper/new-centrality-measure-ksi-centrality
|
New centrality measure: ksi-centrality
|
2503.02488
|
https://arxiv.org/abs/2503.02488v2
|
https://arxiv.org/pdf/2503.02488v2.pdf
|
https://github.com/samoylo57/ksi-centrality
| false | false | true |
none
|
https://paperswithcode.com/paper/rethinking-time-encoding-via-learnable
|
Rethinking Time Encoding via Learnable Transformation Functions
|
2505.00887
|
https://arxiv.org/abs/2505.00887v2
|
https://arxiv.org/pdf/2505.00887v2.pdf
|
https://github.com/chenxi1228/lete
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/rulereasoner-reinforced-rule-based-reasoning
|
RuleReasoner: Reinforced Rule-based Reasoning via Domain-aware Dynamic Sampling
|
2506.08672
|
https://arxiv.org/abs/2506.08672v1
|
https://arxiv.org/pdf/2506.08672v1.pdf
|
https://github.com/bigai-nlco/rulereasoner
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/olica-efficient-structured-pruning-of-large
|
Olica: Efficient Structured Pruning of Large Language Models without Retraining
|
2506.08436
|
https://arxiv.org/abs/2506.08436v1
|
https://arxiv.org/pdf/2506.08436v1.pdf
|
https://github.com/bettertmrr/llm-olica
| true | true | false |
none
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.