paper_url
stringlengths 36
81
| paper_title
stringlengths 1
242
⌀ | paper_arxiv_id
stringlengths 9
16
⌀ | paper_url_abs
stringlengths 18
314
| paper_url_pdf
stringlengths 21
935
⌀ | repo_url
stringlengths 26
200
| is_official
bool 2
classes | mentioned_in_paper
bool 2
classes | mentioned_in_github
bool 2
classes | framework
stringclasses 9
values |
---|---|---|---|---|---|---|---|---|---|
https://paperswithcode.com/paper/unsupervised-anomaly-detection-using
|
Unsupervised Anomaly Detection using Aggregated Normative Diffusion
|
2312.01904
|
https://arxiv.org/abs/2312.01904v1
|
https://arxiv.org/pdf/2312.01904v1.pdf
|
https://github.com/alexanderfrotscher/andi
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/star-fdtd-space-time-modulated-acousto-optic
|
STAR-FDTD : Space-time modulated acousto-optic guidestar in disordered media
|
2404.09273
|
https://arxiv.org/abs/2404.09273v2
|
https://arxiv.org/pdf/2404.09273v2.pdf
|
https://github.com/michaelraju/star-fdtd
| true | true | true |
none
|
https://paperswithcode.com/paper/uncertainty-decomposition-and-quantification
|
Uncertainty Quantification for In-Context Learning of Large Language Models
|
2402.10189
|
https://arxiv.org/abs/2402.10189v2
|
https://arxiv.org/pdf/2402.10189v2.pdf
|
https://github.com/lingchen0331/uq_icl
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/credible-unreliable-or-leaked-evidence
|
Credible, Unreliable or Leaked?: Evidence Verification for Enhanced Automated Fact-checking
|
2404.18971
|
https://arxiv.org/abs/2404.18971v1
|
https://arxiv.org/pdf/2404.18971v1.pdf
|
https://github.com/mever-team/credule-dataset
| true | true | false |
none
|
https://paperswithcode.com/paper/entity-centered-cross-document-relation
|
Entity-centered Cross-document Relation Extraction
|
2210.16541
|
https://arxiv.org/abs/2210.16541v1
|
https://arxiv.org/pdf/2210.16541v1.pdf
|
https://github.com/kracr/cross-doc-relation-extraction
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/minimum-cost-active-labeling
|
MCAL: Minimum Cost Human-Machine Active Labeling
|
2006.13999
|
https://arxiv.org/abs/2006.13999v3
|
https://arxiv.org/pdf/2006.13999v3.pdf
|
https://github.com/MindCode-4/code-12/tree/main/MCA
| false | false | false |
mindspore
|
https://paperswithcode.com/paper/visual-prompt-tuning
|
Visual Prompt Tuning
|
2203.12119
|
https://arxiv.org/abs/2203.12119v2
|
https://arxiv.org/pdf/2203.12119v2.pdf
|
https://github.com/Yiming-M/CLIP-EBC
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/bi-level-dynamic-learning-for-jointly-multi
|
Bi-level Dynamic Learning for Jointly Multi-modality Image Fusion and Beyond
|
2305.06720
|
https://arxiv.org/abs/2305.06720v1
|
https://arxiv.org/pdf/2305.06720v1.pdf
|
https://github.com/LiuZhu-CV/BDLFusion
| true | false | true |
pytorch
|
https://paperswithcode.com/paper/exploring-dynamic-load-balancing-algorithms
|
Exploring Dynamic Load Balancing Algorithms for Block-Structured Mesh-and-Particle Simulations in AMReX
|
2505.15122
|
https://arxiv.org/abs/2505.15122v2
|
https://arxiv.org/pdf/2505.15122v2.pdf
|
https://github.com/amitashnanda/acm_pearc_2025_paper_artifact
| true | true | false |
none
|
https://paperswithcode.com/paper/vsp-assessing-the-dual-challenges-of
|
VSP: Assessing the dual challenges of perception and reasoning in spatial planning tasks for VLMs
|
2407.01863
|
https://arxiv.org/abs/2407.01863v1
|
https://arxiv.org/pdf/2407.01863v1.pdf
|
https://github.com/ucsb-nlp-chang/visual-spatial-planning
| true | true | false |
none
|
https://paperswithcode.com/paper/disentangling-discrete-and-continuous-spectra
|
Disentangling discrete and continuous spectra of tidally forced internal waves in shear flow
|
2501.19121
|
https://arxiv.org/abs/2501.19121v1
|
https://arxiv.org/pdf/2501.19121v1.pdf
|
https://github.com/yonuki-models/tide-internal-wave-shear
| true | true | false |
none
|
https://paperswithcode.com/paper/am-radio-agglomerative-vision-foundation
|
AM-RADIO: Agglomerative Vision Foundation Model Reduce All Domains Into One
| null |
http://openaccess.thecvf.com//content/CVPR2024/html/Ranzinger_AM-RADIO_Agglomerative_Vision_Foundation_Model_Reduce_All_Domains_Into_One_CVPR_2024_paper.html
|
http://openaccess.thecvf.com//content/CVPR2024/papers/Ranzinger_AM-RADIO_Agglomerative_Vision_Foundation_Model_Reduce_All_Domains_Into_One_CVPR_2024_paper.pdf
|
https://github.com/nvlabs/radio
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/asymmetric-dual-decoder-u-net-for-joint-rain
|
Asymmetric Dual-Decoder U-Net for Joint Rain and Haze Removal
|
2206.06803
|
https://arxiv.org/abs/2206.06803v2
|
https://arxiv.org/pdf/2206.06803v2.pdf
|
https://github.com/huyjj/ADUNet/blob/main/SwinIR.py
| true | false | false |
pytorch
|
https://paperswithcode.com/paper/adapt-before-comparison-a-new-perspective-on
|
Adapt Before Comparison: A New Perspective on Cross-Domain Few-Shot Segmentation
|
2402.17614
|
https://arxiv.org/abs/2402.17614v2
|
https://arxiv.org/pdf/2402.17614v2.pdf
|
https://github.com/vision-kek/abcdfss
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/autonomous-legacy-web-application-upgrades
|
Autonomous Legacy Web Application Upgrades Using a Multi-Agent System
|
2501.19204
|
https://arxiv.org/abs/2501.19204v1
|
https://arxiv.org/pdf/2501.19204v1.pdf
|
https://github.com/alasalm1/multi-agent-pipeline
| true | true | false |
none
|
https://paperswithcode.com/paper/vl-sat-visual-linguistic-semantics-assisted
|
VL-SAT: Visual-Linguistic Semantics Assisted Training for 3D Semantic Scene Graph Prediction in Point Cloud
|
2303.14408
|
https://arxiv.org/abs/2303.14408v1
|
https://arxiv.org/pdf/2303.14408v1.pdf
|
https://github.com/wz7in/cvpr2023-vlsat
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/scaling-laws-for-the-value-of-individual-data
|
Scaling Laws for the Value of Individual Data Points in Machine Learning
|
2405.20456
|
https://arxiv.org/abs/2405.20456v1
|
https://arxiv.org/pdf/2405.20456v1.pdf
|
https://github.com/iancovert/data-scaling
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/anatomy-guided-pathology-segmentation
|
Anatomy-guided Pathology Segmentation
|
2407.05844
|
https://arxiv.org/abs/2407.05844v1
|
https://arxiv.org/pdf/2407.05844v1.pdf
|
https://github.com/alexanderjaus/apex
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/owl-a-large-language-model-for-it-operations
|
OWL: A Large Language Model for IT Operations
|
2309.09298
|
https://arxiv.org/abs/2309.09298v2
|
https://arxiv.org/pdf/2309.09298v2.pdf
|
https://github.com/HC-Guo/Owl
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/summarizing-strategy-card-game-ai-competition
|
Summarizing Strategy Card Game AI Competition
|
2305.11814
|
https://arxiv.org/abs/2305.11814v2
|
https://arxiv.org/pdf/2305.11814v2.pdf
|
https://github.com/acatai/Strategy-Card-Game-AI-Competition
| false | false | true |
none
|
https://paperswithcode.com/paper/generalizable-temperature-nowcasting-with
|
Generalizable Temperature Nowcasting with Physics-Constrained RNNs for Predictive Maintenance of Wind Turbine Components
|
2404.04126
|
https://arxiv.org/abs/2404.04126v1
|
https://arxiv.org/pdf/2404.04126v1.pdf
|
https://github.com/jxnb/pcrnn-wtg
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/dynamic-prompt-optimizing-for-text-to-image
|
Dynamic Prompt Optimizing for Text-to-Image Generation
|
2404.04095
|
https://arxiv.org/abs/2404.04095v1
|
https://arxiv.org/pdf/2404.04095v1.pdf
|
https://github.com/mowenyii/pae
| true | true | true |
jax
|
https://paperswithcode.com/paper/label-consistent-backdoor-attacks
|
Label-Consistent Backdoor Attacks
|
1912.02771
|
https://arxiv.org/abs/1912.02771v2
|
https://arxiv.org/pdf/1912.02771v2.pdf
|
https://github.com/xandery-geek/BackdoorAttacks
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/graphfsa-a-finite-state-automaton-framework
|
GraphFSA: A Finite State Automaton Framework for Algorithmic Learning on Graphs
|
2408.11042
|
https://arxiv.org/abs/2408.11042v1
|
https://arxiv.org/pdf/2408.11042v1.pdf
|
https://github.com/eth-disco/graph-fsa
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/are-you-sure-analysing-uncertainty
|
Are you sure? Analysing Uncertainty Quantification Approaches for Real-world Speech Emotion Recognition
|
2407.01143
|
https://arxiv.org/abs/2407.01143v1
|
https://arxiv.org/pdf/2407.01143v1.pdf
|
https://github.com/audeering/ser-uncertainty-quantification
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/surrogate-assisted-evolutionary-framework
|
Surrogate-assisted evolutionary framework with an ensemble of teaching-learning and differential evolution for expensive optimization
| null |
https://www.sciencedirect.com/science/article/abs/pii/S002002552401051X
|
https://www.sciencedirect.com/science/article/abs/pii/S002002552401051X
|
https://github.com/yiran-luu/SAF-TD
| false | false | false |
none
|
https://paperswithcode.com/paper/180809781
|
Self-Attentive Sequential Recommendation
|
1808.09781
|
http://arxiv.org/abs/1808.09781v1
|
http://arxiv.org/pdf/1808.09781v1.pdf
|
https://github.com/facebookresearch/generative-recommenders
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/agbd-a-global-scale-biomass-dataset
|
AGBD: A Global-scale Biomass Dataset
|
2406.04928
|
https://arxiv.org/abs/2406.04928v3
|
https://arxiv.org/pdf/2406.04928v3.pdf
|
https://github.com/ghjuliasialelli/agbd
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/camouflaged-object-tracking-a-benchmark
|
Camouflaged Object Tracking: A Benchmark
|
2408.13877
|
https://arxiv.org/abs/2408.13877v3
|
https://arxiv.org/pdf/2408.13877v3.pdf
|
https://github.com/openat25/hiptrack-mls
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/global-structure-from-motion-revisited
|
Global Structure-from-Motion Revisited
|
2407.20219
|
https://arxiv.org/abs/2407.20219v2
|
https://arxiv.org/pdf/2407.20219v2.pdf
|
https://github.com/colmap/glomap
| true | true | true |
none
|
https://paperswithcode.com/paper/topics-in-the-study-of-the-pragmatic
|
Topics in the Study of the Pragmatic Functions of Phonetic Reduction in Dialog
|
2405.01376
|
https://arxiv.org/abs/2405.01376v1
|
https://arxiv.org/pdf/2405.01376v1.pdf
|
https://github.com/Caortega4/reduction-detection
| true | true | false |
none
|
https://paperswithcode.com/paper/universal-and-transferable-adversarial
|
Universal and Transferable Adversarial Attacks on Aligned Language Models
|
2307.15043
|
https://arxiv.org/abs/2307.15043v2
|
https://arxiv.org/pdf/2307.15043v2.pdf
|
https://github.com/rain152/PAT
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/treed-distributed-lag-non-linear-models
|
Treed distributed lag nonlinear models
|
2010.06147
|
https://arxiv.org/abs/2010.06147v3
|
https://arxiv.org/pdf/2010.06147v3.pdf
|
https://github.com/danielmork/dlmtree
| true | true | true |
none
|
https://paperswithcode.com/paper/heterogeneous-distributed-lag-models-to
|
Heterogeneous Distributed Lag Models to Estimate Personalized Effects of Maternal Exposures to Air Pollution
|
2109.13763
|
https://arxiv.org/abs/2109.13763v3
|
https://arxiv.org/pdf/2109.13763v3.pdf
|
https://github.com/danielmork/dlmtree
| true | false | true |
none
|
https://paperswithcode.com/paper/incorporating-prior-information-into
|
Incorporating prior information into distributed lag nonlinear models with zero-inflated monotone regression trees
|
2301.12937
|
https://arxiv.org/abs/2301.12937v2
|
https://arxiv.org/pdf/2301.12937v2.pdf
|
https://github.com/danielmork/dlmtree
| true | true | true |
none
|
https://paperswithcode.com/paper/tidiness-score-guided-monte-carlo-tree-search
|
Tidiness Score-Guided Monte Carlo Tree Search for Visual Tabletop Rearrangement
|
2502.17235
|
https://arxiv.org/abs/2502.17235v1
|
https://arxiv.org/pdf/2502.17235v1.pdf
|
https://github.com/rllab-snu/ttu-dataset
| true | true | false |
none
|
https://paperswithcode.com/paper/multi-view-aggregation-network-for
|
Multi-view Aggregation Network for Dichotomous Image Segmentation
|
2404.07445
|
https://arxiv.org/abs/2404.07445v1
|
https://arxiv.org/pdf/2404.07445v1.pdf
|
https://github.com/qianyu-dlut/mvanet
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/masked-diffusion-as-self-supervised
|
Masked Diffusion as Self-supervised Representation Learner
|
2308.05695
|
https://arxiv.org/abs/2308.05695v4
|
https://arxiv.org/pdf/2308.05695v4.pdf
|
https://github.com/zx-pan/mdm
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/efficient-computation-of-cmb-anisotropies-in
|
Efficient Computation of CMB anisotropies in closed FRW models
|
astro-ph/9911177
|
https://arxiv.org/abs/astro-ph/9911177v2
|
https://arxiv.org/pdf/astro-ph/9911177v2.pdf
|
https://github.com/raphkou/camb
| false | false | true |
none
|
https://paperswithcode.com/paper/lidardm-generative-lidar-simulation-in-a
|
LidarDM: Generative LiDAR Simulation in a Generated World
|
2404.02903
|
https://arxiv.org/abs/2404.02903v1
|
https://arxiv.org/pdf/2404.02903v1.pdf
|
https://github.com/vzyrianov/LidarDM
| true | false | true |
jax
|
https://paperswithcode.com/paper/contextual-multilingual-spellchecker-for-user
|
Contextual Multilingual Spellchecker for User Queries
|
2305.01082
|
https://arxiv.org/abs/2305.01082v2
|
https://arxiv.org/pdf/2305.01082v2.pdf
|
https://github.com/wolfgarbe/symspell
| true | true | true |
none
|
https://paperswithcode.com/paper/spinach-sparql-based-information-navigation
|
SPINACH: SPARQL-Based Information Navigation for Challenging Real-World Questions
|
2407.11417
|
https://arxiv.org/abs/2407.11417v2
|
https://arxiv.org/pdf/2407.11417v2.pdf
|
https://github.com/stanford-oval/spinach
| true | true | true |
none
|
https://paperswithcode.com/paper/a-context-sensitive-real-time-spell-checker
|
A context sensitive real-time Spell Checker with language adaptability
|
1910.11242
|
https://arxiv.org/abs/1910.11242v1
|
https://arxiv.org/pdf/1910.11242v1.pdf
|
https://github.com/wolfgarbe/symspell
| true | true | true |
none
|
https://paperswithcode.com/paper/integrating-systemc-ams-power-modeling-with-a
|
Integrating SystemC-AMS Power Modeling with a RISC-V ISS for Virtual Prototyping of Battery-operated Embedded Devices
|
2404.01861
|
https://arxiv.org/abs/2404.01861v1
|
https://arxiv.org/pdf/2404.01861v1.pdf
|
https://github.com/eml-eda/messy
| true | true | true |
none
|
https://paperswithcode.com/paper/2409-13728
|
Rule Extrapolation in Language Models: A Study of Compositional Generalization on OOD Prompts
|
2409.13728
|
https://arxiv.org/abs/2409.13728v2
|
https://arxiv.org/pdf/2409.13728v2.pdf
|
https://github.com/meszarosanna/rule_extrapolation
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/spectral-persistent-homology-persistence
|
Discrete transforms of quantized persistence diagrams
|
2312.17093
|
https://arxiv.org/abs/2312.17093v3
|
https://arxiv.org/pdf/2312.17093v3.pdf
|
https://github.com/majkevh/qupid
| true | true | false |
none
|
https://paperswithcode.com/paper/an-extended-sequence-tagging-vocabulary-for
|
An Extended Sequence Tagging Vocabulary for Grammatical Error Correction
|
2302.05913
|
https://arxiv.org/abs/2302.05913v1
|
https://arxiv.org/pdf/2302.05913v1.pdf
|
https://github.com/wolfgarbe/symspell
| true | true | true |
none
|
https://paperswithcode.com/paper/german-parliamentary-corpus-gerparcor
|
German Parliamentary Corpus (GerParCor)
|
2204.10422
|
https://arxiv.org/abs/2204.10422v1
|
https://arxiv.org/pdf/2204.10422v1.pdf
|
https://github.com/wolfgarbe/symspell
| true | true | true |
none
|
https://paperswithcode.com/paper/deep-unsupervised-clustering-with-gaussian
|
Deep Unsupervised Clustering with Gaussian Mixture Variational Autoencoders
|
1611.02648
|
http://arxiv.org/abs/1611.02648v2
|
http://arxiv.org/pdf/1611.02648v2.pdf
|
https://github.com/EdoardoBotta/Gaussian-Mixture-VAE
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/categorical-reparameterization-with-gumbel
|
Categorical Reparameterization with Gumbel-Softmax
|
1611.01144
|
http://arxiv.org/abs/1611.01144v5
|
http://arxiv.org/pdf/1611.01144v5.pdf
|
https://github.com/EdoardoBotta/Gaussian-Mixture-VAE
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/ecg-signal-processing-and-feature-extraction
|
ECG signal processing and feature extraction to validate feature significance for arrythmia detection
| null |
https://github.com/Firestorm12344/ISB-Grupo4/tree/main/Proyecto
|
https://github.com/Firestorm12344/ISB-Grupo4/blob/main/Proyecto/Paper%20final%20-%20grupo%204.pdf
|
https://github.com/Firestorm12344/ISB-Grupo4/blob/main/Proyecto/C%C3%B3digo/Signal_Processing%20-%20v2.ipynb
| false | false | false |
none
|
https://paperswithcode.com/paper/multi-head-self-attention-via-vision
|
Multi-Head Self-Attention via Vision Transformer for Zero-Shot Learning
|
2108.00045
|
https://arxiv.org/abs/2108.00045v1
|
https://arxiv.org/pdf/2108.00045v1.pdf
|
https://github.com/shiming-chen/zslvit
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/not-all-patches-are-what-you-need-expediting
|
Not All Patches are What You Need: Expediting Vision Transformers via Token Reorganizations
|
2202.07800
|
https://arxiv.org/abs/2202.07800v2
|
https://arxiv.org/pdf/2202.07800v2.pdf
|
https://github.com/shiming-chen/zslvit
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/soundstream-an-end-to-end-neural-audio-codec
|
SoundStream: An End-to-End Neural Audio Codec
|
2107.03312
|
https://arxiv.org/abs/2107.03312v1
|
https://arxiv.org/pdf/2107.03312v1.pdf
|
https://github.com/lucidrains/vector-quantize-pytorch
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/haar-text-conditioned-generative-model-of-3d
|
HAAR: Text-Conditioned Generative Model of 3D Strand-based Human Hairstyles
|
2312.11666
|
https://arxiv.org/abs/2312.11666v1
|
https://arxiv.org/pdf/2312.11666v1.pdf
|
https://github.com/Vanessik/HAAR
| true | false | true |
pytorch
|
https://paperswithcode.com/paper/2407-21757
|
Learning Video Context as Interleaved Multimodal Sequences
|
2407.21757
|
https://arxiv.org/abs/2407.21757v2
|
https://arxiv.org/pdf/2407.21757v2.pdf
|
https://github.com/showlab/movieseq
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/translation-equivariant-image-quantizer-for
|
Exploration into Translation-Equivariant Image Quantization
|
2112.00384
|
https://arxiv.org/abs/2112.00384v3
|
https://arxiv.org/pdf/2112.00384v3.pdf
|
https://github.com/lucidrains/vector-quantize-pytorch
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/addressing-representation-collapse-in-vector
|
Addressing Representation Collapse in Vector Quantized Models with One Linear Layer
|
2411.02038
|
https://arxiv.org/abs/2411.02038v1
|
https://arxiv.org/pdf/2411.02038v1.pdf
|
https://github.com/lucidrains/vector-quantize-pytorch
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/task-aligned-part-aware-panoptic-segmentation-1
|
Task-aligned Part-aware Panoptic Segmentation through Joint Object-Part Representations
|
2406.10114
|
https://arxiv.org/abs/2406.10114v1
|
https://arxiv.org/pdf/2406.10114v1.pdf
|
https://github.com/tue-mps/tapps
| true | false | false |
pytorch
|
https://paperswithcode.com/paper/activating-wider-areas-in-image-super
|
Activating Wider Areas in Image Super-Resolution
|
2403.08330
|
https://arxiv.org/abs/2403.08330v1
|
https://arxiv.org/pdf/2403.08330v1.pdf
|
https://github.com/arsenalcheng/mma
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/overcoming-recency-bias-of-normalization-1
|
Overcoming Recency Bias of Normalization Statistics in Continual Learning: Balance and Adaptation
|
2310.08855
|
https://arxiv.org/abs/2310.08855v1
|
https://arxiv.org/pdf/2310.08855v1.pdf
|
https://github.com/lvyilin/adab2n
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/compact-compressing-retrieved-documents
|
CompAct: Compressing Retrieved Documents Actively for Question Answering
|
2407.09014
|
https://arxiv.org/abs/2407.09014v3
|
https://arxiv.org/pdf/2407.09014v3.pdf
|
https://github.com/dmis-lab/compact
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/learning-to-remove-wrinkled-transparent-film
|
Learning to Remove Wrinkled Transparent Film with Polarized Prior
|
2403.04368
|
https://arxiv.org/abs/2403.04368v1
|
https://arxiv.org/pdf/2403.04368v1.pdf
|
https://github.com/jqtangust/filmremoval
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/semeval-2019-task-6-identifying-and-1
|
SemEval-2019 Task 6: Identifying and Categorizing Offensive Language in Social Media (OffensEval)
|
1903.08983
|
http://arxiv.org/abs/1903.08983v3
|
http://arxiv.org/pdf/1903.08983v3.pdf
|
https://github.com/VadymV/OffensEval
| false | false | true |
tf
|
https://paperswithcode.com/paper/learning-robust-classifiers-with-self-guided
|
Learning Robust Classifiers with Self-Guided Spurious Correlation Mitigation
|
2405.03649
|
https://arxiv.org/abs/2405.03649v1
|
https://arxiv.org/pdf/2405.03649v1.pdf
|
https://github.com/gtzheng/LBC
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/contrastive-learning-for-predicting-cancer
|
Contrastive Learning for Predicting Cancer Prognosis Using Gene Expression Values
|
2306.06276
|
https://arxiv.org/abs/2306.06276v4
|
https://arxiv.org/pdf/2306.06276v4.pdf
|
https://github.com/caixdlab/cl4capro
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/a-collocation-based-method-for-addressing
|
A Collocation-based Method for Addressing Challenges in Word-level Metric Differential Privacy
|
2407.00638
|
https://arxiv.org/abs/2407.00638v1
|
https://arxiv.org/pdf/2407.00638v1.pdf
|
https://github.com/sjmeis/CLMLDP
| true | false | false |
none
|
https://paperswithcode.com/paper/t-rep-representation-learning-for-time-series
|
T-Rep: Representation Learning for Time Series using Time-Embeddings
|
2310.04486
|
https://arxiv.org/abs/2310.04486v3
|
https://arxiv.org/pdf/2310.04486v3.pdf
|
https://github.com/let-it-care/t-rep
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/hm-conformer-a-conformer-based-audio-deepfake
|
HM-Conformer: A Conformer-based audio deepfake detection system with hierarchical pooling and multi-level classification token aggregation methods
|
2309.08208
|
https://arxiv.org/abs/2309.08208v1
|
https://arxiv.org/pdf/2309.08208v1.pdf
|
https://github.com/talkingnow/HM-Conformer
| true | false | true |
pytorch
|
https://paperswithcode.com/paper/yolox-exceeding-yolo-series-in-2021
|
YOLOX: Exceeding YOLO Series in 2021
|
2107.08430
|
https://arxiv.org/abs/2107.08430v2
|
https://arxiv.org/pdf/2107.08430v2.pdf
|
https://github.com/liuyuan000/yolox_sar
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/torchtree-flexible-phylogenetic-model
|
Torchtree: flexible phylogenetic model development and inference using PyTorch
|
2406.18044
|
https://arxiv.org/abs/2406.18044v1
|
https://arxiv.org/pdf/2406.18044v1.pdf
|
https://github.com/4ment/torchtree
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/dots-learning-to-reason-dynamically-in-llms
|
DOTS: Learning to Reason Dynamically in LLMs via Optimal Reasoning Trajectories Search
|
2410.03864
|
https://arxiv.org/abs/2410.03864v1
|
https://arxiv.org/pdf/2410.03864v1.pdf
|
https://github.com/MurongYue/DOTS
| true | false | true |
none
|
https://paperswithcode.com/paper/bayesian-calibration-of-stochastic-agent
|
Bayesian calibration of stochastic agent based model via random forest
|
2406.19524
|
https://arxiv.org/abs/2406.19524v1
|
https://arxiv.org/pdf/2406.19524v1.pdf
|
https://github.com/sandialabs/Bayesian-calibration-of-stochastic-agent-based-model-via-random-forest
| true | true | false |
none
|
https://paperswithcode.com/paper/pint-maximum-likelihood-estimation-of-pulsar
|
PINT: Maximum-likelihood estimation of pulsar timing noise parameters
|
2405.01977
|
https://arxiv.org/abs/2405.01977v2
|
https://arxiv.org/pdf/2405.01977v2.pdf
|
https://github.com/nanograv/pint
| true | true | true |
none
|
https://paperswithcode.com/paper/a-massively-parallel-performance-portable
|
A Massively Parallel Performance Portable Free-space Spectral Poisson Solver
|
2405.02603
|
https://arxiv.org/abs/2405.02603v1
|
https://arxiv.org/pdf/2405.02603v1.pdf
|
https://github.com/ippl-framework/ippl
| true | true | false |
none
|
https://paperswithcode.com/paper/status-of-the-bto-k-anomaly-after-moriond
|
Status of the $B\to K^*μ^+μ^-$ anomaly after Moriond 2017
|
1703.09189
|
http://arxiv.org/abs/1703.09189v3
|
http://arxiv.org/pdf/1703.09189v3.pdf
|
https://github.com/DavidMStraub/paper-bkstarmumu-anss
| false | false | true |
none
|
https://paperswithcode.com/paper/dara-domain-and-relation-aware-adapters-make
|
DARA: Domain- and Relation-aware Adapters Make Parameter-efficient Tuning for Visual Grounding
|
2405.06217
|
https://arxiv.org/abs/2405.06217v2
|
https://arxiv.org/pdf/2405.06217v2.pdf
|
https://github.com/liuting20/dara
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/x-field-a-physically-grounded-representation
|
X-Field: A Physically Grounded Representation for 3D X-ray Reconstruction
|
2503.08596
|
https://arxiv.org/abs/2503.08596v1
|
https://arxiv.org/pdf/2503.08596v1.pdf
|
https://github.com/brack-wang/x-field
| true | true | true |
none
|
https://paperswithcode.com/paper/attention-aware-semantic-communications-for
|
Attention-aware Semantic Communications for Collaborative Inference
|
2404.07217
|
https://arxiv.org/abs/2404.07217v2
|
https://arxiv.org/pdf/2404.07217v2.pdf
|
https://github.com/iil-postech/semantic-attention
| true | false | false |
pytorch
|
https://paperswithcode.com/paper/image-forgery-localization-with-state-space
|
Image Forgery Localization with State Space Models
|
2412.11214
|
https://arxiv.org/abs/2412.11214v1
|
https://arxiv.org/pdf/2412.11214v1.pdf
|
https://github.com/multimediafor/loma
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/revisiting-multi-agent-world-modeling-from-a
|
Revisiting Multi-Agent World Modeling from a Diffusion-Inspired Perspective
|
2505.20922
|
https://arxiv.org/abs/2505.20922v1
|
https://arxiv.org/pdf/2505.20922v1.pdf
|
https://github.com/lucidrains/vector-quantize-pytorch
| true | false | false |
pytorch
|
https://paperswithcode.com/paper/planning-for-gold-sample-splitting-for-valid
|
Planning for Gold: Sample Splitting for Valid Powerful Design of Observational Studies
|
2406.00866
|
https://arxiv.org/abs/2406.00866v1
|
https://arxiv.org/pdf/2406.00866v1.pdf
|
https://github.com/WillBekerman/planning-for-gold
| true | true | true |
none
|
https://paperswithcode.com/paper/leveraging-hidden-positives-for-unsupervised
|
Leveraging Hidden Positives for Unsupervised Semantic Segmentation
|
2303.15014
|
https://arxiv.org/abs/2303.15014v1
|
https://arxiv.org/pdf/2303.15014v1.pdf
|
https://github.com/hynnsk/hp
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/one-prompt-word-is-enough-to-boost
|
One Prompt Word is Enough to Boost Adversarial Robustness for Pre-trained Vision-Language Models
|
2403.01849
|
https://arxiv.org/abs/2403.01849v1
|
https://arxiv.org/pdf/2403.01849v1.pdf
|
https://github.com/treelli/apt
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/higt-hierarchical-interaction-graph
|
HIGT: Hierarchical Interaction Graph-Transformer for Whole Slide Image Analysis
|
2309.07400
|
https://arxiv.org/abs/2309.07400v1
|
https://arxiv.org/pdf/2309.07400v1.pdf
|
https://github.com/hku-medai/higt
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/equal-long-term-benefit-rate-adapting-static
|
Adapting Static Fairness to Sequential Decision-Making: Bias Mitigation Strategies towards Equal Long-term Benefit Rate
|
2309.03426
|
https://arxiv.org/abs/2309.03426v3
|
https://arxiv.org/pdf/2309.03426v3.pdf
|
https://github.com/umd-huang-lab/elbert
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/mr-rawnet-speaker-verification-system-with
|
MR-RawNet: Speaker verification system with multiple temporal resolutions for variable duration utterances using raw waveforms
|
2406.07103
|
https://arxiv.org/abs/2406.07103v1
|
https://arxiv.org/pdf/2406.07103v1.pdf
|
https://github.com/kimho1wq/mr-rawnet
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/3d-u-net-learning-dense-volumetric
|
3D U-Net: Learning Dense Volumetric Segmentation from Sparse Annotation
|
1606.06650
|
http://arxiv.org/abs/1606.06650v1
|
http://arxiv.org/pdf/1606.06650v1.pdf
|
https://github.com/fepegar/unet
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/optimizing-large-language-models-for-openapi
|
Optimizing Large Language Models for OpenAPI Code Completion
|
2405.15729
|
https://arxiv.org/abs/2405.15729v2
|
https://arxiv.org/pdf/2405.15729v2.pdf
|
https://github.com/BohdanPetryshyn/openapi-completion-benchmark
| true | true | true |
none
|
https://paperswithcode.com/paper/event-based-background-oriented-schlieren
|
Event-based Background-Oriented Schlieren
|
2311.00434
|
https://arxiv.org/abs/2311.00434v1
|
https://arxiv.org/pdf/2311.00434v1.pdf
|
https://github.com/uzh-rpg/event-based_vision_resources
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/bitdistiller-unleashing-the-potential-of-sub
|
BitDistiller: Unleashing the Potential of Sub-4-Bit LLMs via Self-Distillation
|
2402.10631
|
https://arxiv.org/abs/2402.10631v1
|
https://arxiv.org/pdf/2402.10631v1.pdf
|
https://github.com/microsoft/bitblas
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/the-era-of-1-bit-llms-all-large-language
|
The Era of 1-bit LLMs: All Large Language Models are in 1.58 Bits
|
2402.17764
|
https://arxiv.org/abs/2402.17764v1
|
https://arxiv.org/pdf/2402.17764v1.pdf
|
https://github.com/microsoft/bitblas
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/optimizing-retrieval-strategies-for-financial
|
Optimizing Retrieval Strategies for Financial Question Answering Documents in Retrieval-Augmented Generation Systems
|
2503.15191
|
https://arxiv.org/abs/2503.15191v1
|
https://arxiv.org/pdf/2503.15191v1.pdf
|
https://github.com/seohyunwoo-0407/gar
| true | true | false |
none
|
https://paperswithcode.com/paper/a-point-cloud-deep-learning-framework-for
|
A Point-Cloud Deep Learning Framework for Prediction of Fluid Flow Fields on Irregular Geometries
|
2010.09469
|
https://arxiv.org/abs/2010.09469v2
|
https://arxiv.org/pdf/2010.09469v2.pdf
|
https://github.com/ali-stanford/pointnetcfd
| true | false | false |
tf
|
https://paperswithcode.com/paper/interpretable-multimodal-learning-for-1
|
Interpretable Multimodal Learning for Cardiovascular Hemodynamics Assessment
|
2404.04718
|
https://arxiv.org/abs/2404.04718v1
|
https://arxiv.org/pdf/2404.04718v1.pdf
|
https://github.com/prasunc/hemodynamics
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/physical-3d-adversarial-attacks-against
|
Physical 3D Adversarial Attacks against Monocular Depth Estimation in Autonomous Driving
|
2403.17301
|
https://arxiv.org/abs/2403.17301v2
|
https://arxiv.org/pdf/2403.17301v2.pdf
|
https://github.com/gandolfczjh/3d2fool
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/physical-attack-on-monocular-depth-estimation
|
Physical Attack on Monocular Depth Estimation with Optimal Adversarial Patches
|
2207.04718
|
https://arxiv.org/abs/2207.04718v1
|
https://arxiv.org/pdf/2207.04718v1.pdf
|
https://github.com/gandolfczjh/3d2fool
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/an-emulator-for-fine-tuning-large-language
|
An Emulator for Fine-Tuning Large Language Models using Small Language Models
|
2310.12962
|
https://arxiv.org/abs/2310.12962v1
|
https://arxiv.org/pdf/2310.12962v1.pdf
|
https://github.com/ZHZisZZ/emulated-disalignment
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/tuning-language-models-by-proxy
|
Tuning Language Models by Proxy
|
2401.08565
|
https://arxiv.org/abs/2401.08565v4
|
https://arxiv.org/pdf/2401.08565v4.pdf
|
https://github.com/ZHZisZZ/emulated-disalignment
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/emulated-disalignment-safety-alignment-for
|
Emulated Disalignment: Safety Alignment for Large Language Models May Backfire!
|
2402.12343
|
https://arxiv.org/abs/2402.12343v4
|
https://arxiv.org/pdf/2402.12343v4.pdf
|
https://github.com/ZHZisZZ/emulated-disalignment
| true | true | true |
pytorch
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.