paper_url
stringlengths 36
81
| paper_title
stringlengths 1
242
⌀ | paper_arxiv_id
stringlengths 9
16
⌀ | paper_url_abs
stringlengths 18
314
| paper_url_pdf
stringlengths 21
935
⌀ | repo_url
stringlengths 26
200
| is_official
bool 2
classes | mentioned_in_paper
bool 2
classes | mentioned_in_github
bool 2
classes | framework
stringclasses 9
values |
---|---|---|---|---|---|---|---|---|---|
https://paperswithcode.com/paper/an-effective-theory-of-collective-deep
|
An effective theory of collective deep learning
|
2310.12802
|
https://arxiv.org/abs/2310.12802v2
|
https://arxiv.org/pdf/2310.12802v2.pdf
|
https://github.com/mystic-blue/collective-learning
| true | true | true |
none
|
https://paperswithcode.com/paper/bridging-topic-domain-and-language-shifts-an
|
How to Handle Different Types of Out-of-Distribution Scenarios in Computational Argumentation? A Comprehensive and Fine-Grained Field Study
|
2309.08316
|
https://arxiv.org/abs/2309.08316v3
|
https://arxiv.org/pdf/2309.08316v3.pdf
|
https://github.com/ukplab/acl2024-ood-compuational-argumentation
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/flux-that-plays-music
|
FLUX that Plays Music
|
2409.00587
|
https://arxiv.org/abs/2409.00587v2
|
https://arxiv.org/pdf/2409.00587v2.pdf
|
https://github.com/feizc/fluxmusic
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/ladder-a-model-agnostic-framework-boosting
|
Ladder: A Model-Agnostic Framework Boosting LLM-based Machine Translation to the Next Level
|
2406.15741
|
https://arxiv.org/abs/2406.15741v3
|
https://arxiv.org/pdf/2406.15741v3.pdf
|
https://github.com/fzp0424/ladder
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/fast-timing-conditioned-latent-audio
|
Fast Timing-Conditioned Latent Audio Diffusion
|
2402.04825
|
https://arxiv.org/abs/2402.04825v3
|
https://arxiv.org/pdf/2402.04825v3.pdf
|
https://github.com/stability-ai/stable-audio-metrics
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/mathematical-modeling-of-epidemic-diseases-a
|
Mathematical Modeling of Epidemic Diseases; A Case Study of the COVID-19 Coronavirus
|
2003.11371
|
https://arxiv.org/abs/2003.11371v3
|
https://arxiv.org/pdf/2003.11371v3.pdf
|
https://github.com/rsameni/EpidemicModeling
| true | true | true |
none
|
https://paperswithcode.com/paper/energy-transformer
|
Energy Transformer
|
2302.07253
|
https://arxiv.org/abs/2302.07253v2
|
https://arxiv.org/pdf/2302.07253v2.pdf
|
https://github.com/bhoov/energy-transformer-jax
| true | true | true |
jax
|
https://paperswithcode.com/paper/symilo-a-symmetry-aware-learning-framework
|
SymILO: A Symmetry-Aware Learning Framework for Integer Linear Optimization
|
2409.19678
|
https://arxiv.org/abs/2409.19678v3
|
https://arxiv.org/pdf/2409.19678v3.pdf
|
https://github.com/netsysopt/symilo
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/time-waits-for-no-one-analysis-and-challenges
|
Time Waits for No One! Analysis and Challenges of Temporal Misalignment
|
2111.07408
|
https://arxiv.org/abs/2111.07408v2
|
https://arxiv.org/pdf/2111.07408v2.pdf
|
https://github.com/KaiNylund/lm-weights-encode-time
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/time-is-encoded-in-the-weights-of-finetuned
|
Time is Encoded in the Weights of Finetuned Language Models
|
2312.13401
|
https://arxiv.org/abs/2312.13401v2
|
https://arxiv.org/pdf/2312.13401v2.pdf
|
https://github.com/KaiNylund/lm-weights-encode-time
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/dimensionality-driven-learning-with-noisy
|
Dimensionality-Driven Learning with Noisy Labels
|
1806.02612
|
http://arxiv.org/abs/1806.02612v2
|
http://arxiv.org/pdf/1806.02612v2.pdf
|
https://github.com/MindSpore-scientific-2/code-3/tree/main/Three-Dimensional-Lip-Motion-Network-for-Text-Independent-Speaker-Recognition-master
| false | false | false |
mindspore
|
https://paperswithcode.com/paper/se-3-diffusion-model-with-application-to
|
SE(3) diffusion model with application to protein backbone generation
|
2302.02277
|
https://arxiv.org/abs/2302.02277v3
|
https://arxiv.org/pdf/2302.02277v3.pdf
|
https://github.com/instadeepai/framedipt
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/open3dsg-open-vocabulary-3d-scene-graphs-from
|
Open3DSG: Open-Vocabulary 3D Scene Graphs from Point Clouds with Queryable Objects and Open-Set Relationships
|
2402.12259
|
https://arxiv.org/abs/2402.12259v2
|
https://arxiv.org/pdf/2402.12259v2.pdf
|
https://github.com/boschresearch/Open3DSG
| true | false | true |
pytorch
|
https://paperswithcode.com/paper/less-is-more-toward-zero-shot-local-scene
|
Less is More: Toward Zero-Shot Local Scene Graph Generation via Foundation Models
|
2310.01356
|
https://arxiv.org/abs/2310.01356v1
|
https://arxiv.org/pdf/2310.01356v1.pdf
|
https://github.com/bowen-upenn/Multi-Agent-VQA
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/an-accessible-toolkit-for-360-vr-studies
|
An Accessible Toolkit for 360 VR Studies
|
2304.03652
|
https://arxiv.org/abs/2304.03652v3
|
https://arxiv.org/pdf/2304.03652v3.pdf
|
https://github.com/corriedotdev/vr-360-player
| true | true | true |
none
|
https://paperswithcode.com/paper/robust-training-of-federated-models-with
|
Robust Training of Federated Models with Extremely Label Deficiency
|
2402.14430
|
https://arxiv.org/abs/2402.14430v1
|
https://arxiv.org/pdf/2402.14430v1.pdf
|
https://github.com/tmlr-group/twin-sight
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/zero-shot-reinforcement-learning-via-function
|
Zero-Shot Reinforcement Learning via Function Encoders
|
2401.17173
|
https://arxiv.org/abs/2401.17173v2
|
https://arxiv.org/pdf/2401.17173v2.pdf
|
https://github.com/anonymousresearcher5642/functionencoderrl
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/r-tuning-teaching-large-language-models-to
|
R-Tuning: Instructing Large Language Models to Say `I Don't Know'
|
2311.09677
|
https://arxiv.org/abs/2311.09677v3
|
https://arxiv.org/pdf/2311.09677v3.pdf
|
https://github.com/shizhediao/r-tuning
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/compositional-few-shot-class-incremental
|
Compositional Few-Shot Class-Incremental Learning
|
2405.17022
|
https://arxiv.org/abs/2405.17022v1
|
https://arxiv.org/pdf/2405.17022v1.pdf
|
https://github.com/zoilsen/comp-fscil
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/deepgleason-a-system-for-automated-gleason
|
DeepGleason: a System for Automated Gleason Grading of Prostate Cancer using Deep Neural Networks
|
2403.16678
|
https://arxiv.org/abs/2403.16678v1
|
https://arxiv.org/pdf/2403.16678v1.pdf
|
https://github.com/frankkramer-lab/deepgleason
| true | true | false |
tf
|
https://paperswithcode.com/paper/big-bird-transformers-for-longer-sequences
|
Big Bird: Transformers for Longer Sequences
|
2007.14062
|
https://arxiv.org/abs/2007.14062v2
|
https://arxiv.org/pdf/2007.14062v2.pdf
|
https://github.com/mim-solutions/roberta_for_longer_texts
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/crossing-linguistic-horizons-finetuning-and
|
Crossing Linguistic Horizons: Finetuning and Comprehensive Evaluation of Vietnamese Large Language Models
|
2403.02715
|
https://arxiv.org/abs/2403.02715v2
|
https://arxiv.org/pdf/2403.02715v2.pdf
|
https://github.com/stair-lab/villm-eval
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/usd-unsupervised-soft-contrastive-learning
|
USD: Unsupervised Soft Contrastive Learning for Fault Detection in Multivariate Time Series
|
2405.16258
|
https://arxiv.org/abs/2405.16258v1
|
https://arxiv.org/pdf/2405.16258v1.pdf
|
https://github.com/zangzelin/code_usd
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/collaborative-distillation-meta-learning-for
|
DevFormer: A Symmetric Transformer for Context-Aware Device Placement
|
2205.13225
|
https://arxiv.org/abs/2205.13225v3
|
https://arxiv.org/pdf/2205.13225v3.pdf
|
https://github.com/kaist-silab/symmetric_replay
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/off-policy-evaluation-of-slate-bandit
|
Off-Policy Evaluation of Slate Bandit Policies via Optimizing Abstraction
|
2402.02171
|
https://arxiv.org/abs/2402.02171v2
|
https://arxiv.org/pdf/2402.02171v2.pdf
|
https://github.com/aiueola/webconf2024-slate-ope-via-abstraction
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/geoguide-geometric-guidance-of-diffusion
|
GeoGuide: Geometric guidance of diffusion models
|
2407.12889
|
https://arxiv.org/abs/2407.12889v1
|
https://arxiv.org/pdf/2407.12889v1.pdf
|
https://github.com/mateuszpoleski/geoguide
| true | false | true |
pytorch
|
https://paperswithcode.com/paper/revisiting-confidence-estimation-towards
|
Revisiting Confidence Estimation: Towards Reliable Failure Prediction
|
2403.02886
|
https://arxiv.org/abs/2403.02886v1
|
https://arxiv.org/pdf/2403.02886v1.pdf
|
https://github.com/impression2805/fmfp
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/micm-rethinking-unsupervised-pretraining-for
|
MICM: Rethinking Unsupervised Pretraining for Enhanced Few-shot Learning
|
2408.13385
|
https://arxiv.org/abs/2408.13385v1
|
https://arxiv.org/pdf/2408.13385v1.pdf
|
https://github.com/icgy96/micm
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/qrisp-a-framework-for-compilable-high-level
|
Qrisp: A Framework for Compilable High-Level Programming of Gate-Based Quantum Computers
|
2406.14792
|
https://arxiv.org/abs/2406.14792v1
|
https://arxiv.org/pdf/2406.14792v1.pdf
|
https://github.com/eclipse-qrisp/qrisp
| true | true | true |
jax
|
https://paperswithcode.com/paper/gsina-improving-subgraph-extraction-for-graph
|
GSINA: Improving Subgraph Extraction for Graph Invariant Learning via Graph Sinkhorn Attention
|
2402.07191
|
https://arxiv.org/abs/2402.07191v1
|
https://arxiv.org/pdf/2402.07191v1.pdf
|
https://github.com/dingfangyu/gsina
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/asking-multimodal-clarifying-questions-in
|
Asking Multimodal Clarifying Questions in Mixed-Initiative Conversational Search
|
2402.07742
|
https://arxiv.org/abs/2402.07742v1
|
https://arxiv.org/pdf/2402.07742v1.pdf
|
https://github.com/yfyuan01/mqc
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/laplace-hdc-understanding-the-geometry-of
|
Laplace-HDC: Understanding the geometry of binary hyperdimensional computing
|
2404.10759
|
https://arxiv.org/abs/2404.10759v2
|
https://arxiv.org/pdf/2404.10759v2.pdf
|
https://github.com/hdstat/laplace-hdc
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/erase-then-rectify-a-training-free-parameter
|
Erase then Rectify: A Training-Free Parameter Editing Approach for Cost-Effective Graph Unlearning
|
2409.16684
|
https://arxiv.org/abs/2409.16684v2
|
https://arxiv.org/pdf/2409.16684v2.pdf
|
https://github.com/allminerlab/etr
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/treelearn-a-comprehensive-deep-learning
|
TreeLearn: A deep learning method for segmenting individual trees from ground-based LiDAR forest point clouds
|
2309.08471
|
https://arxiv.org/abs/2309.08471v3
|
https://arxiv.org/pdf/2309.08471v3.pdf
|
https://github.com/ecker-lab/treelearn
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/galapagos-automated-n-version-programming
|
Galapagos: Automated N-Version Programming with LLMs
|
2408.09536
|
https://arxiv.org/abs/2408.09536v2
|
https://arxiv.org/pdf/2408.09536v2.pdf
|
https://github.com/ASSERT-KTH/Galapagos
| true | true | true |
none
|
https://paperswithcode.com/paper/on-the-multi-turn-instruction-following-for
|
On the Multi-turn Instruction Following for Conversational Web Agents
|
2402.15057
|
https://arxiv.org/abs/2402.15057v1
|
https://arxiv.org/pdf/2402.15057v1.pdf
|
https://github.com/magicgh/self-map
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/from-uncertainty-to-precision-enhancing
|
From Uncertainty to Precision: Enhancing Binary Classifier Performance through Calibration
|
2402.07790
|
https://arxiv.org/abs/2402.07790v1
|
https://arxiv.org/pdf/2402.07790v1.pdf
|
https://github.com/fer-agathe/calibration_binary_classifier
| true | true | true |
none
|
https://paperswithcode.com/paper/an-image-is-worth-16x16-words-transformers-1
|
An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale
|
2010.11929
|
https://arxiv.org/abs/2010.11929v2
|
https://arxiv.org/pdf/2010.11929v2.pdf
|
https://github.com/tintn/vision-transformer-from-scratch
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/hfmf-hierarchical-fusion-meets-multi-stream
|
HFMF: Hierarchical Fusion Meets Multi-Stream Models for Deepfake Detection
|
2501.05631
|
https://arxiv.org/abs/2501.05631v1
|
https://arxiv.org/pdf/2501.05631v1.pdf
|
https://github.com/taco-group/hfmf
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/parallel-friendly-spatio-temporal-graph
|
Parallel-friendly Spatio-Temporal Graph Learning for Photovoltaic Degradation Analysis at Scale
|
2402.08470
|
https://arxiv.org/abs/2402.08470v1
|
https://arxiv.org/pdf/2402.08470v1.pdf
|
https://github.com/yangxin666/st-gtrend
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/fleurs-few-shot-learning-evaluation-of
|
FLEURS: Few-shot Learning Evaluation of Universal Representations of Speech
|
2205.12446
|
https://arxiv.org/abs/2205.12446v1
|
https://arxiv.org/pdf/2205.12446v1.pdf
|
https://github.com/samsunglabs/myqasr
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/poisonedrag-knowledge-poisoning-attacks-to
|
PoisonedRAG: Knowledge Corruption Attacks to Retrieval-Augmented Generation of Large Language Models
|
2402.07867
|
https://arxiv.org/abs/2402.07867v3
|
https://arxiv.org/pdf/2402.07867v3.pdf
|
https://github.com/sleeepeer/poisonedrag
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/accelerating-matrix-factorization-by-dynamic
|
Accelerating Matrix Factorization by Dynamic Pruning for Fast Recommendation
|
2404.04265
|
https://arxiv.org/abs/2404.04265v1
|
https://arxiv.org/pdf/2404.04265v1.pdf
|
https://github.com/git-smsun/dp-mf
| true | true | false |
none
|
https://paperswithcode.com/paper/convolutional-deep-kernel-machines
|
Convolutional Deep Kernel Machines
|
2309.09814
|
https://arxiv.org/abs/2309.09814v3
|
https://arxiv.org/pdf/2309.09814v3.pdf
|
https://github.com/edwardmilsom/convdkmpaper
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/neural-sph-improved-neural-modeling-of
|
Neural SPH: Improved Neural Modeling of Lagrangian Fluid Dynamics
|
2402.06275
|
https://arxiv.org/abs/2402.06275v2
|
https://arxiv.org/pdf/2402.06275v2.pdf
|
https://github.com/tumaer/lagrangebench
| false | false | true |
jax
|
https://paperswithcode.com/paper/learning-high-dimensional-mckean-vlasov
|
Learning High-Dimensional McKean-Vlasov Forward-Backward Stochastic Differential Equations with General Distribution Dependence
|
2204.11924
|
https://arxiv.org/abs/2204.11924v3
|
https://arxiv.org/pdf/2204.11924v3.pdf
|
https://github.com/frankhan91/deepmvbsde
| true | true | true |
tf
|
https://paperswithcode.com/paper/sparsegnv-generating-novel-views-of-indoor
|
SparseGNV: Generating Novel Views of Indoor Scenes with Sparse Input Views
|
2305.07024
|
https://arxiv.org/abs/2305.07024v1
|
https://arxiv.org/pdf/2305.07024v1.pdf
|
https://github.com/xt4d/sparsegnv
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/diffusional-exchange-versus-microscopic
|
Diffusion MRI with double diffusion encoding and variable mixing times disentangles water exchange from intrinsic kurtosis
|
2306.03661
|
https://arxiv.org/abs/2306.03661v4
|
https://arxiv.org/pdf/2306.03661v4.pdf
|
https://github.com/arthur-chakwizira/cti-mge
| true | true | true |
none
|
https://paperswithcode.com/paper/interfacial-effects-determine-nonequilibrium
|
Interfacial Effects Determine Nonequilibrium Phase Behaviors in Chemically Driven Fluids
|
2505.16824
|
https://arxiv.org/abs/2505.16824v1
|
https://arxiv.org/pdf/2505.16824v1.pdf
|
https://github.com/wmjac/chem-driven-lattice-fluid
| true | true | false |
none
|
https://paperswithcode.com/paper/minimizing-chebyshev-prototype-risk-magically
|
Minimizing Chebyshev Prototype Risk Magically Mitigates the Perils of Overfitting
|
2404.07083
|
https://arxiv.org/abs/2404.07083v2
|
https://arxiv.org/pdf/2404.07083v2.pdf
|
https://github.com/deano1718/regularization_excpr
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/tree-of-problems-improving-structured-problem
|
Tree of Problems: Improving structured problem solving with compositionality
|
2410.06634
|
https://arxiv.org/abs/2410.06634v1
|
https://arxiv.org/pdf/2410.06634v1.pdf
|
https://github.com/masoudhashemi/AWMS
| false | false | false |
none
|
https://paperswithcode.com/paper/libfork-portable-continuation-stealing-with
|
Libfork: portable continuation-stealing with stackless coroutines
|
2402.18480
|
https://arxiv.org/abs/2402.18480v1
|
https://arxiv.org/pdf/2402.18480v1.pdf
|
https://github.com/conorwilliams/libfork
| true | true | true |
none
|
https://paperswithcode.com/paper/representation-learning-in-multiplex-graphs
|
Representation learning in multiplex graphs: Where and how to fuse information?
|
2402.17906
|
https://arxiv.org/abs/2402.17906v1
|
https://arxiv.org/pdf/2402.17906v1.pdf
|
https://github.com/graphml-lab-pwr/multiplex-fusion
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/hybrid-level-instruction-injection-for-video
|
Hybrid-Level Instruction Injection for Video Token Compression in Multi-modal Large Language Models
|
2503.16036
|
https://arxiv.org/abs/2503.16036v1
|
https://arxiv.org/pdf/2503.16036v1.pdf
|
https://github.com/lntzm/hicom
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/comorbid-anxiety-symptoms-predict-lower-odds
|
Comorbid anxiety predicts lower odds of depression improvement during smartphone-delivered psychotherapy
|
2409.11183
|
https://arxiv.org/abs/2409.11183v2
|
https://arxiv.org/pdf/2409.11183v2.pdf
|
https://github.com/morganbdt/brighten-mdd-outcome-predict
| true | true | false |
none
|
https://paperswithcode.com/paper/transformer-based-rgb-t-tracking-with-channel
|
Transformer-based RGB-T Tracking with Channel and Spatial Feature Fusion
|
2405.03177
|
https://arxiv.org/abs/2405.03177v2
|
https://arxiv.org/pdf/2405.03177v2.pdf
|
https://github.com/liyunfenglyf/cstnet
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/shapematcher-self-supervised-joint-shape
|
ShapeMatcher: Self-Supervised Joint Shape Canonicalization Segmentation Retrieval and Deformation
| null |
http://openaccess.thecvf.com//content/CVPR2024/html/Di_ShapeMatcher_Self-Supervised_Joint_Shape_Canonicalization_Segmentation_Retrieval_and_Deformation_CVPR_2024_paper.html
|
http://openaccess.thecvf.com//content/CVPR2024/papers/Di_ShapeMatcher_Self-Supervised_Joint_Shape_Canonicalization_Segmentation_Retrieval_and_Deformation_CVPR_2024_paper.pdf
|
https://github.com/det1999/shapemaker
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/promise-prompt-driven-3d-medical-image
|
Promise:Prompt-driven 3D Medical Image Segmentation Using Pretrained Image Foundation Models
|
2310.19721
|
https://arxiv.org/abs/2310.19721v3
|
https://arxiv.org/pdf/2310.19721v3.pdf
|
https://github.com/medicl-vu/promise
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/task-oriented-multi-user-semantic
|
Task-Oriented Multi-User Semantic Communications for VQA Task
|
2108.07357
|
https://arxiv.org/abs/2108.07357v3
|
https://arxiv.org/pdf/2108.07357v3.pdf
|
https://github.com/dimlight13/MU_SC_for_VQA
| false | false | false |
tf
|
https://paperswithcode.com/paper/towards-fair-and-efficient-learning-based
|
Towards Fair and Efficient Learning-based Congestion Control
|
2403.01798
|
https://arxiv.org/abs/2403.01798v1
|
https://arxiv.org/pdf/2403.01798v1.pdf
|
https://github.com/hkust-sing/astraea
| true | true | false |
none
|
https://paperswithcode.com/paper/badnets-identifying-vulnerabilities-in-the
|
BadNets: Identifying Vulnerabilities in the Machine Learning Model Supply Chain
|
1708.06733
|
http://arxiv.org/abs/1708.06733v2
|
http://arxiv.org/pdf/1708.06733v2.pdf
|
https://github.com/xandery-geek/BackdoorAttacks
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/large-scale-biometry-with-interpretable
|
Large-scale biometry with interpretable neural network regression on UK Biobank body MRI
|
2002.06862
|
https://arxiv.org/abs/2002.06862v3
|
https://arxiv.org/pdf/2002.06862v3.pdf
|
https://github.com/tarolangner/mri-biometry
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/areal-a-large-scale-asynchronous
|
AReaL: A Large-Scale Asynchronous Reinforcement Learning System for Language Reasoning
|
2505.24298
|
https://arxiv.org/abs/2505.24298v2
|
https://arxiv.org/pdf/2505.24298v2.pdf
|
https://github.com/inclusionai/areal
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/large-scale-inference-of-liver-fat-with
|
Large-scale inference of liver fat with neural networks on UK Biobank body MRI
|
2006.16777
|
https://arxiv.org/abs/2006.16777v1
|
https://arxiv.org/pdf/2006.16777v1.pdf
|
https://github.com/tarolangner/mri-biometry
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/fast-graph-cut-based-optimization-for
|
Fast Graph-Cut Based Optimization for Practical Dense Deformable Registration of Volume Images
|
1810.08427
|
http://arxiv.org/abs/1810.08427v1
|
http://arxiv.org/pdf/1810.08427v1.pdf
|
https://github.com/tarolangner/mri-biometry
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/verified-low-level-programming-embedded-in-f
|
Verified Low-Level Programming Embedded in F*
|
1703.00053
|
http://arxiv.org/abs/1703.00053v5
|
http://arxiv.org/pdf/1703.00053v5.pdf
|
https://github.com/FStarLang/kremlin
| true | true | true |
none
|
https://paperswithcode.com/paper/grad-cam-visual-explanations-from-deep
|
Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization
|
1610.02391
|
https://arxiv.org/abs/1610.02391v4
|
https://arxiv.org/pdf/1610.02391v4.pdf
|
https://github.com/tarolangner/mri-biometry
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/a-new-backdoor-attack-in-cnns-by-training-set
|
A new Backdoor Attack in CNNs by training set corruption without label poisoning
|
1902.11237
|
http://arxiv.org/abs/1902.11237v1
|
http://arxiv.org/pdf/1902.11237v1.pdf
|
https://github.com/xandery-geek/BackdoorAttacks
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/performance-of-confidential-computing-gpus
|
Performance of Confidential Computing GPUs
|
2505.16501
|
https://arxiv.org/abs/2505.16501v1
|
https://arxiv.org/pdf/2505.16501v1.pdf
|
https://github.com/antonio-mi/sincere
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/fiba-frequency-injection-based-backdoor
|
FIBA: Frequency-Injection based Backdoor Attack in Medical Image Analysis
|
2112.01148
|
https://arxiv.org/abs/2112.01148v2
|
https://arxiv.org/pdf/2112.01148v2.pdf
|
https://github.com/xandery-geek/BackdoorAttacks
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/absence-of-breakdown-of-ferrodark-solitons
|
Absence of the breakdown of ferrodark solitons exhibiting a snake instability
|
2402.05351
|
https://arxiv.org/abs/2402.05351v2
|
https://arxiv.org/pdf/2402.05351v2.pdf
|
https://github.com/Xiaoquanyu/resaerch-group-on-quantum-liquid
| false | false | true |
none
|
https://paperswithcode.com/paper/pptc-r-benchmark-towards-evaluating-the
|
PPTC-R benchmark: Towards Evaluating the Robustness of Large Language Models for PowerPoint Task Completion
|
2403.03788
|
https://arxiv.org/abs/2403.03788v1
|
https://arxiv.org/pdf/2403.03788v1.pdf
|
https://github.com/zekaigalaxy/pptcr
| true | true | false |
none
|
https://paperswithcode.com/paper/xxmd-benchmarking-neural-force-fields-using
|
Beyond MD17: the reactive xxMD dataset
|
2308.11155
|
https://arxiv.org/abs/2308.11155v3
|
https://arxiv.org/pdf/2308.11155v3.pdf
|
https://github.com/zpengmei/xxmd
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/accelerating-the-super-resolution
|
Accelerating the Super-Resolution Convolutional Neural Network
|
1608.00367
|
http://arxiv.org/abs/1608.00367v1
|
http://arxiv.org/pdf/1608.00367v1.pdf
|
https://github.com/NicoCeresa/FSRCNN-2016
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/the-hidden-attention-of-mamba-models
|
The Hidden Attention of Mamba Models
|
2403.01590
|
https://arxiv.org/abs/2403.01590v2
|
https://arxiv.org/pdf/2403.01590v2.pdf
|
https://github.com/ameenali/hiddenmambaattn
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/llmcrit-teaching-large-language-models-to-use
|
LLMCRIT: Teaching Large Language Models to Use Criteria
|
2403.01069
|
https://arxiv.org/abs/2403.01069v2
|
https://arxiv.org/pdf/2403.01069v2.pdf
|
https://github.com/yyy-apple/llmcrit
| true | true | true |
none
|
https://paperswithcode.com/paper/mobileclip-fast-image-text-models-through
|
MobileCLIP: Fast Image-Text Models through Multi-Modal Reinforced Training
|
2311.17049
|
https://arxiv.org/abs/2311.17049v2
|
https://arxiv.org/pdf/2311.17049v2.pdf
|
https://github.com/apple/ml-mobileclip
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/pointnet-deep-learning-on-point-sets-for-3d
|
PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation
|
1612.00593
|
http://arxiv.org/abs/1612.00593v2
|
http://arxiv.org/pdf/1612.00593v2.pdf
|
https://github.com/ali-stanford/pointnetcfd
| false | false | true |
tf
|
https://paperswithcode.com/paper/drattack-prompt-decomposition-and
|
DrAttack: Prompt Decomposition and Reconstruction Makes Powerful LLM Jailbreakers
|
2402.16914
|
https://arxiv.org/abs/2402.16914v3
|
https://arxiv.org/pdf/2402.16914v3.pdf
|
https://github.com/xirui-li/drattack
| true | true | true |
none
|
https://paperswithcode.com/paper/chemner-fine-grained-chemistry-named-entity
|
ChemNER: Fine-Grained Chemistry Named Entity Recognition with Ontology-Guided Distant Supervision
| null |
https://aclanthology.org/2021.emnlp-main.424
|
https://aclanthology.org/2021.emnlp-main.424.pdf
|
https://github.com/xuanwang91/chemner
| true | true | false |
none
|
https://paperswithcode.com/paper/neurogauss4d-pci-4d-neural-fields-and
|
NeuroGauss4D-PCI: 4D Neural Fields and Gaussian Deformation Fields for Point Cloud Interpolation
|
2405.14241
|
https://arxiv.org/abs/2405.14241v1
|
https://arxiv.org/pdf/2405.14241v1.pdf
|
https://github.com/jiangchaokang/neurogauss4d-pci
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/effcient-projection-onto-the-nonconvex-ell-p
|
Towards An Efficient Approach for the Nonconvex $\ell_p$ Ball Projection: Algorithm and Analysis
|
2101.01350
|
https://arxiv.org/abs/2101.01350v6
|
https://arxiv.org/pdf/2101.01350v6.pdf
|
https://github.com/won-j/lpballprojection
| false | false | true |
none
|
https://paperswithcode.com/paper/shapemaker-self-supervised-joint-shape
|
ShapeMatcher: Self-Supervised Joint Shape Canonicalization, Segmentation, Retrieval and Deformation
|
2311.11106
|
https://arxiv.org/abs/2311.11106v2
|
https://arxiv.org/pdf/2311.11106v2.pdf
|
https://github.com/det1999/shapemaker
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/cdlt-a-dataset-with-concept-drift-and-long
|
Concept Drift and Long-Tailed Distribution in Fine-Grained Visual Categorization: Benchmark and Method
|
2306.02346
|
https://arxiv.org/abs/2306.02346v2
|
https://arxiv.org/pdf/2306.02346v2.pdf
|
https://github.com/sye-hub/cdlt
| true | true | true |
none
|
https://paperswithcode.com/paper/preconditioning-techniques-for-generalized
|
Preconditioning techniques for generalized Sylvester matrix equations
|
2307.07884
|
https://arxiv.org/abs/2307.07884v2
|
https://arxiv.org/pdf/2307.07884v2.pdf
|
https://github.com/yannisvoet/sylvester
| true | true | false |
none
|
https://paperswithcode.com/paper/investigating-annotator-bias-in-large
|
Investigating Annotator Bias in Large Language Models for Hate Speech Detection
|
2406.11109
|
https://arxiv.org/abs/2406.11109v5
|
https://arxiv.org/pdf/2406.11109v5.pdf
|
https://github.com/MindCode-4/code-12/tree/main/Investigating
| false | false | false |
mindspore
|
https://paperswithcode.com/paper/d4d-an-rgbd-diffusion-model-to-boost
|
D4D: An RGBD diffusion model to boost monocular depth estimation
|
2403.07516
|
https://arxiv.org/abs/2403.07516v1
|
https://arxiv.org/pdf/2403.07516v1.pdf
|
https://github.com/lorenzopapa5/diffusion4d
| true | true | false |
none
|
https://paperswithcode.com/paper/dynamic-u-net-adaptively-calibrate-features
|
Dynamic U-Net: Adaptively Calibrate Features for Abdominal Multi-organ Segmentation
|
2403.07303
|
https://arxiv.org/abs/2403.07303v1
|
https://arxiv.org/pdf/2403.07303v1.pdf
|
https://github.com/sotiraslab/dynamicunet
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/frequency-aware-deepfake-detection-improving
|
Frequency-Aware Deepfake Detection: Improving Generalizability through Frequency Space Learning
|
2403.07240
|
https://arxiv.org/abs/2403.07240v1
|
https://arxiv.org/pdf/2403.07240v1.pdf
|
https://github.com/chuangchuangtan/freqnet-deepfakedetection
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/human-emotion-knowledge-representation
|
Language-Specific Representation of Emotion-Concept Knowledge Causally Supports Emotion Inference
|
2302.09582
|
https://arxiv.org/abs/2302.09582v5
|
https://arxiv.org/pdf/2302.09582v5.pdf
|
https://github.com/thunlp/model_emotion
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/urban-radiance-field-representation-with
|
Urban Radiance Field Representation with Deformable Neural Mesh Primitives
|
2307.10776
|
https://arxiv.org/abs/2307.10776v1
|
https://arxiv.org/pdf/2307.10776v1.pdf
|
https://github.com/vision-sjtu/lightning-nerf
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/cat-enhancing-multimodal-large-language-model
|
CAT: Enhancing Multimodal Large Language Model to Answer Questions in Dynamic Audio-Visual Scenarios
|
2403.04640
|
https://arxiv.org/abs/2403.04640v1
|
https://arxiv.org/pdf/2403.04640v1.pdf
|
https://github.com/rikeilong/bay-cat
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/adaptive-inertial-method
|
Adaptive Inertial Method
|
2505.15114
|
https://arxiv.org/abs/2505.15114v1
|
https://arxiv.org/pdf/2505.15114v1.pdf
|
https://github.com/harmoke/aim
| true | true | true |
none
|
https://paperswithcode.com/paper/splatam-splat-track-map-3d-gaussians-for
|
SplaTAM: Splat, Track & Map 3D Gaussians for Dense RGB-D SLAM
|
2312.02126
|
https://arxiv.org/abs/2312.02126v3
|
https://arxiv.org/pdf/2312.02126v3.pdf
|
https://github.com/spla-tam/splatam
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/tensor-network-simulations-for-non-orientable
|
Tensor network simulations for non-orientable surfaces
|
2402.15507
|
https://arxiv.org/abs/2402.15507v2
|
https://arxiv.org/pdf/2402.15507v2.pdf
|
https://github.com/elle-et-noire/hotrg-nonorientablesurface
| true | true | true |
none
|
https://paperswithcode.com/paper/move-as-you-say-interact-as-you-can-language
|
Move as You Say, Interact as You Can: Language-guided Human Motion Generation with Scene Affordance
|
2403.18036
|
https://arxiv.org/abs/2403.18036v1
|
https://arxiv.org/pdf/2403.18036v1.pdf
|
https://github.com/afford-motion/afford-motion
| true | false | true |
pytorch
|
https://paperswithcode.com/paper/revisiting-color-event-based-tracking-a
|
Revisiting Color-Event based Tracking: A Unified Network, Dataset, and Metric
|
2211.11010
|
https://arxiv.org/abs/2211.11010v2
|
https://arxiv.org/pdf/2211.11010v2.pdf
|
https://github.com/event-ahu/coesot
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/spurious-reconstruction-from-brain-activity
|
Spurious reconstruction from brain activity
|
2405.10078
|
https://arxiv.org/abs/2405.10078v5
|
https://arxiv.org/pdf/2405.10078v5.pdf
|
https://github.com/KamitaniLab/GOD_stimuli_annotations
| true | false | false |
none
|
https://paperswithcode.com/paper/online-deep-learning-learning-deep-neural
|
Online Deep Learning: Learning Deep Neural Networks on the Fly
|
1711.03705
|
http://arxiv.org/abs/1711.03705v1
|
http://arxiv.org/pdf/1711.03705v1.pdf
|
https://github.com/alison-carrera/onn
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/a-survey-of-online-experiment-design-with-the
|
A Survey of Online Experiment Design with the Stochastic Multi-Armed Bandit
|
1510.00757
|
http://arxiv.org/abs/1510.00757v4
|
http://arxiv.org/pdf/1510.00757v4.pdf
|
https://github.com/alison-carrera/onn
| false | false | true |
pytorch
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.