paper_url
stringlengths
36
81
paper_title
stringlengths
1
242
paper_arxiv_id
stringlengths
9
16
paper_url_abs
stringlengths
18
314
paper_url_pdf
stringlengths
21
935
repo_url
stringlengths
26
200
is_official
bool
2 classes
mentioned_in_paper
bool
2 classes
mentioned_in_github
bool
2 classes
framework
stringclasses
9 values
https://paperswithcode.com/paper/diffusion-based-environment-aware-trajectory
Diffusion-Based Environment-Aware Trajectory Prediction
2403.11643
https://arxiv.org/abs/2403.11643v1
https://arxiv.org/pdf/2403.11643v1.pdf
https://github.com/westny/dronalize
false
false
true
pytorch
https://paperswithcode.com/paper/mtp-go-graph-based-probabilistic-multi-agent
MTP-GO: Graph-Based Probabilistic Multi-Agent Trajectory Prediction with Neural ODEs
2302.00735
https://arxiv.org/abs/2302.00735v4
https://arxiv.org/pdf/2302.00735v4.pdf
https://github.com/westny/dronalize
false
false
true
pytorch
https://paperswithcode.com/paper/evaluation-of-differentially-constrained
Evaluation of Differentially Constrained Motion Models for Graph-Based Trajectory Prediction
2304.05116
https://arxiv.org/abs/2304.05116v2
https://arxiv.org/pdf/2304.05116v2.pdf
https://github.com/westny/dronalize
false
false
true
pytorch
https://paperswithcode.com/paper/instructrag-instructing-retrieval-augmented
InstructRAG: Instructing Retrieval-Augmented Generation via Self-Synthesized Rationales
2406.13629
https://arxiv.org/abs/2406.13629v2
https://arxiv.org/pdf/2406.13629v2.pdf
https://github.com/weizhepei/instructrag
true
true
true
pytorch
https://paperswithcode.com/paper/facial-landmark-points-detection-using
Facial Landmark Points Detection Using Knowledge Distillation-Based Neural Networks
2111.07047
https://arxiv.org/abs/2111.07047v1
https://arxiv.org/pdf/2111.07047v1.pdf
https://github.com/aliprf/kd-loss
true
true
true
tf
https://paperswithcode.com/paper/seeing-clearly-answering-incorrectly-a
Unveiling the Ignorance of MLLMs: Seeing Clearly, Answering Incorrectly
2406.10638
https://arxiv.org/abs/2406.10638v2
https://arxiv.org/pdf/2406.10638v2.pdf
https://github.com/baai-dcai/multimodal-robustness-benchmark
true
true
true
pytorch
https://paperswithcode.com/paper/a-diagnostic-tool-for-functional-causal
A Diagnostic Tool for Functional Causal Discovery
2406.07787
https://arxiv.org/abs/2406.07787v2
https://arxiv.org/pdf/2406.07787v2.pdf
https://github.com/shreyap18/causalDiagnose
true
true
false
none
https://paperswithcode.com/paper/efficient-probabilistic-modeling-of
Efficient Probabilistic Modeling of Crystallization at Mesoscopic Scale
2405.16608
https://arxiv.org/abs/2405.16608v1
https://arxiv.org/pdf/2405.16608v1.pdf
https://github.com/poltimmer/CGNE
true
true
true
pytorch
https://paperswithcode.com/paper/validated-error-bounds-for-pseudospectral
Validated error bounds for pseudospectral approximation of delay differential equations: unstable manifolds
2405.07727
https://arxiv.org/abs/2405.07727v1
https://arxiv.org/pdf/2405.07727v1.pdf
https://github.com/skepley/pseudospectral_DDE_CAP
true
true
true
none
https://paperswithcode.com/paper/goat-bench-a-benchmark-for-multi-modal
GOAT-Bench: A Benchmark for Multi-Modal Lifelong Navigation
2404.06609
https://arxiv.org/abs/2404.06609v1
https://arxiv.org/pdf/2404.06609v1.pdf
https://github.com/Ram81/goat-bench
true
false
false
pytorch
https://paperswithcode.com/paper/safety-fine-tuning-at-almost-no-cost-a
Safety Fine-Tuning at (Almost) No Cost: A Baseline for Vision Large Language Models
2402.02207
https://arxiv.org/abs/2402.02207v2
https://arxiv.org/pdf/2402.02207v2.pdf
https://github.com/ys-zong/vlguard
true
true
true
pytorch
https://paperswithcode.com/paper/howtocaption-prompting-llms-to-transform
HowToCaption: Prompting LLMs to Transform Video Annotations at Scale
2310.04900
https://arxiv.org/abs/2310.04900v2
https://arxiv.org/pdf/2310.04900v2.pdf
https://github.com/ninatu/howtocaption
true
true
true
pytorch
https://paperswithcode.com/paper/scalable-random-feature-latent-variable
Scalable Random Feature Latent Variable Models
2410.17700
https://arxiv.org/abs/2410.17700v1
https://arxiv.org/pdf/2410.17700v1.pdf
https://github.com/gwgundersen/rflvm
true
true
false
none
https://paperswithcode.com/paper/exploring-scalability-in-large-scale-time
Exploring Scalability in Large-Scale Time Series in DeepVATS framework
2408.04692
https://arxiv.org/abs/2408.04692v1
https://arxiv.org/pdf/2408.04692v1.pdf
https://github.com/vrodriguezf/deepvats
true
true
false
tf
https://paperswithcode.com/paper/one-shot-face-sketch-synthesis-in-the-wild
One-shot Face Sketch Synthesis in the Wild via Generative Diffusion Prior and Instruction Tuning
2506.15312
https://arxiv.org/abs/2506.15312v1
https://arxiv.org/pdf/2506.15312v1.pdf
https://github.com/hanwu3125/os-sketch
true
true
false
none
https://paperswithcode.com/paper/translating-mathematical-formula-images-to
Translating Math Formula Images to LaTeX Sequences Using Deep Neural Networks with Sequence-level Training
1908.11415
https://arxiv.org/abs/1908.11415v2
https://arxiv.org/pdf/1908.11415v2.pdf
https://github.com/pwc-1/Paper-9/tree/main/4/translating-math-formula-images
false
false
false
mindspore
https://paperswithcode.com/paper/contactdb-analyzing-and-predicting-grasp
ContactDB: Analyzing and Predicting Grasp Contact via Thermal Imaging
1904.06830
http://arxiv.org/abs/1904.06830v1
http://arxiv.org/pdf/1904.06830v1.pdf
https://github.com/samarth-robo/contactdb_prediction
true
false
true
pytorch
https://paperswithcode.com/paper/tc-kanrecon-high-quality-and-accelerated-mri
TC-KANRecon: High-Quality and Accelerated MRI Reconstruction via Adaptive KAN Mechanisms and Intelligent Feature Scaling
2408.05705
https://arxiv.org/abs/2408.05705v2
https://arxiv.org/pdf/2408.05705v2.pdf
https://github.com/lcbkmm/tc-kanrecon
true
true
false
pytorch
https://paperswithcode.com/paper/time-matters-examine-temporal-effects-on
Time Matters: Examine Temporal Effects on Biomedical Language Models
2407.17638
https://arxiv.org/abs/2407.17638v2
https://arxiv.org/pdf/2407.17638v2.pdf
https://github.com/trust-nlp/temporalassessment
true
true
true
tf
https://paperswithcode.com/paper/residual-inr-communication-efficient-on
Residual-INR: Communication Efficient On-Device Learning Using Implicit Neural Representation
2408.05617
https://arxiv.org/abs/2408.05617v3
https://arxiv.org/pdf/2408.05617v3.pdf
https://github.com/sharc-lab/residual-inr
true
true
false
pytorch
https://paperswithcode.com/paper/mplug-owl3-towards-long-image-sequence
mPLUG-Owl3: Towards Long Image-Sequence Understanding in Multi-Modal Large Language Models
2408.04840
https://arxiv.org/abs/2408.04840v2
https://arxiv.org/pdf/2408.04840v2.pdf
https://github.com/x-plug/mplug-owl
true
true
false
pytorch
https://paperswithcode.com/paper/shapley-pc-constraint-based-causal-structure
Shapley-PC: Constraint-based Causal Structure Learning with a Shapley Inspired Framework
2312.11582
https://arxiv.org/abs/2312.11582v3
https://arxiv.org/pdf/2312.11582v3.pdf
https://github.com/briziorusso/shapleypc
true
true
false
pytorch
https://paperswithcode.com/paper/finding-meaning-in-points-weakly-supervised
Finding Meaning in Points: Weakly Supervised Semantic Segmentation for Event Cameras
2407.11216
https://arxiv.org/abs/2407.11216v1
https://arxiv.org/pdf/2407.11216v1.pdf
https://github.com/chohoonhee/ev-wsss
true
true
true
pytorch
https://paperswithcode.com/paper/activegs-active-scene-reconstruction-using
ActiveGS: Active Scene Reconstruction Using Gaussian Splatting
2412.17769
https://arxiv.org/abs/2412.17769v2
https://arxiv.org/pdf/2412.17769v2.pdf
https://github.com/dmar-bonn/active-gs
true
true
true
jax
https://paperswithcode.com/paper/crab-cross-environment-agent-benchmark-for
CRAB: Cross-environment Agent Benchmark for Multimodal Language Model Agents
2407.01511
https://arxiv.org/abs/2407.01511v2
https://arxiv.org/pdf/2407.01511v2.pdf
https://github.com/camel-ai/crab
true
true
true
pytorch
https://paperswithcode.com/paper/forecasting-railway-ticket-demand-with-search
Forecasting railway ticket demand with search query open data
null
https://www.sciencedirect.com/science/article/pii/S1877050922016878?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S1877050922016878?via%3Dihub
https://github.com/AlgoMathITMO/Forecasting-railway-ticket-demand-with-search-query
false
false
false
none
https://paperswithcode.com/paper/mic-drop-on-estimating-the-size-of-sub-mm
'Mic drop': on estimating the size of sub-mm droplets using a simple condenser microphone
2506.19782
https://arxiv.org/abs/2506.19782v1
https://arxiv.org/pdf/2506.19782v1.pdf
https://github.com/avof/mic-drop
true
true
false
pytorch
https://paperswithcode.com/paper/assessing-student-s-dynamic-knowledge-state
Assessing Student's Dynamic Knowledge State by Exploring the Question Difficulty Effect
null
https://dl.acm.org/doi/abs/10.1145/3477495.3531939
https://dl.acm.org/doi/abs/10.1145/3477495.3531939
https://github.com/shshen-closer/DIMKT
false
true
false
tf
https://paperswithcode.com/paper/heuristic-dropout-an-efficient-regularization
Heuristic Dropout: An Efficient Regularization Method for Medical Image Segmentation Models
null
https://ieeexplore.ieee.org/abstract/document/9747409
https://ieeexplore.ieee.org/abstract/document/9747409
https://github.com/MindCode-4/code-7/tree/main/HeuristicDropout
false
false
false
mindspore
https://paperswithcode.com/paper/navigating-the-effect-of-parametrization-for
Navigating the Effect of Parametrization for Dimensionality Reduction
2411.15894
https://arxiv.org/abs/2411.15894v1
https://arxiv.org/pdf/2411.15894v1.pdf
https://github.com/hyhuang00/paramrepulsor
true
true
false
pytorch
https://paperswithcode.com/paper/meeg-and-at-dgnn-advancing-eeg-emotion
MEEG and AT-DGNN: Improving EEG Emotion Recognition with Music Introducing and Graph-based Learning
2407.05550
https://arxiv.org/abs/2407.05550v4
https://arxiv.org/pdf/2407.05550v4.pdf
https://github.com/xmh1011/at-dgnn
true
true
true
pytorch
https://paperswithcode.com/paper/toward-self-improvement-of-llms-via
Toward Self-Improvement of LLMs via Imagination, Searching, and Criticizing
2404.12253
https://arxiv.org/abs/2404.12253v2
https://arxiv.org/pdf/2404.12253v2.pdf
https://github.com/yetianjhu/alphallm
true
true
false
pytorch
https://paperswithcode.com/paper/community-research-earth-digital-intelligence
Community Research Earth Digital Intelligence Twin (CREDIT)
2411.07814
https://arxiv.org/abs/2411.07814v1
https://arxiv.org/pdf/2411.07814v1.pdf
https://github.com/ncar/credit-arxiv
true
true
true
none
https://paperswithcode.com/paper/quantile-deep-learning-models-for-multi-step
Quantile deep learning models for multi-step ahead time series prediction
2411.15674
https://arxiv.org/abs/2411.15674v1
https://arxiv.org/pdf/2411.15674v1.pdf
https://github.com/sydney-machine-learning/quantiledeeplearning
true
true
false
none
https://paperswithcode.com/paper/pint-a-modern-software-package-for-pulsar
PINT: A Modern Software Package for Pulsar Timing
2012.00074
https://arxiv.org/abs/2012.00074v1
https://arxiv.org/pdf/2012.00074v1.pdf
https://github.com/nanograv/pint
true
true
true
none
https://paperswithcode.com/paper/factor-exposure-heterogeneity-in-green-and
Factor Exposure Heterogeneity in Green and Brown Stocks
2302.11729
https://arxiv.org/abs/2302.11729v2
https://arxiv.org/pdf/2302.11729v2.pdf
https://github.com/ardiad/peerperformance
true
true
false
none
https://paperswithcode.com/paper/how-easy-is-it-for-investment-managers-to
How easy is it for investment managers to deploy their talent in green and brown stocks?
2201.05709
https://arxiv.org/abs/2201.05709v2
https://arxiv.org/pdf/2201.05709v2.pdf
https://github.com/ardiad/peerperformance
true
true
false
none
https://paperswithcode.com/paper/nonintrusive-model-order-reduction-for
Learning Stochastic Reduced Models from Data: A Nonintrusive Approach
2407.05724
https://arxiv.org/abs/2407.05724v3
https://arxiv.org/pdf/2407.05724v3.pdf
https://github.com/jmnicolaus/operatorinference_for_sdes
true
true
true
none
https://paperswithcode.com/paper/the-ldbc-social-network-benchmark
The LDBC Social Network Benchmark
2001.02299
https://arxiv.org/abs/2001.02299v9
https://arxiv.org/pdf/2001.02299v9.pdf
https://github.com/ldbc/ldbc_snb_interactive_impls
true
true
true
none
https://paperswithcode.com/paper/regnlp-in-action-facilitating-compliance
RIRAG: Regulatory Information Retrieval and Answer Generation
2409.05677
https://arxiv.org/abs/2409.05677v2
https://arxiv.org/pdf/2409.05677v2.pdf
https://github.com/regnlp/obliqadataset
true
true
true
none
https://paperswithcode.com/paper/replay-a-recommendation-framework-for
RePlay: a Recommendation Framework for Experimentation and Production Use
2409.07272
https://arxiv.org/abs/2409.07272v3
https://arxiv.org/pdf/2409.07272v3.pdf
https://github.com/sb-ai-lab/RePlay
true
true
true
pytorch
https://paperswithcode.com/paper/sowa-adapting-hierarchical-frozen-window-self
SOWA: Adapting Hierarchical Frozen Window Self-Attention to Visual-Language Models for Better Anomaly Detection
2407.03634
https://arxiv.org/abs/2407.03634v4
https://arxiv.org/pdf/2407.03634v4.pdf
https://github.com/huzongxiang/sowa
true
false
true
pytorch
https://paperswithcode.com/paper/vg-tvp-multimodal-procedural-planning-via
VG-TVP: Multimodal Procedural Planning via Visually Grounded Text-Video Prompting
2412.11621
https://arxiv.org/abs/2412.11621v1
https://arxiv.org/pdf/2412.11621v1.pdf
https://github.com/mfurkanilaslan/vg-tvp
true
true
true
none
https://paperswithcode.com/paper/leveraging-the-doppler-effect-for-channel
Leveraging the Doppler Effect for Channel Charting
2404.09620
https://arxiv.org/abs/2404.09620v1
https://arxiv.org/pdf/2404.09620v1.pdf
https://github.com/jeija/doppler-effect-channelcharting
true
true
true
tf
https://paperswithcode.com/paper/direct-discriminative-optimization-your-1
Direct Discriminative Optimization: Your Likelihood-Based Visual Generative Model is Secretly a GAN Discriminator
2503.01103
https://arxiv.org/abs/2503.01103v2
https://arxiv.org/pdf/2503.01103v2.pdf
https://github.com/nvlabs/ddo
true
true
true
pytorch
https://paperswithcode.com/paper/prompto-an-open-source-library-for
Prompto: An open source library for asynchronous querying of LLM endpoints
2408.11847
https://arxiv.org/abs/2408.11847v2
https://arxiv.org/pdf/2408.11847v2.pdf
https://github.com/alan-turing-institute/prompto
true
true
true
none
https://paperswithcode.com/paper/on-the-design-and-analysis-of-llm-based
On the Design and Analysis of LLM-Based Algorithms
2407.14788
https://arxiv.org/abs/2407.14788v2
https://arxiv.org/pdf/2407.14788v2.pdf
https://github.com/modelscope/agentscope
true
true
true
none
https://paperswithcode.com/paper/assumption-lean-and-data-adaptive-post
Assumption-Lean and Data-Adaptive Post-Prediction Inference
2311.14220
https://arxiv.org/abs/2311.14220v4
https://arxiv.org/pdf/2311.14220v4.pdf
https://github.com/qlu-lab/popinf
true
true
true
none
https://paperswithcode.com/paper/very-large-scale-multi-agent-simulation-in
Very Large-Scale Multi-Agent Simulation in AgentScope
2407.17789
https://arxiv.org/abs/2407.17789v2
https://arxiv.org/pdf/2407.17789v2.pdf
https://github.com/modelscope/agentscope
true
true
true
none
https://paperswithcode.com/paper/contactless-cardiac-pulse-monitoring-using
Contactless Cardiac Pulse Monitoring Using Event Cameras
2505.09529
https://arxiv.org/abs/2505.09529v2
https://arxiv.org/pdf/2505.09529v2.pdf
https://github.com/c3imaging/contactless_cardiac_pulse_monitoring_using_event_cameras
true
true
false
pytorch
https://paperswithcode.com/paper/sauc-sparsity-aware-uncertainty-calibration
SAUC: Sparsity-Aware Uncertainty Calibration for Spatiotemporal Prediction with Graph Neural Networks
2409.08766
https://arxiv.org/abs/2409.08766v1
https://arxiv.org/pdf/2409.08766v1.pdf
https://github.com/AnonymousSAUC/SAUC
true
false
false
pytorch
https://paperswithcode.com/paper/modeling-of-terrain-deformation-by-a-grouser
Modeling of Terrain Deformation by a Grouser Wheel for Lunar Rover Simulation
2408.13468
https://arxiv.org/abs/2408.13468v1
https://arxiv.org/pdf/2408.13468v1.pdf
https://github.com/antoinerichard/lunarsim
false
false
true
none
https://paperswithcode.com/paper/neural-rendering-for-stereo-3d-reconstruction
Neural Rendering for Stereo 3D Reconstruction of Deformable Tissues in Robotic Surgery
2206.15255
https://arxiv.org/abs/2206.15255v1
https://arxiv.org/pdf/2206.15255v1.pdf
https://github.com/CUHK-AIM-Group/LGS
false
false
true
pytorch
https://paperswithcode.com/paper/alpapico-extraction-of-pico-frames-from
AlpaPICO: Extraction of PICO Frames from Clinical Trial Documents Using LLMs
2409.09704
https://arxiv.org/abs/2409.09704v1
https://arxiv.org/pdf/2409.09704v1.pdf
https://github.com/shrimonmuke0202/alpapico
true
true
false
pytorch
https://paperswithcode.com/paper/diffusion-models-for-stronger-face-morphing
Leveraging Diffusion For Strong and High Quality Face Morphing Attacks
2301.04218
https://arxiv.org/abs/2301.04218v4
https://arxiv.org/pdf/2301.04218v4.pdf
https://github.com/zblasingame/DiM
true
false
true
pytorch
https://paperswithcode.com/paper/bias-reduction-in-matched-observational
Bias Mitigation in Matched Observational Studies with Continuous Treatments: Calipered Non-Bipartite Matching and Bias-Corrected Estimation and Inference
2409.11701
https://arxiv.org/abs/2409.11701v2
https://arxiv.org/pdf/2409.11701v2.pdf
https://github.com/anthonyfraziercsu/mitigating-bias-matched-observational-studies
true
true
false
none
https://paperswithcode.com/paper/the-leray-transform-distinguished-measures
The Leray transform: distinguished measures, symmetries and polygamma inequalities
2401.17490
https://arxiv.org/abs/2401.17490v3
https://arxiv.org/pdf/2401.17490v3.pdf
https://github.com/ledholm/leray-measures-2024-mathematica-nb
true
true
false
none
https://paperswithcode.com/paper/docvxqa-context-aware-visual-explanations-for
DocVXQA: Context-Aware Visual Explanations for Document Question Answering
2505.07496
https://arxiv.org/abs/2505.07496v1
https://arxiv.org/pdf/2505.07496v1.pdf
https://github.com/dali92002/docvxqa
true
true
false
pytorch
https://paperswithcode.com/paper/the-factuality-of-large-language-models-in
The Factuality of Large Language Models in the Legal Domain
2409.11798
https://arxiv.org/abs/2409.11798v1
https://arxiv.org/pdf/2409.11798v1.pdf
https://github.com/rajjaa/lexfact
true
true
false
pytorch
https://paperswithcode.com/paper/synchronization-of-wave-propelled-capillary
Synchronization of wave-propelled capillary spinners
2409.06652
https://arxiv.org/abs/2409.06652v2
https://arxiv.org/pdf/2409.06652v2.pdf
https://github.com/harrislab-brown/syncspinners
true
true
false
none
https://paperswithcode.com/paper/utilizing-description-logics-for-global
Utilizing Description Logics for Global Explanations of Heterogeneous Graph Neural Networks
2405.12654
https://arxiv.org/abs/2405.12654v1
https://arxiv.org/pdf/2405.12654v1.pdf
https://github.com/ds-jrg/xgnn-dl
true
true
true
pytorch
https://paperswithcode.com/paper/robostack-using-the-robot-operating-system
A RoboStack Tutorial: Using the Robot Operating System Alongside the Conda and Jupyter Data Science Ecosystems
2104.12910
https://arxiv.org/abs/2104.12910v3
https://arxiv.org/pdf/2104.12910v3.pdf
https://github.com/mbatc/ros-humble
false
false
true
pytorch
https://paperswithcode.com/paper/ssr-speech-towards-stable-safe-and-robust
SSR-Speech: Towards Stable, Safe and Robust Zero-shot Text-based Speech Editing and Synthesis
2409.07556
https://arxiv.org/abs/2409.07556v2
https://arxiv.org/pdf/2409.07556v2.pdf
https://github.com/WangHelin1997/SSR-Speech
true
false
true
pytorch
https://paperswithcode.com/paper/improving-consistency-in-large-language
Improving Consistency in Large Language Models through Chain of Guidance
2502.15924
https://arxiv.org/abs/2502.15924v1
https://arxiv.org/pdf/2502.15924v1.pdf
https://github.com/vijilAI/chain_of_guidance
true
false
false
pytorch
https://paperswithcode.com/paper/towards-deep-generation-of-guided-wave
Towards deep generation of guided wave representations for composite materials
2212.06365
https://arxiv.org/abs/2212.06365v1
https://arxiv.org/pdf/2212.06365v1.pdf
https://github.com/mahindrautela/deepgenerator_compositematerialgwrepresentations
true
true
true
tf
https://paperswithcode.com/paper/prompt-agnostic-adversarial-perturbation-for
Prompt-Agnostic Adversarial Perturbation for Customized Diffusion Models
2408.10571
https://arxiv.org/abs/2408.10571v4
https://arxiv.org/pdf/2408.10571v4.pdf
https://github.com/vancyland/prompt-agnostic-adversarial-perturbation-for-customized-diffusion-models.github.io
true
true
true
pytorch
https://paperswithcode.com/paper/demystifying-large-language-models-for
Demystifying Large Language Models for Medicine: A Primer
2410.18856
https://arxiv.org/abs/2410.18856v3
https://arxiv.org/pdf/2410.18856v3.pdf
https://github.com/ncbi-nlp/llm-medicine-primer
true
true
false
none
https://paperswithcode.com/paper/does-differential-privacy-impact-bias-in
Does Differential Privacy Impact Bias in Pretrained NLP Models?
2410.18749
https://arxiv.org/abs/2410.18749v1
https://arxiv.org/pdf/2410.18749v1.pdf
https://github.com/khairulislam/dp-on-nlp-bias
true
true
false
pytorch
https://paperswithcode.com/paper/in-context-contrastive-learning-for-event
In-context Contrastive Learning for Event Causality Identification
2405.10512
https://arxiv.org/abs/2405.10512v2
https://arxiv.org/pdf/2405.10512v2.pdf
https://github.com/ChaoLiang-HUST/ICCL
true
false
false
pytorch
https://paperswithcode.com/paper/self-supervised-learning-for-time-series-a
Self-Supervised Learning for Time Series: A Review & Critique of FITS
2410.18318
https://arxiv.org/abs/2410.18318v1
https://arxiv.org/pdf/2410.18318v1.pdf
https://github.com/thorhojhus/ssl_fts
true
true
false
pytorch
https://paperswithcode.com/paper/exploiting-interpretable-capabilities-with
Exploiting Interpretable Capabilities with Concept-Enhanced Diffusion and Prototype Networks
2410.18705
https://arxiv.org/abs/2410.18705v2
https://arxiv.org/pdf/2410.18705v2.pdf
https://github.com/acarballocastro/ConceptEnhanced
true
false
false
pytorch
https://paperswithcode.com/paper/models-are-codes-towards-measuring-malicious
Models Are Codes: Towards Measuring Malicious Code Poisoning Attacks on Pre-trained Model Hubs
2409.09368
https://arxiv.org/abs/2409.09368v1
https://arxiv.org/pdf/2409.09368v1.pdf
https://github.com/security-pride/MalHug
true
false
false
tf
https://paperswithcode.com/paper/a-logical-fallacy-informed-framework-for
A Logical Fallacy-Informed Framework for Argument Generation
2408.03618
https://arxiv.org/abs/2408.03618v4
https://arxiv.org/pdf/2408.03618v4.pdf
https://github.com/lucamouchel/Logical-Fallacies
true
true
false
pytorch
https://paperswithcode.com/paper/naturalspeech-2-latent-diffusion-models-are
NaturalSpeech 2: Latent Diffusion Models are Natural and Zero-Shot Speech and Singing Synthesizers
2304.09116
https://arxiv.org/abs/2304.09116v3
https://arxiv.org/pdf/2304.09116v3.pdf
https://github.com/adelacvg/ns2vc
false
false
true
pytorch
https://paperswithcode.com/paper/on-device-collaborative-language-modeling-via
On-Device Collaborative Language Modeling via a Mixture of Generalists and Specialists
2409.13931
https://arxiv.org/abs/2409.13931v2
https://arxiv.org/pdf/2409.13931v2.pdf
https://github.com/epfml/comigs
true
true
true
pytorch
https://paperswithcode.com/paper/attention-score-is-not-all-you-need-for-token
Attention Score is not All You Need for Token Importance Indicator in KV Cache Reduction: Value Also Matters
2406.12335
https://arxiv.org/abs/2406.12335v2
https://arxiv.org/pdf/2406.12335v2.pdf
https://github.com/guozhiyu/vatp
true
true
true
pytorch
https://paperswithcode.com/paper/stgformer-efficient-spatiotemporal-graph
STGformer: Efficient Spatiotemporal Graph Transformer for Traffic Forecasting
2410.00385
https://arxiv.org/abs/2410.00385v2
https://arxiv.org/pdf/2410.00385v2.pdf
https://github.com/dreamzz5/stgformer
true
true
false
pytorch
https://paperswithcode.com/paper/a-spectral-framework-for-tracking-communities
A Spectral Framework for Tracking Communities in Evolving Networks
2412.07378
https://arxiv.org/abs/2412.07378v1
https://arxiv.org/pdf/2412.07378v1.pdf
https://github.com/jacobh140/spectral-dcd
true
false
false
none
https://paperswithcode.com/paper/vleu-a-method-for-automatic-evaluation-for
VLEU: a Method for Automatic Evaluation for Generalizability of Text-to-Image Models
2409.14704
https://arxiv.org/abs/2409.14704v2
https://arxiv.org/pdf/2409.14704v2.pdf
https://github.com/mio7690/VLEU
true
false
true
pytorch
https://paperswithcode.com/paper/diffsf-diffusion-models-for-scene-flow
DiffSF: Diffusion Models for Scene Flow Estimation
2403.05327
https://arxiv.org/abs/2403.05327v3
https://arxiv.org/pdf/2403.05327v3.pdf
https://github.com/zhangyushan3/diffsf
true
true
true
pytorch
https://paperswithcode.com/paper/advantage-guided-distillation-for-preference
Advantage-Guided Distillation for Preference Alignment in Small Language Models
2502.17927
https://arxiv.org/abs/2502.17927v1
https://arxiv.org/pdf/2502.17927v1.pdf
https://github.com/slit-ai/adpa
true
true
false
pytorch
https://paperswithcode.com/paper/nuscenes-a-multimodal-dataset-for-autonomous
nuScenes: A multimodal dataset for autonomous driving
1903.11027
https://arxiv.org/abs/1903.11027v5
https://arxiv.org/pdf/1903.11027v5.pdf
https://github.com/Ggs1mida/Awesome-DataFusion
false
false
true
none
https://paperswithcode.com/paper/eulerian-simulation-of-complex-suspensions
Eulerian simulation of complex suspensions and biolocomotion in three dimensions
2104.00095
https://arxiv.org/abs/2104.00095v1
https://arxiv.org/pdf/2104.00095v1.pdf
https://github.com/ylunalin/rmt3D
true
true
true
none
https://paperswithcode.com/paper/re-assembling-the-past-the-repair-dataset-and
Re-assembling the past: The RePAIR dataset and benchmark for real world 2D and 3D puzzle solving
2410.24010
https://arxiv.org/abs/2410.24010v2
https://arxiv.org/pdf/2410.24010v2.pdf
https://github.com/RePAIRProject/repair_ground_truth
false
false
false
none
https://paperswithcode.com/paper/floonoc-a-645-gbps-link-0-15-pj-b-hop-open
FlooNoC: A 645 Gbps/link 0.15 pJ/B/hop Open-Source NoC with Wide Physical Links and End-to-End AXI4 Parallel Multi-Stream Support
2409.17606
https://arxiv.org/abs/2409.17606v2
https://arxiv.org/pdf/2409.17606v2.pdf
https://github.com/pulp-platform/floonoc
true
false
true
none
https://paperswithcode.com/paper/an-analytically-tractable-marked-power
An Analytically Tractable Marked Power Spectrum
2409.17133
https://arxiv.org/abs/2409.17133v2
https://arxiv.org/pdf/2409.17133v2.pdf
https://github.com/HarukiEbina/markedPS
true
false
true
none
https://paperswithcode.com/paper/candoit-causal-discovery-with-observational
CAnDOIT: Causal Discovery with Observational and Interventional Data from Time-Series
2410.02844
https://arxiv.org/abs/2410.02844v3
https://arxiv.org/pdf/2410.02844v3.pdf
https://github.com/lcastri/causalflow
true
true
true
pytorch
https://paperswithcode.com/paper/cheating-automatic-llm-benchmarks-null-models
Cheating Automatic LLM Benchmarks: Null Models Achieve High Win Rates
2410.07137
https://arxiv.org/abs/2410.07137v2
https://arxiv.org/pdf/2410.07137v2.pdf
https://github.com/sail-sg/Cheating-LLM-Benchmarks
true
true
true
none
https://paperswithcode.com/paper/dana-domain-aware-neurosymbolic-agents-for
DANA: Domain-Aware Neurosymbolic Agents for Consistency and Accuracy
2410.02823
https://arxiv.org/abs/2410.02823v1
https://arxiv.org/pdf/2410.02823v1.pdf
https://github.com/aitomatic/openssa
false
false
true
none
https://paperswithcode.com/paper/hlv-1k-a-large-scale-hour-long-video
HLV-1K: A Large-scale Hour-Long Video Benchmark for Time-Specific Long Video Understanding
2501.01645
https://arxiv.org/abs/2501.01645v3
https://arxiv.org/pdf/2501.01645v3.pdf
https://github.com/vincent-zhq/hlv-1k
true
true
false
none
https://paperswithcode.com/paper/fed-biomed-open-transparent-and-trusted
Fed-BioMed: Open, Transparent and Trusted Federated Learning for Real-world Healthcare Applications
2304.12012
https://arxiv.org/abs/2304.12012v1
https://arxiv.org/pdf/2304.12012v1.pdf
https://github.com/fedbiomed/fedbiomed
false
false
true
pytorch
https://paperswithcode.com/paper/t2i-fineeval-fine-grained-compositional
T2I-FineEval: Fine-Grained Compositional Metric for Text-to-Image Evaluation
2503.11481
https://arxiv.org/abs/2503.11481v1
https://arxiv.org/pdf/2503.11481v1.pdf
https://github.com/hadi-hosseini/t2i-fineeval
false
true
true
pytorch
https://paperswithcode.com/paper/meshgpt-generating-triangle-meshes-with
MeshGPT: Generating Triangle Meshes with Decoder-Only Transformers
2311.15475
https://arxiv.org/abs/2311.15475v1
https://arxiv.org/pdf/2311.15475v1.pdf
https://github.com/lucidrains/meshgpt-pytorch
false
false
true
pytorch
https://paperswithcode.com/paper/eliminating-oversaturation-and-artifacts-of
Eliminating Oversaturation and Artifacts of High Guidance Scales in Diffusion Models
2410.02416
https://arxiv.org/abs/2410.02416v1
https://arxiv.org/pdf/2410.02416v1.pdf
https://github.com/lucidrains/meshgpt-pytorch
false
false
true
pytorch
https://paperswithcode.com/paper/qiskit-pulse-programming-quantum-computers
Qiskit Pulse: Programming Quantum Computers Through the Cloud with Pulses
2004.06755
http://arxiv.org/abs/2004.06755v1
http://arxiv.org/pdf/2004.06755v1.pdf
https://github.com/kashish0405/Gate-Optimisation
false
false
true
none
https://paperswithcode.com/paper/optimized-compilation-of-aggregated
Optimized Compilation of Aggregated Instructions for Realistic Quantum Computers
1902.01474
http://arxiv.org/abs/1902.01474v2
http://arxiv.org/pdf/1902.01474v2.pdf
https://github.com/kashish0405/Gate-Optimisation
false
false
true
none
https://paperswithcode.com/paper/optimized-quantum-compilation-for-near-term
Optimized Quantum Compilation for Near-Term Algorithms with OpenPulse
2004.11205
https://arxiv.org/abs/2004.11205v2
https://arxiv.org/pdf/2004.11205v2.pdf
https://github.com/kashish0405/Gate-Optimisation
false
false
true
none
https://paperswithcode.com/paper/tesseract-a-search-based-decoder-for-quantum
Tesseract: A Search-Based Decoder for Quantum Error Correction
2503.10988
https://arxiv.org/abs/2503.10988v1
https://arxiv.org/pdf/2503.10988v1.pdf
https://github.com/quantumlib/tesseract-decoder
true
true
true
none
https://paperswithcode.com/paper/collaborative-text-editing-with-eg-walker
Collaborative Text Editing with Eg-walker: Better, Faster, Smaller
2409.14252
https://arxiv.org/abs/2409.14252v1
https://arxiv.org/pdf/2409.14252v1.pdf
https://github.com/josephg/eg-walker-reference
true
true
true
none
https://paperswithcode.com/paper/progressive-neural-compression-for-adaptive
Progressive Neural Compression for Adaptive Image Offloading under Timing Constraints
2310.05306
https://arxiv.org/abs/2310.05306v1
https://arxiv.org/pdf/2310.05306v1.pdf
https://github.com/rickywrq/Progressive-Neural-Compression
true
false
true
tf