paper_url
stringlengths
36
81
paper_title
stringlengths
1
242
paper_arxiv_id
stringlengths
9
16
paper_url_abs
stringlengths
18
314
paper_url_pdf
stringlengths
21
935
repo_url
stringlengths
26
200
is_official
bool
2 classes
mentioned_in_paper
bool
2 classes
mentioned_in_github
bool
2 classes
framework
stringclasses
9 values
https://paperswithcode.com/paper/unsupervised-anomaly-detection-using
Unsupervised Anomaly Detection using Aggregated Normative Diffusion
2312.01904
https://arxiv.org/abs/2312.01904v1
https://arxiv.org/pdf/2312.01904v1.pdf
https://github.com/alexanderfrotscher/andi
true
true
true
pytorch
https://paperswithcode.com/paper/star-fdtd-space-time-modulated-acousto-optic
STAR-FDTD : Space-time modulated acousto-optic guidestar in disordered media
2404.09273
https://arxiv.org/abs/2404.09273v2
https://arxiv.org/pdf/2404.09273v2.pdf
https://github.com/michaelraju/star-fdtd
true
true
true
none
https://paperswithcode.com/paper/uncertainty-decomposition-and-quantification
Uncertainty Quantification for In-Context Learning of Large Language Models
2402.10189
https://arxiv.org/abs/2402.10189v2
https://arxiv.org/pdf/2402.10189v2.pdf
https://github.com/lingchen0331/uq_icl
true
true
true
pytorch
https://paperswithcode.com/paper/credible-unreliable-or-leaked-evidence
Credible, Unreliable or Leaked?: Evidence Verification for Enhanced Automated Fact-checking
2404.18971
https://arxiv.org/abs/2404.18971v1
https://arxiv.org/pdf/2404.18971v1.pdf
https://github.com/mever-team/credule-dataset
true
true
false
none
https://paperswithcode.com/paper/entity-centered-cross-document-relation
Entity-centered Cross-document Relation Extraction
2210.16541
https://arxiv.org/abs/2210.16541v1
https://arxiv.org/pdf/2210.16541v1.pdf
https://github.com/kracr/cross-doc-relation-extraction
false
false
true
pytorch
https://paperswithcode.com/paper/minimum-cost-active-labeling
MCAL: Minimum Cost Human-Machine Active Labeling
2006.13999
https://arxiv.org/abs/2006.13999v3
https://arxiv.org/pdf/2006.13999v3.pdf
https://github.com/MindCode-4/code-12/tree/main/MCA
false
false
false
mindspore
https://paperswithcode.com/paper/visual-prompt-tuning
Visual Prompt Tuning
2203.12119
https://arxiv.org/abs/2203.12119v2
https://arxiv.org/pdf/2203.12119v2.pdf
https://github.com/Yiming-M/CLIP-EBC
false
false
true
pytorch
https://paperswithcode.com/paper/bi-level-dynamic-learning-for-jointly-multi
Bi-level Dynamic Learning for Jointly Multi-modality Image Fusion and Beyond
2305.06720
https://arxiv.org/abs/2305.06720v1
https://arxiv.org/pdf/2305.06720v1.pdf
https://github.com/LiuZhu-CV/BDLFusion
true
false
true
pytorch
https://paperswithcode.com/paper/exploring-dynamic-load-balancing-algorithms
Exploring Dynamic Load Balancing Algorithms for Block-Structured Mesh-and-Particle Simulations in AMReX
2505.15122
https://arxiv.org/abs/2505.15122v2
https://arxiv.org/pdf/2505.15122v2.pdf
https://github.com/amitashnanda/acm_pearc_2025_paper_artifact
true
true
false
none
https://paperswithcode.com/paper/vsp-assessing-the-dual-challenges-of
VSP: Assessing the dual challenges of perception and reasoning in spatial planning tasks for VLMs
2407.01863
https://arxiv.org/abs/2407.01863v1
https://arxiv.org/pdf/2407.01863v1.pdf
https://github.com/ucsb-nlp-chang/visual-spatial-planning
true
true
false
none
https://paperswithcode.com/paper/disentangling-discrete-and-continuous-spectra
Disentangling discrete and continuous spectra of tidally forced internal waves in shear flow
2501.19121
https://arxiv.org/abs/2501.19121v1
https://arxiv.org/pdf/2501.19121v1.pdf
https://github.com/yonuki-models/tide-internal-wave-shear
true
true
false
none
https://paperswithcode.com/paper/am-radio-agglomerative-vision-foundation
AM-RADIO: Agglomerative Vision Foundation Model Reduce All Domains Into One
null
http://openaccess.thecvf.com//content/CVPR2024/html/Ranzinger_AM-RADIO_Agglomerative_Vision_Foundation_Model_Reduce_All_Domains_Into_One_CVPR_2024_paper.html
http://openaccess.thecvf.com//content/CVPR2024/papers/Ranzinger_AM-RADIO_Agglomerative_Vision_Foundation_Model_Reduce_All_Domains_Into_One_CVPR_2024_paper.pdf
https://github.com/nvlabs/radio
true
true
false
pytorch
https://paperswithcode.com/paper/asymmetric-dual-decoder-u-net-for-joint-rain
Asymmetric Dual-Decoder U-Net for Joint Rain and Haze Removal
2206.06803
https://arxiv.org/abs/2206.06803v2
https://arxiv.org/pdf/2206.06803v2.pdf
https://github.com/huyjj/ADUNet/blob/main/SwinIR.py
true
false
false
pytorch
https://paperswithcode.com/paper/adapt-before-comparison-a-new-perspective-on
Adapt Before Comparison: A New Perspective on Cross-Domain Few-Shot Segmentation
2402.17614
https://arxiv.org/abs/2402.17614v2
https://arxiv.org/pdf/2402.17614v2.pdf
https://github.com/vision-kek/abcdfss
true
true
true
pytorch
https://paperswithcode.com/paper/autonomous-legacy-web-application-upgrades
Autonomous Legacy Web Application Upgrades Using a Multi-Agent System
2501.19204
https://arxiv.org/abs/2501.19204v1
https://arxiv.org/pdf/2501.19204v1.pdf
https://github.com/alasalm1/multi-agent-pipeline
true
true
false
none
https://paperswithcode.com/paper/vl-sat-visual-linguistic-semantics-assisted
VL-SAT: Visual-Linguistic Semantics Assisted Training for 3D Semantic Scene Graph Prediction in Point Cloud
2303.14408
https://arxiv.org/abs/2303.14408v1
https://arxiv.org/pdf/2303.14408v1.pdf
https://github.com/wz7in/cvpr2023-vlsat
true
true
true
pytorch
https://paperswithcode.com/paper/scaling-laws-for-the-value-of-individual-data
Scaling Laws for the Value of Individual Data Points in Machine Learning
2405.20456
https://arxiv.org/abs/2405.20456v1
https://arxiv.org/pdf/2405.20456v1.pdf
https://github.com/iancovert/data-scaling
true
true
false
pytorch
https://paperswithcode.com/paper/anatomy-guided-pathology-segmentation
Anatomy-guided Pathology Segmentation
2407.05844
https://arxiv.org/abs/2407.05844v1
https://arxiv.org/pdf/2407.05844v1.pdf
https://github.com/alexanderjaus/apex
true
true
true
pytorch
https://paperswithcode.com/paper/owl-a-large-language-model-for-it-operations
OWL: A Large Language Model for IT Operations
2309.09298
https://arxiv.org/abs/2309.09298v2
https://arxiv.org/pdf/2309.09298v2.pdf
https://github.com/HC-Guo/Owl
true
true
true
pytorch
https://paperswithcode.com/paper/summarizing-strategy-card-game-ai-competition
Summarizing Strategy Card Game AI Competition
2305.11814
https://arxiv.org/abs/2305.11814v2
https://arxiv.org/pdf/2305.11814v2.pdf
https://github.com/acatai/Strategy-Card-Game-AI-Competition
false
false
true
none
https://paperswithcode.com/paper/generalizable-temperature-nowcasting-with
Generalizable Temperature Nowcasting with Physics-Constrained RNNs for Predictive Maintenance of Wind Turbine Components
2404.04126
https://arxiv.org/abs/2404.04126v1
https://arxiv.org/pdf/2404.04126v1.pdf
https://github.com/jxnb/pcrnn-wtg
true
true
true
pytorch
https://paperswithcode.com/paper/dynamic-prompt-optimizing-for-text-to-image
Dynamic Prompt Optimizing for Text-to-Image Generation
2404.04095
https://arxiv.org/abs/2404.04095v1
https://arxiv.org/pdf/2404.04095v1.pdf
https://github.com/mowenyii/pae
true
true
true
jax
https://paperswithcode.com/paper/label-consistent-backdoor-attacks
Label-Consistent Backdoor Attacks
1912.02771
https://arxiv.org/abs/1912.02771v2
https://arxiv.org/pdf/1912.02771v2.pdf
https://github.com/xandery-geek/BackdoorAttacks
false
false
true
pytorch
https://paperswithcode.com/paper/graphfsa-a-finite-state-automaton-framework
GraphFSA: A Finite State Automaton Framework for Algorithmic Learning on Graphs
2408.11042
https://arxiv.org/abs/2408.11042v1
https://arxiv.org/pdf/2408.11042v1.pdf
https://github.com/eth-disco/graph-fsa
true
true
false
pytorch
https://paperswithcode.com/paper/are-you-sure-analysing-uncertainty
Are you sure? Analysing Uncertainty Quantification Approaches for Real-world Speech Emotion Recognition
2407.01143
https://arxiv.org/abs/2407.01143v1
https://arxiv.org/pdf/2407.01143v1.pdf
https://github.com/audeering/ser-uncertainty-quantification
true
true
true
pytorch
https://paperswithcode.com/paper/surrogate-assisted-evolutionary-framework
Surrogate-assisted evolutionary framework with an ensemble of teaching-learning and differential evolution for expensive optimization
null
https://www.sciencedirect.com/science/article/abs/pii/S002002552401051X
https://www.sciencedirect.com/science/article/abs/pii/S002002552401051X
https://github.com/yiran-luu/SAF-TD
false
false
false
none
https://paperswithcode.com/paper/180809781
Self-Attentive Sequential Recommendation
1808.09781
http://arxiv.org/abs/1808.09781v1
http://arxiv.org/pdf/1808.09781v1.pdf
https://github.com/facebookresearch/generative-recommenders
false
false
true
pytorch
https://paperswithcode.com/paper/agbd-a-global-scale-biomass-dataset
AGBD: A Global-scale Biomass Dataset
2406.04928
https://arxiv.org/abs/2406.04928v3
https://arxiv.org/pdf/2406.04928v3.pdf
https://github.com/ghjuliasialelli/agbd
true
true
true
pytorch
https://paperswithcode.com/paper/camouflaged-object-tracking-a-benchmark
Camouflaged Object Tracking: A Benchmark
2408.13877
https://arxiv.org/abs/2408.13877v3
https://arxiv.org/pdf/2408.13877v3.pdf
https://github.com/openat25/hiptrack-mls
true
true
false
pytorch
https://paperswithcode.com/paper/global-structure-from-motion-revisited
Global Structure-from-Motion Revisited
2407.20219
https://arxiv.org/abs/2407.20219v2
https://arxiv.org/pdf/2407.20219v2.pdf
https://github.com/colmap/glomap
true
true
true
none
https://paperswithcode.com/paper/topics-in-the-study-of-the-pragmatic
Topics in the Study of the Pragmatic Functions of Phonetic Reduction in Dialog
2405.01376
https://arxiv.org/abs/2405.01376v1
https://arxiv.org/pdf/2405.01376v1.pdf
https://github.com/Caortega4/reduction-detection
true
true
false
none
https://paperswithcode.com/paper/universal-and-transferable-adversarial
Universal and Transferable Adversarial Attacks on Aligned Language Models
2307.15043
https://arxiv.org/abs/2307.15043v2
https://arxiv.org/pdf/2307.15043v2.pdf
https://github.com/rain152/PAT
false
false
true
pytorch
https://paperswithcode.com/paper/treed-distributed-lag-non-linear-models
Treed distributed lag nonlinear models
2010.06147
https://arxiv.org/abs/2010.06147v3
https://arxiv.org/pdf/2010.06147v3.pdf
https://github.com/danielmork/dlmtree
true
true
true
none
https://paperswithcode.com/paper/heterogeneous-distributed-lag-models-to
Heterogeneous Distributed Lag Models to Estimate Personalized Effects of Maternal Exposures to Air Pollution
2109.13763
https://arxiv.org/abs/2109.13763v3
https://arxiv.org/pdf/2109.13763v3.pdf
https://github.com/danielmork/dlmtree
true
false
true
none
https://paperswithcode.com/paper/incorporating-prior-information-into
Incorporating prior information into distributed lag nonlinear models with zero-inflated monotone regression trees
2301.12937
https://arxiv.org/abs/2301.12937v2
https://arxiv.org/pdf/2301.12937v2.pdf
https://github.com/danielmork/dlmtree
true
true
true
none
https://paperswithcode.com/paper/tidiness-score-guided-monte-carlo-tree-search
Tidiness Score-Guided Monte Carlo Tree Search for Visual Tabletop Rearrangement
2502.17235
https://arxiv.org/abs/2502.17235v1
https://arxiv.org/pdf/2502.17235v1.pdf
https://github.com/rllab-snu/ttu-dataset
true
true
false
none
https://paperswithcode.com/paper/multi-view-aggregation-network-for
Multi-view Aggregation Network for Dichotomous Image Segmentation
2404.07445
https://arxiv.org/abs/2404.07445v1
https://arxiv.org/pdf/2404.07445v1.pdf
https://github.com/qianyu-dlut/mvanet
true
true
true
pytorch
https://paperswithcode.com/paper/masked-diffusion-as-self-supervised
Masked Diffusion as Self-supervised Representation Learner
2308.05695
https://arxiv.org/abs/2308.05695v4
https://arxiv.org/pdf/2308.05695v4.pdf
https://github.com/zx-pan/mdm
true
true
true
pytorch
https://paperswithcode.com/paper/efficient-computation-of-cmb-anisotropies-in
Efficient Computation of CMB anisotropies in closed FRW models
astro-ph/9911177
https://arxiv.org/abs/astro-ph/9911177v2
https://arxiv.org/pdf/astro-ph/9911177v2.pdf
https://github.com/raphkou/camb
false
false
true
none
https://paperswithcode.com/paper/lidardm-generative-lidar-simulation-in-a
LidarDM: Generative LiDAR Simulation in a Generated World
2404.02903
https://arxiv.org/abs/2404.02903v1
https://arxiv.org/pdf/2404.02903v1.pdf
https://github.com/vzyrianov/LidarDM
true
false
true
jax
https://paperswithcode.com/paper/contextual-multilingual-spellchecker-for-user
Contextual Multilingual Spellchecker for User Queries
2305.01082
https://arxiv.org/abs/2305.01082v2
https://arxiv.org/pdf/2305.01082v2.pdf
https://github.com/wolfgarbe/symspell
true
true
true
none
https://paperswithcode.com/paper/spinach-sparql-based-information-navigation
SPINACH: SPARQL-Based Information Navigation for Challenging Real-World Questions
2407.11417
https://arxiv.org/abs/2407.11417v2
https://arxiv.org/pdf/2407.11417v2.pdf
https://github.com/stanford-oval/spinach
true
true
true
none
https://paperswithcode.com/paper/a-context-sensitive-real-time-spell-checker
A context sensitive real-time Spell Checker with language adaptability
1910.11242
https://arxiv.org/abs/1910.11242v1
https://arxiv.org/pdf/1910.11242v1.pdf
https://github.com/wolfgarbe/symspell
true
true
true
none
https://paperswithcode.com/paper/integrating-systemc-ams-power-modeling-with-a
Integrating SystemC-AMS Power Modeling with a RISC-V ISS for Virtual Prototyping of Battery-operated Embedded Devices
2404.01861
https://arxiv.org/abs/2404.01861v1
https://arxiv.org/pdf/2404.01861v1.pdf
https://github.com/eml-eda/messy
true
true
true
none
https://paperswithcode.com/paper/2409-13728
Rule Extrapolation in Language Models: A Study of Compositional Generalization on OOD Prompts
2409.13728
https://arxiv.org/abs/2409.13728v2
https://arxiv.org/pdf/2409.13728v2.pdf
https://github.com/meszarosanna/rule_extrapolation
true
true
false
pytorch
https://paperswithcode.com/paper/spectral-persistent-homology-persistence
Discrete transforms of quantized persistence diagrams
2312.17093
https://arxiv.org/abs/2312.17093v3
https://arxiv.org/pdf/2312.17093v3.pdf
https://github.com/majkevh/qupid
true
true
false
none
https://paperswithcode.com/paper/an-extended-sequence-tagging-vocabulary-for
An Extended Sequence Tagging Vocabulary for Grammatical Error Correction
2302.05913
https://arxiv.org/abs/2302.05913v1
https://arxiv.org/pdf/2302.05913v1.pdf
https://github.com/wolfgarbe/symspell
true
true
true
none
https://paperswithcode.com/paper/german-parliamentary-corpus-gerparcor
German Parliamentary Corpus (GerParCor)
2204.10422
https://arxiv.org/abs/2204.10422v1
https://arxiv.org/pdf/2204.10422v1.pdf
https://github.com/wolfgarbe/symspell
true
true
true
none
https://paperswithcode.com/paper/deep-unsupervised-clustering-with-gaussian
Deep Unsupervised Clustering with Gaussian Mixture Variational Autoencoders
1611.02648
http://arxiv.org/abs/1611.02648v2
http://arxiv.org/pdf/1611.02648v2.pdf
https://github.com/EdoardoBotta/Gaussian-Mixture-VAE
false
false
true
pytorch
https://paperswithcode.com/paper/categorical-reparameterization-with-gumbel
Categorical Reparameterization with Gumbel-Softmax
1611.01144
http://arxiv.org/abs/1611.01144v5
http://arxiv.org/pdf/1611.01144v5.pdf
https://github.com/EdoardoBotta/Gaussian-Mixture-VAE
false
false
true
pytorch
https://paperswithcode.com/paper/ecg-signal-processing-and-feature-extraction
ECG signal processing and feature extraction to validate feature significance for arrythmia detection
null
https://github.com/Firestorm12344/ISB-Grupo4/tree/main/Proyecto
https://github.com/Firestorm12344/ISB-Grupo4/blob/main/Proyecto/Paper%20final%20-%20grupo%204.pdf
https://github.com/Firestorm12344/ISB-Grupo4/blob/main/Proyecto/C%C3%B3digo/Signal_Processing%20-%20v2.ipynb
false
false
false
none
https://paperswithcode.com/paper/multi-head-self-attention-via-vision
Multi-Head Self-Attention via Vision Transformer for Zero-Shot Learning
2108.00045
https://arxiv.org/abs/2108.00045v1
https://arxiv.org/pdf/2108.00045v1.pdf
https://github.com/shiming-chen/zslvit
false
false
true
pytorch
https://paperswithcode.com/paper/not-all-patches-are-what-you-need-expediting
Not All Patches are What You Need: Expediting Vision Transformers via Token Reorganizations
2202.07800
https://arxiv.org/abs/2202.07800v2
https://arxiv.org/pdf/2202.07800v2.pdf
https://github.com/shiming-chen/zslvit
false
false
true
pytorch
https://paperswithcode.com/paper/soundstream-an-end-to-end-neural-audio-codec
SoundStream: An End-to-End Neural Audio Codec
2107.03312
https://arxiv.org/abs/2107.03312v1
https://arxiv.org/pdf/2107.03312v1.pdf
https://github.com/lucidrains/vector-quantize-pytorch
false
false
true
pytorch
https://paperswithcode.com/paper/haar-text-conditioned-generative-model-of-3d
HAAR: Text-Conditioned Generative Model of 3D Strand-based Human Hairstyles
2312.11666
https://arxiv.org/abs/2312.11666v1
https://arxiv.org/pdf/2312.11666v1.pdf
https://github.com/Vanessik/HAAR
true
false
true
pytorch
https://paperswithcode.com/paper/2407-21757
Learning Video Context as Interleaved Multimodal Sequences
2407.21757
https://arxiv.org/abs/2407.21757v2
https://arxiv.org/pdf/2407.21757v2.pdf
https://github.com/showlab/movieseq
true
true
true
pytorch
https://paperswithcode.com/paper/translation-equivariant-image-quantizer-for
Exploration into Translation-Equivariant Image Quantization
2112.00384
https://arxiv.org/abs/2112.00384v3
https://arxiv.org/pdf/2112.00384v3.pdf
https://github.com/lucidrains/vector-quantize-pytorch
false
false
true
pytorch
https://paperswithcode.com/paper/addressing-representation-collapse-in-vector
Addressing Representation Collapse in Vector Quantized Models with One Linear Layer
2411.02038
https://arxiv.org/abs/2411.02038v1
https://arxiv.org/pdf/2411.02038v1.pdf
https://github.com/lucidrains/vector-quantize-pytorch
false
false
true
pytorch
https://paperswithcode.com/paper/task-aligned-part-aware-panoptic-segmentation-1
Task-aligned Part-aware Panoptic Segmentation through Joint Object-Part Representations
2406.10114
https://arxiv.org/abs/2406.10114v1
https://arxiv.org/pdf/2406.10114v1.pdf
https://github.com/tue-mps/tapps
true
false
false
pytorch
https://paperswithcode.com/paper/activating-wider-areas-in-image-super
Activating Wider Areas in Image Super-Resolution
2403.08330
https://arxiv.org/abs/2403.08330v1
https://arxiv.org/pdf/2403.08330v1.pdf
https://github.com/arsenalcheng/mma
false
false
true
pytorch
https://paperswithcode.com/paper/overcoming-recency-bias-of-normalization-1
Overcoming Recency Bias of Normalization Statistics in Continual Learning: Balance and Adaptation
2310.08855
https://arxiv.org/abs/2310.08855v1
https://arxiv.org/pdf/2310.08855v1.pdf
https://github.com/lvyilin/adab2n
true
true
false
pytorch
https://paperswithcode.com/paper/compact-compressing-retrieved-documents
CompAct: Compressing Retrieved Documents Actively for Question Answering
2407.09014
https://arxiv.org/abs/2407.09014v3
https://arxiv.org/pdf/2407.09014v3.pdf
https://github.com/dmis-lab/compact
true
true
true
pytorch
https://paperswithcode.com/paper/learning-to-remove-wrinkled-transparent-film
Learning to Remove Wrinkled Transparent Film with Polarized Prior
2403.04368
https://arxiv.org/abs/2403.04368v1
https://arxiv.org/pdf/2403.04368v1.pdf
https://github.com/jqtangust/filmremoval
true
true
true
pytorch
https://paperswithcode.com/paper/semeval-2019-task-6-identifying-and-1
SemEval-2019 Task 6: Identifying and Categorizing Offensive Language in Social Media (OffensEval)
1903.08983
http://arxiv.org/abs/1903.08983v3
http://arxiv.org/pdf/1903.08983v3.pdf
https://github.com/VadymV/OffensEval
false
false
true
tf
https://paperswithcode.com/paper/learning-robust-classifiers-with-self-guided
Learning Robust Classifiers with Self-Guided Spurious Correlation Mitigation
2405.03649
https://arxiv.org/abs/2405.03649v1
https://arxiv.org/pdf/2405.03649v1.pdf
https://github.com/gtzheng/LBC
true
true
false
pytorch
https://paperswithcode.com/paper/contrastive-learning-for-predicting-cancer
Contrastive Learning for Predicting Cancer Prognosis Using Gene Expression Values
2306.06276
https://arxiv.org/abs/2306.06276v4
https://arxiv.org/pdf/2306.06276v4.pdf
https://github.com/caixdlab/cl4capro
true
true
false
pytorch
https://paperswithcode.com/paper/a-collocation-based-method-for-addressing
A Collocation-based Method for Addressing Challenges in Word-level Metric Differential Privacy
2407.00638
https://arxiv.org/abs/2407.00638v1
https://arxiv.org/pdf/2407.00638v1.pdf
https://github.com/sjmeis/CLMLDP
true
false
false
none
https://paperswithcode.com/paper/t-rep-representation-learning-for-time-series
T-Rep: Representation Learning for Time Series using Time-Embeddings
2310.04486
https://arxiv.org/abs/2310.04486v3
https://arxiv.org/pdf/2310.04486v3.pdf
https://github.com/let-it-care/t-rep
true
true
true
pytorch
https://paperswithcode.com/paper/hm-conformer-a-conformer-based-audio-deepfake
HM-Conformer: A Conformer-based audio deepfake detection system with hierarchical pooling and multi-level classification token aggregation methods
2309.08208
https://arxiv.org/abs/2309.08208v1
https://arxiv.org/pdf/2309.08208v1.pdf
https://github.com/talkingnow/HM-Conformer
true
false
true
pytorch
https://paperswithcode.com/paper/yolox-exceeding-yolo-series-in-2021
YOLOX: Exceeding YOLO Series in 2021
2107.08430
https://arxiv.org/abs/2107.08430v2
https://arxiv.org/pdf/2107.08430v2.pdf
https://github.com/liuyuan000/yolox_sar
false
false
true
pytorch
https://paperswithcode.com/paper/torchtree-flexible-phylogenetic-model
Torchtree: flexible phylogenetic model development and inference using PyTorch
2406.18044
https://arxiv.org/abs/2406.18044v1
https://arxiv.org/pdf/2406.18044v1.pdf
https://github.com/4ment/torchtree
true
true
true
pytorch
https://paperswithcode.com/paper/dots-learning-to-reason-dynamically-in-llms
DOTS: Learning to Reason Dynamically in LLMs via Optimal Reasoning Trajectories Search
2410.03864
https://arxiv.org/abs/2410.03864v1
https://arxiv.org/pdf/2410.03864v1.pdf
https://github.com/MurongYue/DOTS
true
false
true
none
https://paperswithcode.com/paper/bayesian-calibration-of-stochastic-agent
Bayesian calibration of stochastic agent based model via random forest
2406.19524
https://arxiv.org/abs/2406.19524v1
https://arxiv.org/pdf/2406.19524v1.pdf
https://github.com/sandialabs/Bayesian-calibration-of-stochastic-agent-based-model-via-random-forest
true
true
false
none
https://paperswithcode.com/paper/pint-maximum-likelihood-estimation-of-pulsar
PINT: Maximum-likelihood estimation of pulsar timing noise parameters
2405.01977
https://arxiv.org/abs/2405.01977v2
https://arxiv.org/pdf/2405.01977v2.pdf
https://github.com/nanograv/pint
true
true
true
none
https://paperswithcode.com/paper/a-massively-parallel-performance-portable
A Massively Parallel Performance Portable Free-space Spectral Poisson Solver
2405.02603
https://arxiv.org/abs/2405.02603v1
https://arxiv.org/pdf/2405.02603v1.pdf
https://github.com/ippl-framework/ippl
true
true
false
none
https://paperswithcode.com/paper/status-of-the-bto-k-anomaly-after-moriond
Status of the $B\to K^*μ^+μ^-$ anomaly after Moriond 2017
1703.09189
http://arxiv.org/abs/1703.09189v3
http://arxiv.org/pdf/1703.09189v3.pdf
https://github.com/DavidMStraub/paper-bkstarmumu-anss
false
false
true
none
https://paperswithcode.com/paper/dara-domain-and-relation-aware-adapters-make
DARA: Domain- and Relation-aware Adapters Make Parameter-efficient Tuning for Visual Grounding
2405.06217
https://arxiv.org/abs/2405.06217v2
https://arxiv.org/pdf/2405.06217v2.pdf
https://github.com/liuting20/dara
true
true
true
pytorch
https://paperswithcode.com/paper/x-field-a-physically-grounded-representation
X-Field: A Physically Grounded Representation for 3D X-ray Reconstruction
2503.08596
https://arxiv.org/abs/2503.08596v1
https://arxiv.org/pdf/2503.08596v1.pdf
https://github.com/brack-wang/x-field
true
true
true
none
https://paperswithcode.com/paper/attention-aware-semantic-communications-for
Attention-aware Semantic Communications for Collaborative Inference
2404.07217
https://arxiv.org/abs/2404.07217v2
https://arxiv.org/pdf/2404.07217v2.pdf
https://github.com/iil-postech/semantic-attention
true
false
false
pytorch
https://paperswithcode.com/paper/image-forgery-localization-with-state-space
Image Forgery Localization with State Space Models
2412.11214
https://arxiv.org/abs/2412.11214v1
https://arxiv.org/pdf/2412.11214v1.pdf
https://github.com/multimediafor/loma
true
true
true
pytorch
https://paperswithcode.com/paper/revisiting-multi-agent-world-modeling-from-a
Revisiting Multi-Agent World Modeling from a Diffusion-Inspired Perspective
2505.20922
https://arxiv.org/abs/2505.20922v1
https://arxiv.org/pdf/2505.20922v1.pdf
https://github.com/lucidrains/vector-quantize-pytorch
true
false
false
pytorch
https://paperswithcode.com/paper/planning-for-gold-sample-splitting-for-valid
Planning for Gold: Sample Splitting for Valid Powerful Design of Observational Studies
2406.00866
https://arxiv.org/abs/2406.00866v1
https://arxiv.org/pdf/2406.00866v1.pdf
https://github.com/WillBekerman/planning-for-gold
true
true
true
none
https://paperswithcode.com/paper/leveraging-hidden-positives-for-unsupervised
Leveraging Hidden Positives for Unsupervised Semantic Segmentation
2303.15014
https://arxiv.org/abs/2303.15014v1
https://arxiv.org/pdf/2303.15014v1.pdf
https://github.com/hynnsk/hp
true
true
true
pytorch
https://paperswithcode.com/paper/one-prompt-word-is-enough-to-boost
One Prompt Word is Enough to Boost Adversarial Robustness for Pre-trained Vision-Language Models
2403.01849
https://arxiv.org/abs/2403.01849v1
https://arxiv.org/pdf/2403.01849v1.pdf
https://github.com/treelli/apt
true
true
true
pytorch
https://paperswithcode.com/paper/higt-hierarchical-interaction-graph
HIGT: Hierarchical Interaction Graph-Transformer for Whole Slide Image Analysis
2309.07400
https://arxiv.org/abs/2309.07400v1
https://arxiv.org/pdf/2309.07400v1.pdf
https://github.com/hku-medai/higt
true
true
true
pytorch
https://paperswithcode.com/paper/equal-long-term-benefit-rate-adapting-static
Adapting Static Fairness to Sequential Decision-Making: Bias Mitigation Strategies towards Equal Long-term Benefit Rate
2309.03426
https://arxiv.org/abs/2309.03426v3
https://arxiv.org/pdf/2309.03426v3.pdf
https://github.com/umd-huang-lab/elbert
true
true
true
pytorch
https://paperswithcode.com/paper/mr-rawnet-speaker-verification-system-with
MR-RawNet: Speaker verification system with multiple temporal resolutions for variable duration utterances using raw waveforms
2406.07103
https://arxiv.org/abs/2406.07103v1
https://arxiv.org/pdf/2406.07103v1.pdf
https://github.com/kimho1wq/mr-rawnet
true
true
true
pytorch
https://paperswithcode.com/paper/3d-u-net-learning-dense-volumetric
3D U-Net: Learning Dense Volumetric Segmentation from Sparse Annotation
1606.06650
http://arxiv.org/abs/1606.06650v1
http://arxiv.org/pdf/1606.06650v1.pdf
https://github.com/fepegar/unet
false
false
true
pytorch
https://paperswithcode.com/paper/optimizing-large-language-models-for-openapi
Optimizing Large Language Models for OpenAPI Code Completion
2405.15729
https://arxiv.org/abs/2405.15729v2
https://arxiv.org/pdf/2405.15729v2.pdf
https://github.com/BohdanPetryshyn/openapi-completion-benchmark
true
true
true
none
https://paperswithcode.com/paper/event-based-background-oriented-schlieren
Event-based Background-Oriented Schlieren
2311.00434
https://arxiv.org/abs/2311.00434v1
https://arxiv.org/pdf/2311.00434v1.pdf
https://github.com/uzh-rpg/event-based_vision_resources
true
true
true
pytorch
https://paperswithcode.com/paper/bitdistiller-unleashing-the-potential-of-sub
BitDistiller: Unleashing the Potential of Sub-4-Bit LLMs via Self-Distillation
2402.10631
https://arxiv.org/abs/2402.10631v1
https://arxiv.org/pdf/2402.10631v1.pdf
https://github.com/microsoft/bitblas
false
false
true
pytorch
https://paperswithcode.com/paper/the-era-of-1-bit-llms-all-large-language
The Era of 1-bit LLMs: All Large Language Models are in 1.58 Bits
2402.17764
https://arxiv.org/abs/2402.17764v1
https://arxiv.org/pdf/2402.17764v1.pdf
https://github.com/microsoft/bitblas
false
false
true
pytorch
https://paperswithcode.com/paper/optimizing-retrieval-strategies-for-financial
Optimizing Retrieval Strategies for Financial Question Answering Documents in Retrieval-Augmented Generation Systems
2503.15191
https://arxiv.org/abs/2503.15191v1
https://arxiv.org/pdf/2503.15191v1.pdf
https://github.com/seohyunwoo-0407/gar
true
true
false
none
https://paperswithcode.com/paper/a-point-cloud-deep-learning-framework-for
A Point-Cloud Deep Learning Framework for Prediction of Fluid Flow Fields on Irregular Geometries
2010.09469
https://arxiv.org/abs/2010.09469v2
https://arxiv.org/pdf/2010.09469v2.pdf
https://github.com/ali-stanford/pointnetcfd
true
false
false
tf
https://paperswithcode.com/paper/interpretable-multimodal-learning-for-1
Interpretable Multimodal Learning for Cardiovascular Hemodynamics Assessment
2404.04718
https://arxiv.org/abs/2404.04718v1
https://arxiv.org/pdf/2404.04718v1.pdf
https://github.com/prasunc/hemodynamics
true
true
true
pytorch
https://paperswithcode.com/paper/physical-3d-adversarial-attacks-against
Physical 3D Adversarial Attacks against Monocular Depth Estimation in Autonomous Driving
2403.17301
https://arxiv.org/abs/2403.17301v2
https://arxiv.org/pdf/2403.17301v2.pdf
https://github.com/gandolfczjh/3d2fool
true
true
true
pytorch
https://paperswithcode.com/paper/physical-attack-on-monocular-depth-estimation
Physical Attack on Monocular Depth Estimation with Optimal Adversarial Patches
2207.04718
https://arxiv.org/abs/2207.04718v1
https://arxiv.org/pdf/2207.04718v1.pdf
https://github.com/gandolfczjh/3d2fool
false
false
true
pytorch
https://paperswithcode.com/paper/an-emulator-for-fine-tuning-large-language
An Emulator for Fine-Tuning Large Language Models using Small Language Models
2310.12962
https://arxiv.org/abs/2310.12962v1
https://arxiv.org/pdf/2310.12962v1.pdf
https://github.com/ZHZisZZ/emulated-disalignment
false
false
true
pytorch
https://paperswithcode.com/paper/tuning-language-models-by-proxy
Tuning Language Models by Proxy
2401.08565
https://arxiv.org/abs/2401.08565v4
https://arxiv.org/pdf/2401.08565v4.pdf
https://github.com/ZHZisZZ/emulated-disalignment
false
false
true
pytorch
https://paperswithcode.com/paper/emulated-disalignment-safety-alignment-for
Emulated Disalignment: Safety Alignment for Large Language Models May Backfire!
2402.12343
https://arxiv.org/abs/2402.12343v4
https://arxiv.org/pdf/2402.12343v4.pdf
https://github.com/ZHZisZZ/emulated-disalignment
true
true
true
pytorch