paper_url
stringlengths 36
81
| paper_title
stringlengths 1
242
⌀ | paper_arxiv_id
stringlengths 9
16
⌀ | paper_url_abs
stringlengths 18
314
| paper_url_pdf
stringlengths 21
935
⌀ | repo_url
stringlengths 26
200
| is_official
bool 2
classes | mentioned_in_paper
bool 2
classes | mentioned_in_github
bool 2
classes | framework
stringclasses 9
values |
---|---|---|---|---|---|---|---|---|---|
https://paperswithcode.com/paper/videogpt-video-generation-using-vq-vae-and
|
VideoGPT: Video Generation using VQ-VAE and Transformers
|
2104.10157
|
https://arxiv.org/abs/2104.10157v2
|
https://arxiv.org/pdf/2104.10157v2.pdf
|
https://github.com/Alescontrela/viper_rl
| false | false | true |
jax
|
https://paperswithcode.com/paper/video-prediction-models-as-rewards-for
|
Video Prediction Models as Rewards for Reinforcement Learning
|
2305.14343
|
https://arxiv.org/abs/2305.14343v2
|
https://arxiv.org/pdf/2305.14343v2.pdf
|
https://github.com/Alescontrela/viper_rl
| false | false | true |
jax
|
https://paperswithcode.com/paper/dynamic-dual-attentive-aggregation-learning
|
Dynamic Dual-Attentive Aggregation Learning for Visible-Infrared Person Re-Identification
|
2007.09314
|
https://arxiv.org/abs/2007.09314v1
|
https://arxiv.org/pdf/2007.09314v1.pdf
|
https://github.com/MindSpore-paper-code-3/code8/tree/main/DDAG
| false | false | false |
mindspore
|
https://paperswithcode.com/paper/optimizing-password-composition-policies
|
Optimizing Password Composition Policies
|
1302.5101
|
https://arxiv.org/abs/1302.5101v2
|
https://arxiv.org/pdf/1302.5101v2.pdf
|
https://github.com/sr-lab/skeptic-authority-template
| false | false | true |
none
|
https://paperswithcode.com/paper/stable-diffusion-reference-only-image-prompt
|
Stable Diffusion Reference Only: Image Prompt and Blueprint Jointly Guided Multi-Condition Diffusion Model for Secondary Painting
|
2311.02343
|
https://arxiv.org/abs/2311.02343v1
|
https://arxiv.org/pdf/2311.02343v1.pdf
|
https://github.com/aihao2000/stable-diffusion-reference-only
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/source-free-open-set-domain-adaptation-for
|
Distill-SODA: Distilling Self-Supervised Vision Transformer for Source-Free Open-Set Domain Adaptation in Computational Pathology
|
2307.04596
|
https://arxiv.org/abs/2307.04596v3
|
https://arxiv.org/pdf/2307.04596v3.pdf
|
https://github.com/lts5/distill-soda
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/panda-llm-training-data-and-evaluation-for
|
Panda LLM: Training Data and Evaluation for Open-Sourced Chinese Instruction-Following Large Language Models
|
2305.03025
|
https://arxiv.org/abs/2305.03025v1
|
https://arxiv.org/pdf/2305.03025v1.pdf
|
https://github.com/dandelionsllm/pandallm
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/video-object-segmentation-with-dynamic-query
|
Video Object Segmentation with Dynamic Query Modulation
|
2403.11529
|
https://arxiv.org/abs/2403.11529v1
|
https://arxiv.org/pdf/2403.11529v1.pdf
|
https://github.com/zht8506/qmvos
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/the-atacama-cosmology-telescope-dr4-maps-and
|
The Atacama Cosmology Telescope: DR4 Maps and Cosmological Parameters
|
2007.07288
|
http://arxiv.org/abs/2007.07288v1
|
http://arxiv.org/pdf/2007.07288v1.pdf
|
https://github.com/htjense/pywmap
| false | false | true |
none
|
https://paperswithcode.com/paper/nine-year-wilkinson-microwave-anisotropy
|
Nine-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Parameter Results
|
1212.5226
|
https://arxiv.org/abs/1212.5226v3
|
https://arxiv.org/pdf/1212.5226v3.pdf
|
https://github.com/htjense/pywmap
| false | false | true |
none
|
https://paperswithcode.com/paper/five-year-wilkinson-microwave-anisotropy
|
Five-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Likelihoods and Parameters from the WMAP data
|
0803.0586
|
https://arxiv.org/abs/0803.0586v2
|
https://arxiv.org/pdf/0803.0586v2.pdf
|
https://github.com/htjense/pywmap
| false | false | true |
none
|
https://paperswithcode.com/paper/robust-stochastically-descending-unrolled
|
Robust Stochastically-Descending Unrolled Networks
|
2312.15788
|
https://arxiv.org/abs/2312.15788v2
|
https://arxiv.org/pdf/2312.15788v2.pdf
|
https://github.com/smrhadou/unrolledglow
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/unsupervised-multimodal-clustering-for
|
Unsupervised Multimodal Clustering for Semantics Discovery in Multimodal Utterances
|
2405.12775
|
https://arxiv.org/abs/2405.12775v1
|
https://arxiv.org/pdf/2405.12775v1.pdf
|
https://github.com/thuiar/umc
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/mossformer2-combining-transformer-and-rnn-1
|
MossFormer2: Combining Transformer and RNN-Free Recurrent Network for Enhanced Time-Domain Monaural Speech Separation
|
2312.11825
|
https://arxiv.org/abs/2312.11825v2
|
https://arxiv.org/pdf/2312.11825v2.pdf
|
https://github.com/modelscope/ClearerVoice-Studio
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/metricgan-an-improved-version-of-metricgan
|
MetricGAN+: An Improved Version of MetricGAN for Speech Enhancement
|
2104.03538
|
https://arxiv.org/abs/2104.03538v2
|
https://arxiv.org/pdf/2104.03538v2.pdf
|
https://github.com/wooseok-shin/MetricGAN-plus-pytorch
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/2408-02416
|
Why Are My Prompts Leaked? Unraveling Prompt Extraction Threats in Customized Large Language Models
|
2408.02416
|
https://arxiv.org/abs/2408.02416v2
|
https://arxiv.org/pdf/2408.02416v2.pdf
|
https://github.com/liangzid/promptextractioneval
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/learning-the-evolution-of-physical-structure
|
Understanding Galaxy Morphology Evolution Through Cosmic Time via Redshift Conditioned Diffusion Models
|
2411.18440
|
https://arxiv.org/abs/2411.18440v2
|
https://arxiv.org/pdf/2411.18440v2.pdf
|
https://github.com/astrodatalab/lizarraga_2024
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/petar-a-high-performance-n-body-code-for
|
PeTar: a high-performance N-body code for modeling massive collisional stellar systems
|
2006.16560
|
https://arxiv.org/abs/2006.16560v1
|
https://arxiv.org/pdf/2006.16560v1.pdf
|
https://github.com/lwang-astro/PeTar
| true | false | true |
none
|
https://paperswithcode.com/paper/stressid-a-multimodal-dataset-for-stress
|
StressID: a Multimodal Dataset for Stress Identification
| null |
https://openreview.net/forum?id=qWsQi9DGJb
|
https://openreview.net/pdf?id=qWsQi9DGJb
|
https://github.com/robustml-eurecom/stressid
| true | true | false |
none
|
https://paperswithcode.com/paper/single-image-dehazing-via-multi-scale
|
Single Image Dehazing via Multi-scale Convolutional Neural Networks
| null |
https://link.springer.com/chapter/10.1007/978-3-319-46475-6_10
|
https://link.springer.com/content/pdf/10.1007/978-3-319-46475-6.pdf
|
https://github.com/rwenqi/Multi-scale-CNN-Dehazing
| false | false | false |
none
|
https://paperswithcode.com/paper/distance-restricted-folklore-weisfeiler-leman-1
|
Distance-Restricted Folklore Weisfeiler-Leman GNNs with Provable Cycle Counting Power
|
2309.04941
|
https://arxiv.org/abs/2309.04941v3
|
https://arxiv.org/pdf/2309.04941v3.pdf
|
https://github.com/zml72062/dr-fwl-2
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/implicitly-normalized-forecaster-with
|
Implicitly normalized forecaster with clipping for linear and non-linear heavy-tailed multi-armed bandits
|
2305.06743
|
https://arxiv.org/abs/2305.06743v3
|
https://arxiv.org/pdf/2305.06743v3.pdf
|
https://github.com/kutuz4/implicitlynormalizedforecasterwithclipping
| true | true | true |
none
|
https://paperswithcode.com/paper/fine-tuning-large-language-models-for-domain-1
|
Fine-tuning large language models for domain adaptation: Exploration of training strategies, scaling, model merging and synergistic capabilities
|
2409.03444
|
https://arxiv.org/abs/2409.03444v1
|
https://arxiv.org/pdf/2409.03444v1.pdf
|
https://huggingface.co/lamm-mit/SmolLM-Base-1.7B-CPT-SFT-DPO-09022024
| false | false | false |
none
|
https://paperswithcode.com/paper/niutrans-an-open-source-toolkit-for-phrase
|
NiuTrans: An Open Source Toolkit for Phrase-based and Syntax-based Machine Translation
| null |
https://aclanthology.org/P12-3004
|
https://aclanthology.org/P12-3004.pdf
|
https://github.com/NiuTrans/NiuTrans.SMT
| true | false | false |
none
|
https://paperswithcode.com/paper/pope-6-dof-promptable-pose-estimation-of-any
|
POPE: 6-DoF Promptable Pose Estimation of Any Object, in Any Scene, with One Reference
|
2305.15727
|
https://arxiv.org/abs/2305.15727v1
|
https://arxiv.org/pdf/2305.15727v1.pdf
|
https://github.com/paulpanwang/POPE
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/a-graph-based-approach-to-extracting
|
A graph-based approach to extracting narrative signals from public discourse
|
2411.00702
|
https://arxiv.org/abs/2411.00702v1
|
https://arxiv.org/pdf/2411.00702v1.pdf
|
https://github.com/pournaki/soteu-narratives
| true | true | false |
none
|
https://paperswithcode.com/paper/byzantine-robust-federated-learning-with
|
Byzantine-Robust Federated Learning with Optimal Statistical Rates and Privacy Guarantees
|
2205.11765
|
https://arxiv.org/abs/2205.11765v2
|
https://arxiv.org/pdf/2205.11765v2.pdf
|
https://github.com/sarthak-choudhary/hidra
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/fall-of-empires-breaking-byzantine-tolerant
|
Fall of Empires: Breaking Byzantine-tolerant SGD by Inner Product Manipulation
|
1903.03936
|
http://arxiv.org/abs/1903.03936v1
|
http://arxiv.org/pdf/1903.03936v1.pdf
|
https://github.com/sarthak-choudhary/hidra
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/joint-face-detection-and-alignment-using
|
Joint Face Detection and Alignment using Multi-task Cascaded Convolutional Networks
|
1604.02878
|
http://arxiv.org/abs/1604.02878v1
|
http://arxiv.org/pdf/1604.02878v1.pdf
|
https://github.com/omaarelsherif/Face-Detection-Using-MTCNN
| false | false | true |
none
|
https://paperswithcode.com/paper/apsense-data-driven-algorithm-in-ppg-based
|
ApSense: Data-driven Algorithm in PPG-based Sleep Apnea Sensing
|
2306.10863
|
https://arxiv.org/abs/2306.10863v3
|
https://arxiv.org/pdf/2306.10863v3.pdf
|
https://github.com/iobt-vistec/apsense
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/do-text-free-diffusion-models-learn
|
Do text-free diffusion models learn discriminative visual representations?
|
2311.17921
|
https://arxiv.org/abs/2311.17921v3
|
https://arxiv.org/pdf/2311.17921v3.pdf
|
https://github.com/soumik-kanad/diffssl
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/multi-body-se-3-equivariance-for-unsupervised
|
Multi-body SE(3) Equivariance for Unsupervised Rigid Segmentation and Motion Estimation
|
2306.05584
|
https://arxiv.org/abs/2306.05584v2
|
https://arxiv.org/pdf/2306.05584v2.pdf
|
https://github.com/jx-zhong-for-academic-purpose/Multibody_SE3
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/attacking-byzantine-robust-aggregation-in
|
Attacking Byzantine Robust Aggregation in High Dimensions
|
2312.14461
|
https://arxiv.org/abs/2312.14461v3
|
https://arxiv.org/pdf/2312.14461v3.pdf
|
https://github.com/sarthak-choudhary/hidra
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/coarse-grained-configurational-polymer
|
Coarse-Grained Configurational Polymer Fingerprints for Property Prediction using Machine Learning
|
2311.14744
|
https://arxiv.org/abs/2311.14744v1
|
https://arxiv.org/pdf/2311.14744v1.pdf
|
https://github.com/ishan-kumar2/configurational-polymer-fingerprint
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/replay-based-for-recovering-autonomous
|
Diagnosis-guided Attack Recovery for Securing Robotic Vehicles from Sensor Deception Attacks
|
2209.04554
|
https://arxiv.org/abs/2209.04554v5
|
https://arxiv.org/pdf/2209.04554v5.pdf
|
https://github.com/dependablesystemslab/delorean
| true | true | false |
none
|
https://paperswithcode.com/paper/adversarial-contrastive-learning-for-evidence
|
Adversarial Contrastive Learning for Evidence-aware Fake News Detection with Graph Neural Networks
|
2210.05498
|
https://arxiv.org/abs/2210.05498v1
|
https://arxiv.org/pdf/2210.05498v1.pdf
|
https://github.com/cripac-dig/getral
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/is-chatgpt-a-good-multi-party-conversation
|
Is ChatGPT a Good Multi-Party Conversation Solver?
|
2310.16301
|
https://arxiv.org/abs/2310.16301v1
|
https://arxiv.org/pdf/2310.16301v1.pdf
|
https://github.com/lxchtan/chatmpc
| true | true | true |
none
|
https://paperswithcode.com/paper/spectra-sparse-structured-text
|
SPECTRA: Sparse Structured Text Rationalization
|
2109.04552
|
https://arxiv.org/abs/2109.04552v1
|
https://arxiv.org/pdf/2109.04552v1.pdf
|
https://github.com/deep-spin/spectra-rationalization
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/calibration-free-single-frame-super
|
Calibration-free single-frame super-resolution fluorescence microscopy
|
2505.13293
|
https://arxiv.org/abs/2505.13293v1
|
https://arxiv.org/pdf/2505.13293v1.pdf
|
https://github.com/robstarek/cfcnn
| true | true | true |
tf
|
https://paperswithcode.com/paper/detecting-gravitational-waves-in-data-with
|
Detecting Gravitational Waves in Data with Non-Gaussian Noise
|
1908.05644
|
http://arxiv.org/abs/1908.05644v1
|
http://arxiv.org/pdf/1908.05644v1.pdf
|
https://github.com/jroulet/cogwheel
| false | false | true |
none
|
https://paperswithcode.com/paper/pooling-architecture-search-for-graph
|
Pooling Architecture Search for Graph Classification
|
2108.10587
|
https://arxiv.org/abs/2108.10587v1
|
https://arxiv.org/pdf/2108.10587v1.pdf
|
https://github.com/lars-research/pas-ogb
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/sensing-force-gradients-with-cavity
|
Sensing force gradients with cavity optomechanics while evading backaction
|
2405.06589
|
https://arxiv.org/abs/2405.06589v2
|
https://arxiv.org/pdf/2405.06589v2.pdf
|
https://zenodo.org/record/11175476
| true | false | false |
none
|
https://paperswithcode.com/paper/tilted-quantile-gradient-updates-for-quantile
|
Tilted Quantile Gradient Updates for Quantile-Constrained Reinforcement Learning
|
2412.13184
|
https://arxiv.org/abs/2412.13184v1
|
https://arxiv.org/pdf/2412.13184v1.pdf
|
https://github.com/CharlieLeeeee/TQPO
| true | false | true |
pytorch
|
https://paperswithcode.com/paper/decoupling-speaker-independent-emotions-for
|
Decoupling Speaker-Independent Emotions for Voice Conversion Via Source-Filter Networks
|
2110.01164
|
https://arxiv.org/abs/2110.01164v1
|
https://arxiv.org/pdf/2110.01164v1.pdf
|
https://github.com/ZhaojieL/HTE-data
| false | false | true |
none
|
https://paperswithcode.com/paper/target-aware-spatio-temporal-reasoning-via
|
Target-Aware Spatio-Temporal Reasoning via Answering Questions in Dynamics Audio-Visual Scenarios
|
2305.12397
|
https://arxiv.org/abs/2305.12397v2
|
https://arxiv.org/pdf/2305.12397v2.pdf
|
https://github.com/Bravo5542/TJSTG
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/chartx-chartvlm-a-versatile-benchmark-and
|
ChartX & ChartVLM: A Versatile Benchmark and Foundation Model for Complicated Chart Reasoning
|
2402.12185
|
https://arxiv.org/abs/2402.12185v4
|
https://arxiv.org/pdf/2402.12185v4.pdf
|
https://github.com/unimodal4reasoning/chartvlm
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/reformatted-alignment
|
Reformatted Alignment
|
2402.12219
|
https://arxiv.org/abs/2402.12219v2
|
https://arxiv.org/pdf/2402.12219v2.pdf
|
https://github.com/gair-nlp/realign
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/a-framework-for-fine-grained-synchronization
|
A Framework for Fine-Grained Synchronization of Dependent GPU Kernels
|
2305.13450
|
https://arxiv.org/abs/2305.13450v3
|
https://arxiv.org/pdf/2305.13450v3.pdf
|
https://github.com/microsoft/cusync
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/toward-certified-robustness-against-real
|
Toward Certified Robustness Against Real-World Distribution Shifts
|
2206.03669
|
https://arxiv.org/abs/2206.03669v3
|
https://arxiv.org/pdf/2206.03669v3.pdf
|
https://github.com/wu-haoze/dist-shift-vnn-comp
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/bcn-batch-channel-normalization-for-image
|
BCN: Batch Channel Normalization for Image Classification
|
2312.00596
|
https://arxiv.org/abs/2312.00596v1
|
https://arxiv.org/pdf/2312.00596v1.pdf
|
https://github.com/AfifaKhaled/Batch-Channel-Normalization
| true | false | true |
pytorch
|
https://paperswithcode.com/paper/seamless-multilingual-expressive-and
|
Seamless: Multilingual Expressive and Streaming Speech Translation
|
2312.05187
|
https://arxiv.org/abs/2312.05187v1
|
https://arxiv.org/pdf/2312.05187v1.pdf
|
https://github.com/facebookresearch/seamless_communication
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/cognitive-visual-commonsense-reasoning-using
|
Cognitive Visual Commonsense Reasoning Using Dynamic Working Memory
|
2107.01671
|
https://arxiv.org/abs/2107.01671v4
|
https://arxiv.org/pdf/2107.01671v4.pdf
|
https://github.com/tanjatang/DMVCR
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/micaugment-one-shot-microphone-style-transfer
|
MicAugment: One-shot Microphone Style Transfer
|
2010.09658
|
https://arxiv.org/abs/2010.09658v1
|
https://arxiv.org/pdf/2010.09658v1.pdf
|
https://github.com/MindSpore-scientific/code-11/tree/main/MicAugment
| false | false | false |
mindspore
|
https://paperswithcode.com/paper/detect-to-retrieve-efficient-regional
|
Detect-to-Retrieve: Efficient Regional Aggregation for Image Search
|
1812.01584
|
https://arxiv.org/abs/1812.01584v2
|
https://arxiv.org/pdf/1812.01584v2.pdf
|
https://github.com/code-implementation1/Code1/tree/main/delf
| false | false | false |
mindspore
|
https://paperswithcode.com/paper/filp-3d-enhancing-3d-few-shot-class
|
FILP-3D: Enhancing 3D Few-shot Class-incremental Learning with Pre-trained Vision-Language Models
|
2312.17051
|
https://arxiv.org/abs/2312.17051v2
|
https://arxiv.org/pdf/2312.17051v2.pdf
|
https://github.com/hit-leaderone/flip-3d
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/kernel-ssl-kernel-kl-divergence-for-self
|
Matrix Information Theory for Self-Supervised Learning
|
2305.17326
|
https://arxiv.org/abs/2305.17326v7
|
https://arxiv.org/pdf/2305.17326v7.pdf
|
https://github.com/yifanzhang-pro/matrix-llm
| true | true | true |
none
|
https://paperswithcode.com/paper/single-domain-generalization-for-few-shot
|
Single Domain Generalization for Few-Shot Counting via Universal Representation Matching
|
2505.16778
|
https://arxiv.org/abs/2505.16778v1
|
https://arxiv.org/pdf/2505.16778v1.pdf
|
https://github.com/jbr97/urm
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/thermocapillary-thin-films-periodic-steady
|
Thermocapillary Thin Films: Periodic Steady States and Film Rupture
|
2308.11279
|
https://arxiv.org/abs/2308.11279v2
|
https://arxiv.org/pdf/2308.11279v2.pdf
|
https://github.com/bastian-hilder/global-bif-thermocapillary-thin-film-equation
| true | true | true |
none
|
https://paperswithcode.com/paper/recovering-realistic-texture-in-image-super
|
Recovering Realistic Texture in Image Super-resolution by Deep Spatial Feature Transform
|
1804.02815
|
http://arxiv.org/abs/1804.02815v1
|
http://arxiv.org/pdf/1804.02815v1.pdf
|
https://github.com/sdauzcm/sr-basicsr
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/esrgan-enhanced-super-resolution-generative
|
ESRGAN: Enhanced Super-Resolution Generative Adversarial Networks
|
1809.00219
|
http://arxiv.org/abs/1809.00219v2
|
http://arxiv.org/pdf/1809.00219v2.pdf
|
https://github.com/sdauzcm/sr-basicsr
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/photo-realistic-single-image-super-resolution
|
Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network
|
1609.04802
|
http://arxiv.org/abs/1609.04802v5
|
http://arxiv.org/pdf/1609.04802v5.pdf
|
https://github.com/sdauzcm/sr-basicsr
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/counting-collisions-in-random-circuit
|
Counting collisions in random circuit sampling for benchmarking quantum computers
|
2312.04222
|
https://arxiv.org/abs/2312.04222v2
|
https://arxiv.org/pdf/2312.04222v2.pdf
|
https://github.com/unitaryfund/research
| true | true | false |
none
|
https://paperswithcode.com/paper/lyapunov-guided-embedding-for-hyperparameter
|
Lyapunov-Guided Representation of Recurrent Neural Network Performance
|
2204.04876
|
https://arxiv.org/abs/2204.04876v2
|
https://arxiv.org/pdf/2204.04876v2.pdf
|
https://github.com/shlizee/lyapunovautoencode
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/discretization-drift-in-two-player-games
|
Discretization Drift in Two-Player Games
|
2105.13922
|
https://arxiv.org/abs/2105.13922v2
|
https://arxiv.org/pdf/2105.13922v2.pdf
|
https://github.com/deepmind/dd_two_player_games
| false | false | true |
jax
|
https://paperswithcode.com/paper/on-a-continuous-time-model-of-gradient
|
On a continuous time model of gradient descent dynamics and instability in deep learning
|
2302.01952
|
https://arxiv.org/abs/2302.01952v3
|
https://arxiv.org/pdf/2302.01952v3.pdf
|
https://github.com/deepmind/dd_two_player_games
| false | false | true |
jax
|
https://paperswithcode.com/paper/analyzing-and-improving-the-image-quality-of
|
Analyzing and Improving the Image Quality of StyleGAN
|
1912.04958
|
https://arxiv.org/abs/1912.04958v2
|
https://arxiv.org/pdf/1912.04958v2.pdf
|
https://github.com/tompaperspaceio/stylegan3
| false | false | true |
tf
|
https://paperswithcode.com/paper/meta-task-prompting-elicits-embedding-from
|
Meta-Task Prompting Elicits Embeddings from Large Language Models
|
2402.18458
|
https://arxiv.org/abs/2402.18458v2
|
https://arxiv.org/pdf/2402.18458v2.pdf
|
https://github.com/yibin-lei/metaeol
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/on-the-design-dependent-suboptimality-of-the
|
On the design-dependent suboptimality of the Lasso
|
2402.00382
|
https://arxiv.org/abs/2402.00382v1
|
https://arxiv.org/pdf/2402.00382v1.pdf
|
https://github.com/reesepathak/lowerlassosim
| true | true | false |
none
|
https://paperswithcode.com/paper/from-demonstrations-to-rewards-alignment
|
From Demonstrations to Rewards: Alignment Without Explicit Human Preferences
|
2503.13538
|
https://arxiv.org/abs/2503.13538v1
|
https://arxiv.org/pdf/2503.13538v1.pdf
|
https://github.com/Hong-Lab-UMN-ECE/IRLAlignment
| true | false | false |
pytorch
|
https://paperswithcode.com/paper/jitter-characterization-of-the-hyti-satellite
|
Jitter Characterization of the HyTI Satellite
|
2404.15575
|
https://arxiv.org/abs/2404.15575v1
|
https://arxiv.org/pdf/2404.15575v1.pdf
|
https://github.com/chase-urasaki/hyti_jitter_metrology
| true | true | false |
none
|
https://paperswithcode.com/paper/jailbroken-how-does-llm-safety-training-fail
|
Jailbroken: How Does LLM Safety Training Fail?
|
2307.02483
|
https://arxiv.org/abs/2307.02483v1
|
https://arxiv.org/pdf/2307.02483v1.pdf
|
https://github.com/cassidylaidlaw/hidden-context
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/fastpillars-a-deployment-friendly-pillar
|
FastPillars: A Deployment-friendly Pillar-based 3D Detector
|
2302.02367
|
https://arxiv.org/abs/2302.02367v6
|
https://arxiv.org/pdf/2302.02367v6.pdf
|
https://github.com/StiphyJay/FastPillars
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/distributional-preference-learning
|
Distributional Preference Learning: Understanding and Accounting for Hidden Context in RLHF
|
2312.08358
|
https://arxiv.org/abs/2312.08358v2
|
https://arxiv.org/pdf/2312.08358v2.pdf
|
https://github.com/cassidylaidlaw/hidden-context
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/causal-optimal-transport-of-abstractions
|
Causal Optimal Transport of Abstractions
|
2312.08107
|
https://arxiv.org/abs/2312.08107v1
|
https://arxiv.org/pdf/2312.08107v1.pdf
|
https://github.com/yfelekis/cota
| true | true | false |
none
|
https://paperswithcode.com/paper/pnpnet-pull-and-push-networks-for-volumetric
|
PnPNet: Pull-and-Push Networks for Volumetric Segmentation with Boundary Confusion
|
2312.08323
|
https://arxiv.org/abs/2312.08323v1
|
https://arxiv.org/pdf/2312.08323v1.pdf
|
https://github.com/alexyouxin/pnpnet
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/tanet-robust-3d-object-detection-from-point
|
TANet: Robust 3D Object Detection from Point Clouds with Triple Attention
|
1912.05163
|
https://arxiv.org/abs/1912.05163v1
|
https://arxiv.org/pdf/1912.05163v1.pdf
|
https://github.com/mjseong0414/TANet
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/voicify-your-ui-towards-android-app-control
|
Voicify Your UI: Towards Android App Control with Voice Commands
|
2305.05198
|
https://arxiv.org/abs/2305.05198v1
|
https://arxiv.org/pdf/2305.05198v1.pdf
|
https://github.com/dfpp/arap
| false | false | true |
none
|
https://paperswithcode.com/paper/promptlink-leveraging-large-language-models
|
PromptLink: Leveraging Large Language Models for Cross-Source Biomedical Concept Linking
|
2405.07500
|
https://arxiv.org/abs/2405.07500v1
|
https://arxiv.org/pdf/2405.07500v1.pdf
|
https://github.com/constantjxyz/promptlink
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/learning-lagrangian-fluid-mechanics-with-e-3
|
Learning Lagrangian Fluid Mechanics with E($3$)-Equivariant Graph Neural Networks
|
2305.15603
|
https://arxiv.org/abs/2305.15603v1
|
https://arxiv.org/pdf/2305.15603v1.pdf
|
https://github.com/tumaer/lagrangebench
| false | false | true |
jax
|
https://paperswithcode.com/paper/act-as-you-learn-adaptive-decision-making-in
|
Act as You Learn: Adaptive Decision-Making in Non-Stationary Markov Decision Processes
|
2401.01841
|
https://arxiv.org/abs/2401.01841v3
|
https://arxiv.org/pdf/2401.01841v3.pdf
|
https://github.com/scope-lab-vu/ada-mcts
| true | true | false |
none
|
https://paperswithcode.com/paper/importance-prioritized-policy-distillation
|
Importance Prioritized Policy Distillation
| null |
https://dl.acm.org/doi/abs/10.1145/3534678.3539266
|
https://drive.google.com/file/d/18K7tjgA0K3gX_d-fgmVymPMq-3zf4hvB/view?usp=sharing
|
https://github.com/xinghua-qu/Importance-Prioritized-Policy-Distillation
| false | false | false |
tf
|
https://paperswithcode.com/paper/enhancing-long-term-recommendation-with-bi
|
Large Language Models are Learnable Planners for Long-Term Recommendation
|
2403.00843
|
https://arxiv.org/abs/2403.00843v2
|
https://arxiv.org/pdf/2403.00843v2.pdf
|
https://github.com/jizhi-zhang/billp
| true | true | false |
none
|
https://paperswithcode.com/paper/one-shot-learning-as-instruction-data
|
One-Shot Learning as Instruction Data Prospector for Large Language Models
|
2312.10302
|
https://arxiv.org/abs/2312.10302v4
|
https://arxiv.org/pdf/2312.10302v4.pdf
|
https://github.com/pldlgb/nuggets
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/attention-is-all-you-need
|
Attention Is All You Need
|
1706.03762
|
https://arxiv.org/abs/1706.03762v7
|
https://arxiv.org/pdf/1706.03762v7.pdf
|
https://github.com/moon23k/Transformer_Anchors
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/domain-generalization-with-correlated-style
|
Domain Generalization with Correlated Style Uncertainty
|
2212.09950
|
https://arxiv.org/abs/2212.09950v3
|
https://arxiv.org/pdf/2212.09950v3.pdf
|
https://github.com/freshman97/csu
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/progressive-semantic-guided-vision
|
Progressive Semantic-Guided Vision Transformer for Zero-Shot Learning
|
2404.07713
|
https://arxiv.org/abs/2404.07713v2
|
https://arxiv.org/pdf/2404.07713v2.pdf
|
https://github.com/shiming-chen/zslvit
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/consistent-diffusion-meets-tweedie-training
|
Consistent Diffusion Meets Tweedie: Training Exact Ambient Diffusion Models with Noisy Data
|
2404.10177
|
https://arxiv.org/abs/2404.10177v2
|
https://arxiv.org/pdf/2404.10177v2.pdf
|
https://github.com/giannisdaras/ambient-tweedie
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/leveraging-memory-effects-and-gradient
|
Leveraging Memory Effects and Gradient Information in Consensus-Based Optimization: On Global Convergence in Mean-Field Law
|
2211.12184
|
https://arxiv.org/abs/2211.12184v2
|
https://arxiv.org/pdf/2211.12184v2.pdf
|
https://github.com/igor-tukh/cbo-in-python
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/a-primer-on-topological-data-analysis-to
|
A Primer on Topological Data Analysis to Support Image Analysis Tasks in Environmental Science
|
2207.10552
|
https://arxiv.org/abs/2207.10552v1
|
https://arxiv.org/pdf/2207.10552v1.pdf
|
https://github.com/zyjux/sffg_tda
| true | true | true |
none
|
https://paperswithcode.com/paper/black-hole-formation-from-a-general-quadratic
|
Black hole formation from a general quadratic action for inflationary primordial fluctuations
|
1811.03065
|
http://arxiv.org/abs/1811.03065v2
|
http://arxiv.org/pdf/1811.03065v2.pdf
|
https://github.com/oozsoy/singlefieldinf_powerspec_pbh
| false | false | true |
none
|
https://paperswithcode.com/paper/distance-based-mutual-congestion-feature
|
Distance-based mutual congestion feature selection with genetic algorithm for high-dimensional medical datasets
|
2407.15611
|
https://arxiv.org/abs/2407.15611v1
|
https://arxiv.org/pdf/2407.15611v1.pdf
|
https://github.com/hnematzadeh/dmc-gawar
| true | true | false |
none
|
https://paperswithcode.com/paper/coleclip-open-domain-continual-learning-via
|
CoLeCLIP: Open-Domain Continual Learning via Joint Task Prompt and Vocabulary Learning
|
2403.10245
|
https://arxiv.org/abs/2403.10245v1
|
https://arxiv.org/pdf/2403.10245v1.pdf
|
https://github.com/YukunLi99/CoLeCLIP
| true | false | true |
pytorch
|
https://paperswithcode.com/paper/desobav2-towards-large-scale-real-world
|
DESOBAv2: Towards Large-scale Real-world Dataset for Shadow Generation
|
2308.09972
|
https://arxiv.org/abs/2308.09972v1
|
https://arxiv.org/pdf/2308.09972v1.pdf
|
https://github.com/bcmi/object-shadow-generation-dataset-desobav2
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/compiler-for-distributed-quantum-computing-a
|
Compiler for Distributed Quantum Computing: a Reinforcement Learning Approach
|
2404.17077
|
https://arxiv.org/abs/2404.17077v1
|
https://arxiv.org/pdf/2404.17077v1.pdf
|
https://github.com/ppromponas/compilerdqc
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/intelligent-artistic-typography-a
|
Intelligent Artistic Typography: A Comprehensive Review of Artistic Text Design and Generation
|
2407.14774
|
https://arxiv.org/abs/2407.14774v1
|
https://arxiv.org/pdf/2407.14774v1.pdf
|
https://github.com/williamyang1991/awesome-artistic-typography
| true | true | true |
none
|
https://paperswithcode.com/paper/evaluating-self-supervised-learning-via-risk
|
Evaluating Self-Supervised Learning via Risk Decomposition
|
2302.03068
|
https://arxiv.org/abs/2302.03068v3
|
https://arxiv.org/pdf/2302.03068v3.pdf
|
https://github.com/yanndubs/ssl-risk-decomposition
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/agentscope-a-flexible-yet-robust-multi-agent
|
AgentScope: A Flexible yet Robust Multi-Agent Platform
|
2402.14034
|
https://arxiv.org/abs/2402.14034v2
|
https://arxiv.org/pdf/2402.14034v2.pdf
|
https://github.com/modelscope/agentscope
| true | true | true |
none
|
https://paperswithcode.com/paper/randomized-sparse-neural-galerkin-schemes-for-1
|
Randomized Sparse Neural Galerkin Schemes for Solving Evolution Equations with Deep Networks
|
2310.04867
|
https://arxiv.org/abs/2310.04867v1
|
https://arxiv.org/pdf/2310.04867v1.pdf
|
https://github.com/julesberman/colora
| false | false | true |
jax
|
https://paperswithcode.com/paper/nonlinear-embeddings-for-conserving
|
Nonlinear embeddings for conserving Hamiltonians and other quantities with Neural Galerkin schemes
|
2310.07485
|
https://arxiv.org/abs/2310.07485v1
|
https://arxiv.org/pdf/2310.07485v1.pdf
|
https://github.com/julesberman/colora
| false | false | true |
jax
|
https://paperswithcode.com/paper/token-level-correlation-guided-compression
|
Token-level Correlation-guided Compression for Efficient Multimodal Document Understanding
|
2407.14439
|
https://arxiv.org/abs/2407.14439v1
|
https://arxiv.org/pdf/2407.14439v1.pdf
|
https://github.com/JiuTian-VL/TokenCorrCompressor
| true | false | true |
none
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.